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Abstract

Nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs), the first line of

defense, are the cytosolic pattern recognition receptors (PRRs) that regulate the inflamma-

tory activity in response to invading pathogens. NLRs are the members of AAA+ ATPase

superfamily that comprises of N-terminal EBD(s), a centrally positioned NOD/NACHT and

varying range of LRRs towards the C-terminal end. Due to the lack of structural data, the

functional aspects of NLRP-signaling mechanism, which includes pathogen recognition,

nucleotide-binding, and sensor-adaptor-effector interactions, are not fully understood. In

this study, we implemented structural bioinformatics approaches including protein modeling,

docking, and molecular dynamics simulations to explore the structural-dynamic features of

ADP-/ATP-Mg2+ binding in NLRPNACHT models. Our results indicate a similar mode of ATP-

Mg2+ binding in all NLRPNACHT models and the interacting residues are found consistent

with reported mutagenesis data. Accompanied by the key amino acids (proposed to be cru-

cial for ATP-Mg2+ coordination), we further have noticed that some additional conserved

residues (including ‘Trp’ of the PhhCW motif, and ‘Phe’ and ‘Tyr’ of the GFxxxxRxxYF motif)

are potentially interacting with ATP during dynamics; which require further experimentation

for legitimacy. Overall, this study will help in understanding the ADP-/ATP-Mg2+ binding

mechanisms in NLRPs in a broader perspective and the proposed ATP-binding pocket will

aid in designing novel inhibitors for the regulation of inflammasome activity.

Introduction

Innate immunity constitutes the first line of defense against infectious pathogens. It is gov-

erned by several sets of germ-line encoded receptors, known as pattern recognition receptors

(PRRs). These receptors mediate the host-defense mechanism against typical patterns, namely

pathogen-associated molecular patterns (PAMPs) or host-derived danger-associated molecu-

lar patterns (DAMPs) [1]. The PRRs encompass five major families: Toll-like receptors

(TLRs), nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs),
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retinoic acid-inducible gene (RIG)-I like receptors (RLRs), C-type lectin receptors (CLRs) and

absent in melanoma (AIM)-2 like receptors (ALRs). Of these, NLRs, RLRs, and ALRs are

restricted to the cytoplasm, while TLRs and CLRs are membrane-bound [2]. NLRs are evolu-

tionarily conserved PRRs, play fundamental roles both in plant and animal host-defense mech-

anism and are classified under the STAND (signal transduction ATPase with numerous

domains) sub-clade of AAA+ ATPase superfamily [3,4]. Structurally, NLRs show tripartite

domain architecture; diverse N-terminal effector binding domain (EBD), centrally positioned

NOD/NACHT and variable numbers of LRRs towards the C-terminal end. A total of 22 and

34 members of NLRs have been reported in human and mice, respectively. These receptors are

classified into five major sub-groups according to their amino-terminal domain distribution;

NLRA (CIITA), NLRB (NAIP), NLRC (NLRC1-5), NLRP (NLRP1-14) and NLRX (NLRX1)

[5]. Apart from their role in the host-defense mechanism, most of the NLRs regulate gameto-

genesis [6–9].

The PYrin Domain (PYD) containing NLRs are evolutionarily highly conserved and show

tripartite domain architecture (PYD-NACHT-LRRs). In this sub-family, NLRP1 and NLRP10

are two unique members display distinct type of domain architecture; the former one shows

two additional domains (FIIND and CARD) at the C-terminal end, and the later one is devoid

of LRRs. In cytosolic environment, the NLRPs are found in idle state before pathogenic inva-

sion, and the recognition of PAMPs/DAMPs activates the receptors. This PAMP/DAMP-rec-

ognition, which is mostly driven by LRR domains, induces the conformational reorientation

and is thought to facilitate the ATP-dependent self-oligomerization of the receptors [10,11].

These self-oligomerized active NLRPs in association with adaptor protein ASC (apoptosis

associated speck-like protein containing CARD) and effector molecule procaspase-1, orches-

trate the multi-protein caspase-1-activating complexes called Inflammasome. This assembled

multi-protein signaling complex leads to the maturation and release of pro-inflammatory cyto-

kines (IL-1β and IL-18), and often induction of cell death (apoptosis and pyroptosis). In 2002,

Martinon et al. reported NLRP1 as the first receptor to assemble inflammasome in association

with ASC and procaspase-1 [12]. Later, several NLRs (NLRP3, NLRP7, NLRP12 and CARD-

containing NLRC4) along with two non-NLR proteins (AIM2 and IFI16) were reported to

assemble inflammasome [12–14].

Dysregulation in NLRP-gene function due to polymorphisms and mutations has been

observed to be associated with several auto-inflammatory, autoimmune as well as metabolic

diseases. For instance, the polymorphisms in NLRP1 are linked to a variety of autoimmune

diseases viz., Addison’s diseases, autoimmune thyroid diseases, giant cell arteritis, Alzheimer’s

diseases [15–18], etc.; NLRP2 is associated with arsenic-induced skin lesions and familial

imprinting disorder [19,20]. SNPs in NLRP3 are linked to Type-I diabetes, celiac disease, and

psoriasis [21,22]. Apart from this, several mutations in NLRP3 are also linked to familial cold

autoinflammatory syndrome 1 (FCAS1), cryopyrin-associated periodic fever syndrome

(CAPS), type-II diabetes and atherosclerosis [23–25]. It has been observed that NLRP5 is asso-

ciated with reproductive and multilocus imprinting disorders [7], while dysregulation in

NLRP6 is linked to colitis-induced tumorigenesis [26]. Additionally, the mutations in NLRP12

are associated with hereditary periodic syndrome [27]. Moreover, several reports on NLRP2

and NLRP7 notified their association with recurrent miscarriage (abnormal human pregnan-

cies and embryonic development) [6, 9, 28]. And, the reports on NLRP14 gene function indi-

cated its regulatory role in spermatogenesis [8,9].

Despite emerging shreds of evidence, various aspects of NLR-signaling mechanisms such as

pathogen-recognition, nucleotide binding, and protein-protein interactions, etc. are yet to be

deciphered. In NLR family, NLRP is the largest subfamily, plays essential roles both in mam-

malian innate immune and reproductive systems. Due to the lack of structural data, it remains
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a challenge to understand the molecular basis of NLRP signaling mechanism. Henceforth, to

elucidate the mode and nature of ADP/ATP binding, and their role in switching mechanism

of NLRPs, we adopted the structural bioinformatics approaches. The results from this compu-

tational investigation revealed similar mode of ADP/ATP-binding in all NLRPNACHT models.

But, no switching mechanism of NACHT domains was observed during the course of simula-

tion time in response to ADP-/ATP-Mg2+. In all, our study would be helpful in understanding

the mode and mechanisms of ADP-/ATP-Mg2+ binding in NLRPNACHT domains and will

show future directions to develop new therapeutics for the patients suffering from acute and

chronic diseases.

Computational methods

Identification of functional domains

The primary protein sequences of human NLRPs (NLRP1-14) were retrieved from NCBI pro-

tein database (S1 Table). The individual domains, sub-domains and motif regions were

acquired from UniProt (www.uniprot.org) and literature studies [10,29]. In addition, the mul-

tiple sequence alignment of NLRP proteins was carried out using MAAFT [30] to probe the

functional domain boundaries and nucleotide-binding motifs.

Molecular modeling

After probing the functional domains and nucleotide-binding motifs, we considered the

NACHT domains of NLRP1-14 for the 3D model building to infer the mode and nature of

ADP/ATP-binding mechanism. First, the secondary structure prediction of NLRPNACHT

domains was carried out using PSIPRED [31]. Thereafter, suitable template(s) for individual

NACHT domains was searched using DELTA-BLAST tool [32]. Due to low sequence identity

with available templates, the 3D model building was performed using I-TASSER server [33].

Out of the generated models, the best model for each NLRPNACHT domain was chosen based

on the lowest CS-score, and refined using GalaxyRefine server [34]. Then, the refined models

were validated using PROCHECK [35], ProSA [36], and Verify3D [37] web servers.

Molecular docking

ATP-binding sites of the built NLRP1-14NACHT models were anticipated from available litera-

ture [10,29] and sequence-structure analysis. To understand the mode and nature of ADP and

ATP-binding, molecular docking simulations were performed in two different approaches. In

the first approach, the docking set up was prepared using AutoDock tools [38], and the dock-

ing simulations were carried out in AutoDock Vina [39]. Docking parameters were acquired

from the previous study [40]. In the second approach; the ADP, ATP and Mg2+ were placed in

the active site pocket of all NLRPNACHT models based on OcNOD2 (5IRL [41]) and APAF1

(3JBT [42]) crystal structures. NLRP1-14NACHT models were first superimposed with OcNOD2

and APAF1 structures and later, the ADP-/ATP-Mg2+ coordinates were merged using PyMOL.

After placing the ADP/ATP and Mg2+ in the nucleotide-binding site of all NLRPNACHT models,

the unrealistic close contacts (intermolecular bumps/steric clashes) between ADP/ATP and sur-

rounding residues were carefully cleared using DSV 4.2 (BIOVIA, 2017). Thereupon, to infer

the dynamic characteristics of NACHT domains in ADP-/ATP-Mg2+-bound state, all the com-

plexes generated via AutoDock Vina and manual docking (along with Nlrc4NACHT-ADP-/

ATP-Mg2+) were simulated for 50 ns timescale.
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MD simulation

MD simulations of apo and holo (ADP-/ATP-Mg2+-bound) systems were performed in GRO-

MACS 5.1 simulation suite [43] using Amber ff99SB-ILDN force field [44] in the periodic

boundary condition. The topology files for deprotonated ADP (-3e) and ATP (-4e) were gen-

erated using Antechamber tool v 1.11 (via CCPN web server) [45]. The simulation systems

were solvated in TIP3P water model and neutralized by adding a physiological ionic strength

(0.15 M) of NaCl. The energy minimization was performed using steepest descent algorithm

until a tolerance of 1000 kJ mol-1 in order to avoid steric conflicts and high energy interactions

between the atoms. The simulation systems were equilibrated for 0.1 and 1 ns under NVT

(constant volume) and NPT (constant pressure) conditions, respectively. PME (particle mesh

Ewald) summation method was used for the computation of long-range electrostatic interac-

tions and temperature coupling was set to 300 K using modified Berendsen thermostat algo-

rithm. After equilibrium, the final production simulations were run for 50 ns timescale (S2

Table).

Analysis of MD trajectories

After MD simulation, the trajectory analysis was carried out using integrated modules of

GROMACS and VMD [46]. Backbone root mean square deviation (RMSD) and total numbers

of H-bonds (as a function of simulation time) were calculated using gmx rms and gmx hbond
tools, respectively. To get the representative ADP-/ATP-Mg2+ bound NLRPNACHT structures

(for interaction study), we performed the cluster analysis of holo trajectories using gmx cluster
tool. The interaction analysis of ADP-/ATP-Mg2+ bound representative structures was per-

formed using PISA [47]. The structural and molecular illustrations were generated in PyMOL

(academic license). The inter-residual distance(s) between ATP-Mg2+ and interacting residues

were calculated using the gmx mindist program. Principal component analysis (PCA) was per-

formed using gmx covar and gmx anaeig tools to understand the global motion of the proteins

by calculating the eigenvalues and principal components (PC1 and PC2) of main-chain atoms.

All the 2D graphs generated from trajectory analysis were prepared using Grace 5.1.23 (http://

plasma-gate.weizmann.ac.il/Grace/).

Results and discussion

Functional domains, ADP/ATP-binding motifs and 3D models

Domain analysis of NLRPs (1–14) revealed that most of the receptors are comprised of three

functional domains; N-terminal PYD, central NACHT and variable numbers of LRRs at the

C-terminal end. NLRP1 has two additional domains, FIIND and CARD towards the C-termi-

nal region, whereas NLRP10 lacks the LRR (Fig 1A; S1 Table). Consistent with recently

resolved Nlrc4 (4KXF) and OcNOD2 (5IRL) structures [41,48] and sequence analysis results,

we outlined three functional sub-domains of NACHT/NOD modules; (a) the nucleotide-bind-

ing domain (NDB) positioned after PYD, (b) the helical domain 1 (HD1) and (c) the winged

helix domain (WHD) towards C-terminal end. Like Nlrc4/OcNOD2, we also found the second

helical domain (HD2) in all NLRP proteins residing between WHD and LRR (Fig 1A).

The sequence analysis of NLRP1-14NACHT domains revealed five conserved nucleotide-

binding motifs [Walker A (GxxxxGK[S/T]; where ‘x’ is any amino acid), Walker B [hLhhh(D/

E); ‘h’ denotes any hydrophobic residue], Sensor 1 (LLhTxR), PhhCW motif (also termed as

‘GxP’ in other NTPase family members) and WH-His (FxH)], which are responsible for ATP-

binding and coordination of Mg2+ ion (Fig 1B) [10]. To investigate the ADP-/ATP-Mg2+-

binding mechanisms, we constructed 3D models of NLRP1-14NACHT domains using
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I-TASSER server. The 3D structures with the lowest CS-score were refined and validated with

their stereochemical parameters, and the model validation report (S3 Table) indicated their

reliability. The structural analysis of NLRPNACHT models revealed a similar spatial (3D)

arrangement of structural subunits (NBD-HD1-WHD). The ‘NBD’ comprised of five parallel

β-sheets (β1-β5) along with five α-helices (α1-α5), the HD1 exhibited four α-helices (α6-α9)

and the C-terminal sub-domain, ‘WHD’ consists of four α-helices (α10-α13) and two β-sheets

(β6-β7) (Fig 1C).

Molecular docking of ATP

The molecular dockings were carried out (using AutoDock Vina) to identify a plausible mode

of ADP/ATP-binding in NLRP1-14NACHT models and the conformations having least binding

energy (S4 Table) were taken for further studies. Till date, only two ADP-bound NLR struc-

tures have been resolved (Nlrc4 (4KXF) [48] and OcNOD2 (5IRL) [41]) and both the struc-

tures share a common mode of nucleotide-binding. The docking analysis revealed a non-

conserved pattern of ADP/ATP-binding in all the auto-docked systems and the binding con-

formations of the nucleotides were found different from those observed in Nlrc4 and

OcNOD2 structures (S1A Fig). Therefore, we adopted a manual approach of docking, where

the γ-phosphate group of ATP was deeply buried inside the core cavity formed by NBD
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NOD2 ..VVGEAGSGKKSTL...VLLTFDDGFDEDEFK...VVTSRRPA...HLPPVFSWMV...LEFLHHIT..
Nlrc4 ..IEGESGKGKKSTL...VLFLLDDGYNEFH...IVTTTTE...KTPPLFVVIT...YKFFHHKS..

NLRP1 ..LQGAAGIGKGKSTL...LLFILDGVDEPG...LITARTT...LVPWVSWLA...YSFIHLC..
NLRP2 ..LYGPAGLGKTTL...ILFVIDGFDELG...LVTTRPR...SAPAVCWIV...YSFIHLS..
NLRP3 ..FQGAAGIGKTGKTIL...ILFLMDGFDELQ...LITTRPV...FIPLVCWIV...YSFIHMT..
NLRP4 ..IQGPQGIGKTTL...LLFVIDSFEELQ...LIAIKPV...QIPLLCWIL...YVFLHVC..
NLRP5 ..LHGKSGIGKSAL...LLFIIDGFDDLG...IVTVRDV...QVPAVGSLI...YTFFHLS..
NLRP6 ..LQGPAGIGKTMA...LLFILDGADELP...LVTTRAA...FVPFVCWIV...YQFIDQS..
NLRP7 ..LHGPAGVGKTGKTTL...ILFVVDGLDELK...LVTTRPR...SAPAVCWIV...YSFIHLS..
NLRP8 ..IQGAPGIGKTIL...LLLLLDGFEELT...LIMIRFT...RVPVVCWMV...YVFTLVT..
NLRP9 ..LEGPDGIGKTTL...ILFIMDGFEQLK...LIALGKL...HNPFTCWLV...FAFMHLC..
NLRP10 ..LQGSAGTGKTTL...LLFILDGFDELQ...LITTRPL...QVPGICWVV...YSFRHIS..
NLRP11 ..LMGERASGKTIV...LLFILEDLDNIR...LISSRPT...RVAILCWIT...YKFIHLN..
NLRP12 ..MQGAAGIGKSGKSML...LLFIIDDGFDDELK...LITTRPT...FVPLVCWVV...YSFIHLS..
NLRP13 ..LVGRAGVGKTTL...LLFIIDGFEEII...LITIKTW...SAPMVCWTV...TTFTHLS..
NLRP14 ..LQGAAGVGKTTL...LLFIIDSFDELN...LVTTRLT...QVPLVCWAA...YVFTHLH..

Walker AWalker A Walker BWalker B Sensor-1Sensor-1 PhhCWPhhCW WH-HisWH-His

NLRP2−9, 11−14

Leucine-rich repeats (LRRs): 05-14

NLRP1NTNT CTCTHD2HD1 WHDNBD FIINDPYD CARD

NACHT

NLRP10

B

Fig 1. Domain organization, ATP-binding motifs and structural overview of NLRPNACHT 3D models. (A) NLRPs show tripartite domain

architecture (PYD-NACHT-LRR) except NLRP1 (which possesses two additional C-terminal domains: FIIND and CARD) and NLRP10 (that lacks the

LRRs). Magnifying view of NACHT domain illustrates key ATP-binding motifs. (B) The key ATP-binding motifs (from multiple sequence alignment)

are boxed in different colors (Walker A: blue; Walker B: salmon; Sensor- 1: orange; PhhCW motif: green; WH-His: purple). The experimentally

validated amino acids involved in ATP-binding are shown in red fonts and those not interacting are displayed in green font. (C) Structural overview of

NLRPNACHT models based on OcNOD2 crystal structure (5IRL [41]) (illustrated in different colored cartoons: NLRP1, white; NLRP2, deep salmon;

NLRP3, marine; NLRP4, green; NLRP5, violet; NLRP6, orange; NLRP7, hot pink; NLRP8, slate; NLRP9, sand; NLRP10, cyan; NLRP11, dirty violet;

NLRP12, forest; NLRP13, green-cyan; and NLRP14, olive) indicate the secondary structural elements (α-helices and β-sheets, which are labeled in white

and red fonts within red and yellow boxes, respectively). The ATP/ADP-binding region is displayed in black dotted circle along with the NTP-binding

motifs.

https://doi.org/10.1371/journal.pone.0209420.g001
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(Walker A, Walker B and Sensor 1 residues) and WHD, and adenine moiety was placed in

between HD1 and NDB (see S1B Fig). Herein, to understand the dynamic stability of ADP/

ATP in the binding cavity, MD simulations of all the ADP-/ATP-Mg2+-bound NLRP1-

14NACHT complexes (both auto-docked and manually-docked) were carried out for 50 ns

timescale.

Evaluation of ADP/ATP-NLRPNACHT complex models

The experimental evidence suggested that Walker A (GxxxxGK[S/T]) motif of AAA+ ATPase

proteins is crucial for nucleotide binding and particularly, the conserved ‘Lys’ coordinates the

β/γ-phosphate group of nucleotide [48–53]. Therefore, to assess the stability of the trajectories

of ADP-/ATP-Mg2+-bound NLRPNACHT complexes out of the auto-docked and manually-

docked systems, we calculated the combined RMSD of Walker A backbone atoms and ADP/

ATP. As displayed (in Fig 2A), we noticed a comparatively lower and stable array of RMSD in

manually-docked systems; however, in auto-docked systems, the higher and unstable-devia-

tions were observed. To understand the binding stability between ADP/ATP and NLRPNACHT

models, the total numbers of intermolecular H-bonds were analyzed as a function of simula-

tion time. Herein, we observed comparatively higher numbers of H-bonds in the manually-

docked systems with some exceptions, which include ATP-bound NLRP4, ADP-bound

NLRP5, and ADP/ATP-bound NLRP9 (where we found comparatively lesser H-bonds in

manually-docked complexes) (Fig 2B). Further, to evaluate the dynamic-stability of ADP/

ATP’s orientation in binding cavity, we superimposed the pre- and post-MD snapshots. As

displayed (see S2 Fig), stable orientations of ADP/ATP were noticed in most of the manually-

docked complexes (except ATP-bound NLRP8); by contrast, drastic changes in ADP/ATP-

binding orientations were observed in auto-docked complexes. Thus, based on the above

observations, the manually-docked trajectories were chosen for interaction analysis.

NLRPNACHT models exhibited a similar mode of ATP-binding

The NTP-binding modes in Walker A (P-loop) motif-containing proteins are similar [49].

Here, to determine the modes of ATP-binding in dynamically stable complexes, the average

snapshots of NLRP1-14/Nlrc4NACHT-ATP-Mg2+ conformations (obtained from cluster analy-

sis) were considered for interaction analysis. As visualized (in Fig 3), we observed a similar

mode of ATP-binding in NLRPNACHT models as that of ADP’s orientation in OcNOD2/Nlrc4

solution structures [41,48]. It was proposed that the key residues, ‘Lys’ (Walker A), ‘Asp’ (first

acidic residue of Walker B; which coordinates the Mg2+), ‘Arg’ (Sensor 1), ‘Pro’ (PhhCW

motif) and ‘His’ (WH-His) were essential for nucleotide binding in NLRs [10,29]. Hence, to

identify the conserved residues that are potentially contributing to ATP-binding, first, we car-

ried out the interaction analysis using PISA program and visualized the interacting residues

along with ATP and Mg2+ (Fig 3). To observe the involvement of key conserved residues in

the said interaction, all the interacting residues were outlined in the alignment file (Fig 4).

Herein, we noticed some of the conserved residues are not interacting with ATP in representa-

tive structures. To understand the involvement of the conserved residues distant by more than

5Å from the nucleotide, we computed their dynamic-distance (between distant-residues and

ATP) as a function of simulation time and further confirmed their participation in ATP-

binding.

The interaction analysis revealed five-seven polar contacts between the Walker A motif and

γ-phosphate of ATP. Specifically, the conserved ‘Lys’ of the Walker A motif and ‘Arg’ of Sensor

1 (‘Lys’ in NLRP4 and NLRP13, and excluding ‘Gly’ of NLRP9) formed four-six numbers of

H-bonds with the γ-phosphate group of ATP (Fig 4). The molecular interaction combined
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with distance calculation results (S3 Fig) revealed that the first acidic residue ‘Asp’ (‘Glu’ in

NLRP11) of the Walker B motif was found within 5Å of ATP-Mg2+; however, the interaction

(within 6Å of ATP) of second and third (‘Q’ in NLRP9 and ‘N’ in NLRP11) acidic residues (of
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Fig 2. Analysis of NLRPNACHT-ATP/Mg2+ complex stability and intermolecular H-bonds formed. (A) Distribution of ADP/ATP-Walker A

combined RMSD calculated from 50 ns trajectories (X-axis represents the RMSD values and Y-axis denotes the distribution probability). (B)

Intermolecular H-bonds between ADP/ATP and NLRPNACHT models of individual complexes, calculated from respective trajectories as a function of

simulation time. The total numbers of H-bonds are depicted within the graphs.

https://doi.org/10.1371/journal.pone.0209420.g002
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Extended-Walker B) was found to be transient. The conserved ‘Pro’ of the PhhCW motif

(along with ‘Trp’ (‘Ser’ in NLRP5)) was found to form hydrophobic contacts with ribose sugar

of ATP (Fig 3). Furthermore, we observed strong hydrophobic contacts and/or electrostatic

interactions between the adenine ring of ATP and conserved ‘Phe’ and ‘Tyr’ of GFxxxxRxxYF

motif (identified in this study), suggesting their significant contribution towards ATP-binding

(Figs 3, 4). Moreover, the conserved ‘His’ of WHD (WH-His), which was proposed to be cru-

cial for the auto-inhibition mechanism in Nlrc4 [48], was found to form polar/electrostatic

contacts with γ-phosphate in all the NLRP1-14NACHT-ATP-Mg2+ complexes (Fig 4). Apart

from these, we also noticed some deformities in interaction pattern in NLRP4 (no interaction

of second-third residues of Extended-Walker B motif), NLRP5 (no interaction with Walker B

residues), NLRP10 (no participation of ‘Phe’ and ‘Tyr’ of GFxxxxRxxYF motif) and NLRP13

(no participation of conserved ‘Tyr’ of GFxxxxRxxYF motif in the interaction), which might

be due to large structural changes during dynamics. In addition to ATP-binding, the interac-

tion analysis of ADP-Mg2+-NLRP1-14NACHT complexes was performed to infer the nature and

mode of ADP-binding. Shown in S4 Fig, we noticed a similar mode of ADP-binding in most

of the complexes and the crucial residues, ‘Lys’ (of Walker A), ‘Asp’ (first acidic residue of

Walker B), ‘Pro’ (of PhhCW motif), and ‘His’ (of WH-His) [excluding ‘Arg’ of Sensor 1 motif]

are found to be involved in ADP-Mg2+ coordination. In all, we observed a similar mode of

ADP and ATP-binding in the NLRP1-14NACHT models during dynamics. Further, our results

on ADP-/ATP-Mg2+ interaction showed a good correlation with the previous predictions

[28,29] and experimental findings [50–54].
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Fig 3. Overview of detailed intermolecular interactions governed by ATP and NLRPNACHT models. The NLRPNACHT models are displayed in

cartoon; ATPs are visualized in light blue ball-sticks and the residues interacting within 5Å of ATP are visualized in white stick model. The black dotted

lines represent the intermolecular polar contacts. The key interacting residues (of proposed ATP-binding motifs) are presented in bold font and colored

based on their physicochemical parameters.

https://doi.org/10.1371/journal.pone.0209420.g003
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Fig 4. Multiple sequence alignment of NACHT domains of NLRPs, NOD1, NOD2 and Nlrc4; the residues interacting with ATP are displayed in

bold fonts. The critical ATP-binding residues (proved experimentally), presented in red-bold font; the residues found within 5-6Å of ATP (adopted

from atomic/residual distance calculation; Fig 4) are visualized in black fonts. The sequence motifs crucial for ATP binding are boxed in different colors

(Walker A: blue; Walker B: salmon; Sensor 1: orange; GFxxxxRxxYF motif: light gray; PhhCW motif: green; WH-His: purple). The key ATP-

coordinating residues are highlighted in yellow boxes and are marked in inverted triangle.

https://doi.org/10.1371/journal.pone.0209420.g004
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Opening-closing mechanism of NLRPNACHT domain

In NLRP sub-family, the ATPase activity/ATP-binding is well studied in NLRP1, NLRP3,

NLRP7 and NLRP12 receptors [50–54]. The reports on NLRP1, NLRP3, and NLRP7 indicated

that the binding of ATP is crucial for oligomerization and inflammasome activation [50–52].

However, a report on NLRP12 revealed that the recognition of ATP stimulates receptor’s anti-

inflammatory response [53]. Till date, six experimental structures of NLRs (with NACHT

domain) have been resolved; two closed structures (Nlrc4 (4KXF) [48] and OcNOD2 (5IRL)

[41]) and four open structures (Nlrc4 (3JBL, 5AJ2, and EMD-3139-3143) [55–57] and

Nlrc4-NAIP5 complex (6B5B) [58]). Both the closed structures are ADP-bound while none of

the open structures contain ATP-Mg2+ in their binding cavity. Recently, Hu et al. [55] and

Zhang et al. [56] revealed that the active conformation of Nlrc4 has a rigid body movement

(~90˚/87.5˚) of WHD-HD2-LRR module with respect to HD1 around the hinge region

(between HD1 and WHD) (Fig 5A), which was later supported by Tenthorey et al. [58] in a

recent report on Nlrc4-NAIP5 inflammasome complex. Conversely, Diebolder and co-authors

suggested that the open conformation of Nlrc4 has 21˚ and 49˚ rigid body rotation of

NBD-HD1 and LRR domain with respect to WHD-HD2 module (‘open lock’ structure) [57];

and no rigid body movement between HD1 and WHD. It was also reported that the ATP-

hydrolysis (after ADP to ATP transition) might be the cause behind the conformational

change of NLRs [49–53]. However, none of the reports describing the structural basis of

inflammasome assembly [55–59], discussed the relevance of ATP-binding mechanism.
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Hence, to infer the role of ATP-Mg2+ in the opening mechanism of NLRPNACHT domains

during dynamics, we calculated the radius of gyration (Rg) of whole protein and performed

PCA of main chain atoms of apo and holo (ADP-/ATP-bound) conformers as a function of

simulation time. As presented (in S5 Fig), we observed comparatively higher compactness and

lower eigenvalue in ADP-bound complexes than that of ATP-bound ones. However, we could

not notice significant structural changes in superimposed view of pre and post-MD structures

of NLRP1-14NACHT-ATP-Mg2+ complexes (data not given). In a recent study, Afanasyeva

et al. [59] reported the opening mechanism of ATP-bound TIP49 (AAA+ ATPase) during 30

ns of production runs. Conversely, in our previous study, we failed to observe the opening

mechanism of ATP-bound NOD1/NOD2NACHT domains in zebrafish model [41] even after

50 ns of MD simulation.

Amongst the NLRP-subfamily, NLRP1 and NLRP3 are well studied receptors and the

experimental evidence revealed that the recognition of invading PAMPs followed by ATP-

binding, orchestrate the multi-protein inflammasome complex [50,51]. Therefore, after notic-

ing the importance of both the receptors and the role of long-range simulation in inspecting

the molecular mechanisms of biological macromolecules [60], we simulated the NLRP1/

3NACHT-ATP-Mg2+ bound complexes (along with Nlrc4NACHT-ATP-Mg2+ complex) over 200

ns timescale in monomeric as well as dimeric conformation [the homodimeric complexes

were created by superimposing NBD-HD1 module of NLRPNACHT models with the closed

monomeric NACHT models with Nlrc4-NAIP5 inflammasome complex (6B5B) (see S6A

Fig)]. After the final production runs, we calculated the backbone RMSD and Rg of the protein

as a function of simulation time, and superimposed the pre- and post MD structures. Here, we

noticed a stable backbone deviation and compactness in all the simulation systems (Fig 5B).

Further, the superimposed structures revealed no significant structural changes as monomer

after 200 ns of production run (Fig 5C). In homodimeric condition, we noticed a major struc-

tural changes in NLRP3NACHT (S6B Fig); however, the superimposed view of both the mono-

mer subunits (pre- and post-MD) showed no significant rigid body movement between HD1

and WHD (Fig 5C). Here it can be speculated that the interaction of ATP-Mg2+ might not be

the only component that drive the switching mechanism in NLRs.

Among NLRPs, NLRP3 is the well-studied receptor and one of the significant contributors

to diverse inflammatory diseases [61]. In recent scenario, the exploration of inflammasome

and development of novel therapeutics for its regulation has gained the momentum [62].

Though several efforts have been made in this direction for the alienation of inflammasome

activity by manipulating the signaling pathways [63], the in-depth inhibitory mechanism

remains unresolved yet. Until this day, some inhibitors have been proposed for the regulation

of uncontrolled inflammasome activity [64–67]. In AAA+/P-loop protein family, the ATP-

binding pocket (resides in the kinase domain) have been widely studied for the development

of structure-guided small molecule inhibitors [68]. In this context, the proposed ATP-binding

cavity will definitely assist in designing novel inhibitors for the regulation of uncontrolled

inflammasome activity.

The 3D model structure of macromolecules are essential entities to understand the mecha-

nistic details of certain biological functions. Several experimental methods such as X-ray

crystallography, Cryo-EM, NMR and SAXS provide atomistic details of the targeted macro-

molecules. However, the above methods has their own limitations and in general, the dynamic

activity of complex bio-macromolecular systems are difficult to study. Thus, the theoretical

approaches that include template-assisted molecular modeling, molecular docking, and molec-

ular dynamics simulations are developed for the better understanding of biomolecular

machinery and increasingly used to bridge this gap. In recent days, such computational meth-

ods have contributed significantly towards the study of the structural and functional aspects of
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several NLR proteins [69–75] and the protein of interest in this study. In 2012, Zurek et al.

demonstrated the distinct activation mechanism of NOD1 and NOD2NACHT and revealed that

the mutation of WH-His has contrasting effect on NF-κB signaling mechanism [54]. As an

example, using such methods, we have hypothesized a differential mode of ATP-binding in

NOD1 and NOD2NACHT domain (in zebrafish model) and suggested that differential mode of

ATP-binding might be one of the causes behind the distinct activation mechanism [40]. In

contrast to our prediction, Maekawa et al. revealed a common mode of ADP-binding in the

OcNOD2 structure [41] as observed in the Nlrc4-ADP complex crystal structure [48]. In a

recent publication, we have reported that NOD1CARD possibly is recruiting multiple interfaces

for RIP2-mediated CARD-CARD interaction using theoretical approaches [40]. In the report,

we have proposed the ‘type-I’ homodimeric models for both NOD1 and RIP2 CARDs and also

notified the possible existence of ‘type-III’ RIP2CARD homodimer in 1:2 NOD1:RIP2 heterotri-

meric CARD:CARD complex [74]. Recent reports on RIP2CARD filamentous structure demon-

strated that RIP2CARD uses all its interfaces (type-I, II and III) for filament formation [76,77],

which is found to be consistent with our observation on RIP2CARD homodimer formation

[74]. The above discussion implies that though such approaches have positive directions in

investigating the unexplored molecular mechanisms regulated by biological macromolecules;

one should not overlook their limitations and pitfalls, particularly issues on force fields, time

margins, and quantum effect.

Conclusion

Due to the lack of sufficient experimental structural data, the role ATP-binding in opening-

closing mechanism of NLRs is not fully understood. More so, the active conformations of

Nlrc4 could not quite elucidate the role of ATP in molecular switching activity [55–58].

Henceforth, an attempt has been made to illustrate the structural, functional and dynamic

aspects of ATP-binding in NLRPNACHT domains adopting the structural bioinformatics

approaches. Our findings indicated a common mode of ATP binding; where the γ-phosphate

was buried inside the core cavity and the adenine ring posed outward. Further, the long-range

MD simulation indicated that ATP-Mg2+-binding might not be the key factors for the switch-

ing mechanism of NLRs. Here, it can be speculated that the PAMP recognition might have the

major role behind the switching mechanism in NLRs. In conclusion, the findings of this study

will facilitate in comprehending the molecular mechanism governed by NLRPs. Further, the

projected ATP-binding pocket will be greatly useful in designing novel NACHT inhibitors for

regulating the receptor-specific signaling mechanisms.
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S1 Fig. Illustrations of NLRPNACHT-ADP/ATP/Mg2+ conformations generated via Auto-

Dock Vina (A) and (B) manual docking. ATP is shown in ball-stick model, protein in cartoon,

and Mg2+ ions are displayed in green ball model.

(TIF)

S2 Fig. Structural overview of ADP and ATP binding orientation before and after MD sim-

ulation; the proteins are displayed in cartoon (grey cartoon, pre-MD structure and colored

cartoon, post-MD structure) and ATP in stick model.

(TIF)

S3 Fig. Illustration of inter-residual distances between ATP and conserved key residues of

respective NLRPs, those are not found interacting with in 5 Å of ATP.

(TIF)

S4 Fig. Overview of detailed intermolecular interactions governed by ADP and

NLRPNACHT models. The 3D models are displayed in cartoon; ADPs are visualized in light

green ball-sticks and the residues interacting within 5Å of ATP are visualized in white stick

model. The black dotted lines represent the intermolecular polar contacts. The key interacting

residues are presented in bold font and colored based on their physicochemical parameters.

(TIF)

S5 Fig. (A) Radius of gyration and (B) Eigenvalues of the all NLRPNACHT models in apo,

ADP and ATP-bound conditions.

(TIF)

S6 Fig. (A) Structural overview of Nlrc4 homodimer (6B5B) (open structure). Functional

domain regions are presented in colored cartoons (green, LRR; orange HD2; red, NACHT)

(B) Superimposed view of closed NLRP1, NLRP3 and Nlrc4NACHT models with the Nlrc4

open structure. (C) Pre- and Post MD superimposed structural overview of respective homodi-

mers. The pre-MD structures are visualized in dark-gray cartoon and post-MD structures are

in white (NLRP1), blue (NLRP3) and yellow (Nlrc4).

(TIF)
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