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Contamination of fomites by human norovirus (HuNoV) can initiate and prolong outbreaks.
Fomite swabbing is necessary to predict HuNoV exposure and target interventions.
Historically, swab recovered HuNoV has been measured by molecular methods that
detect viral RNA but not infectious HuNoV. The recent development of HuNoV cultivation
in human intestinal enteroids (HIEs) enables detection of infectious HuNoV. It is unknown if
the swabbing process and swab matrix will allow for cultivation of fomite recovered
HuNoV. We used HIEs to culture swab-recovered HuNoV GII.4 Sydney from
experimentally infected surfaces—a hospital bed tray (N = 32), door handle (N = 10),
and sanitizer dispenser (N = 11). Each surface was swabbed with macrofoam swabs
premoistened in PBS plus 0.02% Tween80. Swab eluate was tested for infectious HuNoV
by cultivation in HIE monolayers. Infectious HuNoV can be recovered from surfaces
inoculated with at least 105 HuNoV genome equivalents/3 cm2. In total, 57% (N = 53) of
recovered swabs contained infectious HuNoV detected by HIEs. No difference in percent
positive swabs was observed between the three surfaces at p = 0.2. We demonstrate that
fomite swabbing can be combined with the HIE method to cultivate high titer infectious
HuNoV from the environment, filling a significant gap in HuNoV detection. Currently, high
titers of HuNoV are required to measure growth in HIEs and the HIE system precludes
absolute quantification of infectious viruses. However, the HIE system can provide a binary
indication of infectious HuNoV which enhances existing detection methods. Identification
of infectious HuNoVs from swabs can increase monitoring accuracy, enhance risk
estimates, and help prevent outbreaks.
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INTRODUCTION

Human noroviruses (HuNoVs) are the leading cause of acute
gastroenteritis globally and cause significant health and
economic burdens (Ahmed et al., 2014). Approximately
200,000 people will die of HuNoV every year and HuNoV
infections cost the global economy $64.5 billion annually
(Lopman, 2015; Bartsch et al., 2016). HuNoV can be
transmitted in a wide range of settings, including healthcare
facilities, schools, and food service facilities (Lopman et al., 2004;
Koo et al., 2009; Belliot et al., 2014; US Centers for Disease
Control and Prevention, 2020).

HuNoV is spread through the fecal–oral route and virus
transmission occurs from person-to-person contact, through
aerosolized droplets, and from contact with contaminated
fomites (Atmar and Estes, 2006). In many community settings,
fomite-based transmission is of particular concern due to long
environmental stability of virus particles and low viral doses
required for infection (Otter et al., 2011). There is evidence that
fomites can initiate HuNoV outbreaks as well as lead to longer,
more severe outbreaks (Weber et al., 2010; Lopman et al., 2012;
Repp and Keene, 2012; Canales et al., 2019). Swabbing of fomites
is an important approach to elucidating exposure patterns
(Boxman et al., 2011; Morter et al., 2011; Ronnqvist et al.,
2013; Keeratipibul et al., 2017; Leone et al., 2018). Historically
HuNoVs recovered from fomites have been detected by recovery
of viral RNA with subsequent detection by reverse transcription-
quantitative PCR (RT-qPCR) (Atmar and Estes, 2006; Knight
et al., 2013). The advent of novel HuNoV culture methods offer
new ways to fill important HuNoV knowledge gaps (Ettayebi
et al., 2016).

In light of the important role of fomites in HuNoV
transmission, numerous efforts have been undertaken to isolate
and quantify HuNoV on environmental fomites. Swabbing is
required to recover HuNoV from fomites and is used
extensively in HuNoV outbreak investigations (Jones et al., 2007;
Boxman et al., 2009). Additionally, fomite swabbing is used to
identify environmental HuNoV contamination outside of
outbreaks as a means to prevent transmission, monitor control
efforts, and understand epidemiologic trends (Boxman et al., 2011;
Morter et al., 2011; Ronnqvist et al., 2013; Keeratipibul et al., 2017;
Leone et al., 2018). Swabs collected from the environment also
contribute significantly to the knowledge base necessary to
conduct HuNoV risk assessments (Ryan et al., 2014; Weir et al.,
2016; Wilson et al., 2018). Fomite swabbing is an important
laboratory technique for identifying efficacy of cleaning and
disinfection protocols for HuNoV (Ciofi-Silva et al., 2019).
Additionally, the International Organization for Standardization
(ISO) Method 15216-1 for detection of HuNoV from foodstuffs
and food surfaces specifies the need for surface swabbing
(International Organization for Standardization, 2017).

Swabbing is important to HuNoV monitoring and research,
but it remains imperfect, with previous reports of low and
inconsistent recovery of both HuNoV and other pathogens of
human health significance (Moore and Griffith, 2007; Ronnqvist
et al., 2013; De Keuckelaere et al., 2014; Weir et al., 2016; Turnage
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and Gibson, 2017; Jones and Gibson, 2020). A number of studies
have also aimed to identify the most effective methods for swab
recovery of HuNoV. Though no method is 100% effective,
polyurethane foam swabs pre-moistened in PBS with Tween80
appear to have relatively consistent success in recovering HuNoV
and have been found to be more successful than the cotton swabs
suggested by ISO methods (Moore and Griffith, 2007; Park et al.,
2017; Turnage and Gibson, 2017; Jones et al., 2020). The
inconsistency in swabbing literature is due to the complexity
required in development of a swabbing protocol. Researchers
must choose swab material, buffer composition, surface type,
recovery method, and detection method to balance efficient viral
recovery with logistical considerations such as short sampling
time (Turnage and Gibson, 2017).

Molecular detection of HuNoV is necessitated by the
historical inability to culture HuNoV in any known cell models
(Duizer et al., 2004; Ettayebi et al., 2016). Molecular methods
remain popular due to their high sensitivity, ease of use, and
ability to provide robust quantification (Fisman et al., 2009;
Knight et al., 2013). However, molecular methods are unable to
distinguish infectious HuNoV particles from inactivated RNA
(Knight et al., 2013). The absence of clear data on HuNoV
particle infectivity hampers risk assessments, environmental
monitoring, and laboratory studies of disinfection.

One method to address the lack of a readily available HuNoV
cell culture model is the use of surrogate viruses. A wide range of
surrogate viruses for HuNoV have been investigated, including
non-human mammalian viruses and bacteriophages (Cromeans
et al., 2014; Kniel, 2014). The male-specific coliphage MS2 is one
of the more commonly used HuNoV surrogates due to low cost,
high replication in lab settings, absence of animal pathogenicity,
similarity in size and genome to HuNoV, and ease of
quantification in an E. coli plaque assay (Bae and Schwab,
2008). MS2 has served as a valuable tool for laboratory studies
of HuNoV fomite recovery and disinfection (Liu et al., 2012;
Lopez et al., 2013; Tung-Thompson et al., 2015; Wengert et al.,
2017). However, no surrogate is perfect, and MS2 is unlikely to
accurately model HuNoV disinfection but can provide a valuable
process control due to its ease of quantification in comparison to
other surrogate mammalian viruses (Shirasaki et al., 2009;
Solomon et al., 2009; Dunkin et al., 2017a; Dunkin et al.,
2017b). Additionally, surrogates cannot fill the gap in
knowledge around prevalence of infectious HuNoV that is
required for robust risk assessments.

The newly developed human intestinal enteroid (HIE) model
for cultivation of HuNoV offers promise in filling the gaps left by
molecular detection and surrogate studies (Ettayebi et al., 2016).
The HIE approach, introduced in 2016, represents the first
successful attempt to culture HuNoV (Ettayebi et al., 2016).
Multiple researchers have demonstrated the reproducibility of
HuNoV replication in monolayers seeded from stem-cell derived
HIEs (Ettayebi et al., 2016; Alvarado et al., 2018; Costantini et al.,
2018; Chan et al., 2019; Koromyslova et al., 2019). The HIE
method relies on measuring fold increase in viral RNA between 1
and 72 h post infection which precludes absolute quantification
of viral particles (Estes et al., 2019). Due to the nature of HIE
July 2021 | Volume 11 | Article 693090
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cells, no direct quantification, like that achieved with plaque
assay, can occur (Ettayebi et al., 2016). Previous work has also
indicated a wide variability in HuNoV replication even with
consistent inputs (Costantini et al., 2018). The HIE cell model is
resource and time intense, requiring multiple weeks of growth to
process a single sample (Estes et al., 2019). Additionally, only
some HuNoV genotypes and genogroups replicate successfully in
HIEs, with reports indicating that HuNoV GII.4 shows the most
successful replication (Costantini et al., 2018). Despite these
challenges, HIEs remain the only way to cultivate HuNoV and
offer the opportunity to address gaps in our understanding
of HuNoV prevalence, risk modeling, and susceptibility
to disinfectants.

Use of the HIE model to cultivate swab recovered HuNoV is
necessary to measure population exposures, target areas for
intervention, enhance risk assessment data, and conduct
disinfection studies. However, the HIE method has not been
applied to cultivation of swab recovered HuNoVs. We
investigated how the complex swab matrix, which often
includes salts and surfactants, impacts HuNoV GII.4 Sydney
replication in HIE cells. Additionally, we determined if the
process of swabbing and recovery will yield intact HuNoV
GII.4 Sydney that is capable of replication in HIE cells.
MATERIALS AND METHODS

Viral Stock Preparation
HuNoV stool suspensions were prepared from a community
pediatric HuNoV case that was graciously provided by Dr.
Natalie Exum. Stool was lab confirmed for HuNoV by RT-
qPCR and identified as a GII.4 Sydney virus based on the
capsid region (Kroneman et al., 2013). Raw stool was diluted
to 10% in phosphate buffered saline (PBS) and filtered through a
0.45 µm filter. Samples were portioned and stored at −80°C from
collection until time of testing. MS2 stocks were propagated and
purified with an ultrafiltration membrane before portioning and
storage at −80°C, as previously described (Bae and Schwab, 2008;
Dunkin et al., 2017b).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
Fomite Preparation and Inoculation
Three items representing common hard, non-porous high touch
fomites found in community settings were tested for HuNoV
recovery in this study—a hospital bed tray (melamine-laminate), a
lever-style door handle (brushed stainless steel), and a hand sanitizer
dispenser [acrylonitrile butadiene styrene (ABS) plastic]. All items
were kindly provided by the Johns Hopkins Hospital Facilities
Management. Each item was marked with multiple 3 cm2 areas
for sampling; swab areas were on the top surface of the bed tray, the
smooth grab surface of the door handle, and the front of the push
lever of the sanitizer dispenser (Figure 1). Prior to inoculation in all
experiments, fomites were disinfected with sequential applications of
10% bleach, 70% ethanol, and distilled water. Each fomite was then
exposed to a UV lamp (253.5 nm) for 30 min.

Fomite inoculum consisted of a 10% dilution of HuNoV stool
suspension in PBS that ranged from 104–106 HuNoV genome
equivalents (GE) per 3 cm2. When included, MS2 was added at
concentrations ranging from 103–107 GE/3 cm2. First, nineteen
bed tray experiments were conducted with 50µL (N = 13) or 100
µl (N = 6) of surface inoculum that included only HuNoV GII.4
Sydney. Next, ten bed tray experiments were conducted with 50
µl (N = 6) or 100 µl (N = 4) of surface inoculum with both
HuNoV GII.4 Sydney andMS2 as a process control. Finally, door
handle and sanitizer experiments were conducted using 50 µl of
surface inoculum that contained both HuNoV and MS2.

Inoculation of surfaces was performed by pipetting the virus
inoculum on to the surface, with the aim of covering as much of
the 3 cm2 surface as possible and subsequently spreading the
inoculum across the entire target surface. After inoculation, each
fomite was immediately swabbed horizontally, vertically, and
then diagonally (Figure 2).

Swabbing Method
Individually wrapped, sterile 100% polyurethane foam (PUF)
swabs (STX708A, Texwipe, Kernersville, NC, USA), common in
industry fomite monitoring (Jones et al., 2020), were used to
recover HuNoV and MS2 from inoculated fomites. Prior to
swabbing, each swab was placed in a 15 ml conical tube that
contained 2 ml PBS plus 0.02% Tween80 detergent for
approximately 30 s to fully moisten the swab (Millipore Sigma,
FIGURE 1 | Surfaces tested for human norovirus swab recovery. Red boxes indicate 3 cm2 areas that were inoculated and swabbed.
July 2021 | Volume 11 | Article 693090
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Burlington, MA, USA). Tween80 was added to swabbing
medium as it has been shown to increase recovery of
microorganisms from fomites (Moore and Griffith, 2007).
Swab medium was weighed before and after swabbing to
measure volume loss and calculate final eluate volume. To
recover viruses, swab-containing tubes were vortexed for 30 s,
centrifuged for 1 min, and then liquid was manually recovered
from foam swab heads by manually pressing the swab stick along
the side of the tube until no further liquid could be squeezed out.
After elution, recovered swab medium was stored at −80°C
until testing.
RNA Extraction and Detection
via RT-qPCR
Total RNA was extracted from swab eluate using Ribozol (VWR,
Radnor, PA, USA) and the Direct-Zol RNA purification kit
(Zymo Research, Irvine, CA, USA) as described previously
(Ettayebi et al., 2016). RNA was detected and quantified using
the QuantiTect Probe RT-PCR Kit (Qiagen, Hilden, Germany).
Primers and probes specific to the MS2 replicase gene (Bae and
Schwab, 2008) or the HuNoV ORF1-ORF2 junction (Kageyama
et al., 2003) were used in the RT-qPCR assay. Final concentration
for HuNoV primers was 1 and 0.2 µM for the probe. Final
concentration for MS2 primers was 400 and 200nM for the
probe. Thermocycler conditions for the HuNoV and MS2 RT-
qPCR assays were 50°C for 30 min, 95°C for 15 min, and then 45
cycles of: 94°C for 15 s, 50°C for 15 s and 60°C for 1 min.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
MS2 was quantified from molecular assays with an RNA
dilution series with known amounts of coliphage. HuNoV RNA
was converted from a cycle threshold value (Ct) to genome
equivalents (GE) using in vitro RNA transcripts kindly provided
by Michael Kulka (FDA, Silver Spring, MD, USA). Transcripts
were derived from plasmid pNoV/MD145 which contained a
full-length synthetic cDNA copy of a HuNoV GII strain (Yu
et al., 2016). Molecular percent recovery was calculated by
comparing HuNoV GE applied to surface to HuNoV GE in
total recovered swab eluate. We confirmed the absence of RT-
qPCR inhibition for HuNoV and MS2 assays with a spiked
internal positive control.

Infectivity Methods
The HIE method for culturing HuNoV has been described in
detail previously (Ettayebi et al., 2016; Costantini et al., 2018).
Briefly, a secretor-positive jejunal HIE cell line (J2), kindly
provided by Mary Estes (Baylor College of Medicine, Houston,
TX), was maintained as undifferentiated three-dimensional (3D)
(i.e., spheroid) cultures embedded in Matrigel (Corning,
Corning, NY, USA). HIEs were maintained at 37°C in 5% CO2

and Human IntestiCult media (STEMCELL Technologies,
Vancouver, Canada). After 7 days of growth, 3D cultures were
either passaged 1:2, archived in LiN2, or used to seed
monolayers. Passaged HIE monolayers were grown for two
days in IntestiCult supplemented with 10 µM Y-27632 (ROCK
Inhibitor), 10 µM CHIR99021 (GSK3 inhibitor) (STEMCELL
Technologies, Vancouver, Canada) and 1,000 mM/ml Primocin
FIGURE 2 | Direction and order of swabbing on surfaces tested for human norovirus swab recovery. Entire 3 cm2 surface was swabbed. Image created with
BioRender.
July 2021 | Volume 11 | Article 693090
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antimicrobial agent (InvivoGen, San Diego, CA, USA). After two
days CHIR99021 was removed from the growth media.

To seed monolayers, HIEs were dissociated to a single cell
suspension with Trypsin and plated 1:2 as undifferentiated
monolayers in Matrigel-coated 96-well cell culture plates.
Monolayers were grown for two days with IntestiCult
supplemented with 10 µM Y-27632 and then differentiated for
5 days prior to infection with media lacking Wnt3a, R-spondin-
1, and SB202190 (p38 MAPK inhibitor), as previously described
(Saxena et al., 2016; Noel et al., 2017).

Confluent, differentiated HIE monolayers were infected
apically in duplicate and all infection media was supplemented
with 500 µM of glycochenodeoxycholic acid (GCDCA; Sigma-
Aldrich, St. Louis, MO, USA). After 1 h of incubation at 37°C in
5% CO2, supernatant was removed and monolayers were washed
three times with complete media without growth factors. For
each set of infections, one monolayer was immediately frozen
at −80°C and the second was grown at 37°C in 5% CO2 for 72 h
post infection (hpi). Following the 72-hour incubation, the
supernatant and monolayer cells were frozen at −80°C. Each
monolayer experiment was conducted once per swab eluate and
each set of monolayer infections included a known HuNoV GII.4
Sydney positive sample. We then extracted RNA from 1 hpi and
72 hpi monolayer cells and supernatants.

A standard 10-fold dilution, double agar plaque assay was
used to enumerate infectious MS2 coliphage as plaque forming
units (PFU) following the protocol described by Bae and
Schwab (2008).

Statistical Methods
Statistical analyses were performed in Stata 13 and R 3.6.1
(StataCorp, 2013; R Core Team, 2019). HuNoV replication was
measured as the fold increase between HuNoV RNA copies
measured at 1 and 72 hpi; samples were considered negative for
replication if the fold increase was less than five. Values below the
RT-qPCR LOD (44.3 RNA copies/5 µl for HuNoV and 100 RNA
copies/5 µl for MS2) were replaced with the LOD value.
RESULTS

Experiment Overview and Controls
Fifty individual swabbing experiments were performed: 29 on a
hospital bed tray, 10 on a lever-style door handle, and 11 on a
hand sanitizer dispenser. Of these 50 experiments, 30 were
positive for infectious HuNoV GII.4 Sydney as measured by a
5-fold or greater increase in HuNoV RNA copies between 1 and
72 hpi in HIEs. The final HuNoV GII.4 Sydney titer at 72 hpi in
HIEs after positive growth was 7.8 × 105 GE/well on average and
ranged from 8.7 × 103 to 8.7 × 106 GE/well.

Based on 14 runs of seven dilutions of RNA transcript in
duplicate, the RT-qPCR limit of detection (LOD) for HuNoV
was determined to be 44.3 viral RNA copies/5 µl, as calculated
using the discrete threshold method (Klymus et al., 2019). The
MS2 RT-qPCR limit of detection was calculated to be 100 phage
RNA copies/5 µl using a dilution series of known phage stock.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
HuNoV infected monolayers were visually inspected under a
microscope and no evidence of cytotoxic effects were observed.
Known concentrations of HuNoV and MS2 RNA were spiked
into negative swab and monolayer sample extracts to test for RT-
qPCR inhibition. Measured RNA for spiked samples was within
one CT value of known RNA concentrations (N = 5).

Bed Tray Pilot Experiments
Bed tray experiments were used to identify the volume and range
of HuNoV GII.4 Sydney inoculum required for successful
replication. Ten swabs were recovered from the bed tray after
inoculation with 100 ml of HuNoV stool suspension ranging in
concentration from 2.8 × 105 to 2.8 × 106 HuNoV GE/3 cm2

(Figure 3). Three (30%) of the 100 ml inoculum fomite-recovered
swabs were positive for infectious HuNoV. Additionally, 50 ml
inoculum was used in 19 bed tray swab experiments with
HuNoV concentrations from 3.5 × 104 to 8.7 × 106 HuNoV
GE/3 cm2 (Figure 3). Eleven (58%) of the 50 ml inoculum fomite-
recovered swabs were positive for infectious HuNoV. The lowest
fomite inoculum that resulted in recovery and detection of
infectious HuNoV was 1.4 × 105 GE/3 cm2. Less than 50% of
swabs from fomites inoculated with 105 HuNoV GE/3 cm2

contained measurable infectious HuNoV (Figure 3). Viral
inoculum of 106 HuNoV GE/3 cm2 or greater resulted in 0%
recovery when 100 ml fomite inoculum was used and 100%
recovery when 50 ml inoculum was used.

Additional Fomite Experiments
Once it was established that 50 ml HuNoV stool suspension with
at least 1.4 × 105 HuNoV GE/3 cm2 led to successful recovery of
infectious HuNoV from fomites, we measured recovery from
metal door handles and plastic sanitizer dispensers inoculated
with 106 HuNoV GE/3 cm2. The percent of swabs that were
positive for infectious HuNoV from bed tray, door handle, and
sanitizer dispenser experiments were 100% (n = 7), 80% (n = 10),
and 73% (n =11), respectively. Door handle-recovered swabs had
the highest HuNoV replication, as measured by fold increase in
HuNoV GE between 1 and 72 hpi in HIEs. The average fold
increase in HuNoV GE was 2.3 × 103 (SD 3.1 × 103, n = 10) for
door handle experiments, 1.1 × 103 (SD 1.3 × 103, n = 11) for
sanitizer dispenser experiments, and 2.7 × 102 (SD 3.3 × 102, n =
7) for bed tray experiments (Figure 4). Recovery of infectious
HuNoV was not significantly different across the three fomites
when considering percent of positive swabs (ANOVA p-value =
0.5) or when considering measured fold increase (ANOVA p-
value = 0.2).

Molecular Recovery of HuNoV
Swabs recovered from fomites infected with 50 ml of HuNoV
stool suspension were tested for molecular HuNoV recovery, in
addition to HuNoV replication. Average percent recovery of
HuNoV measured by molecular methods was 0.74% (range 0.03
to 4.3%) and was not significantly different across the three tested
fomite types (ANOVA p-value = 0.3) (Figure 5). Twelve of 40
swabs had molecular HuNoV recovery below 0.1% and eight of
these swabs were positive for infectious HuNoV. Percent of
swabs positive for infectious HuNoV in the two higher
July 2021 | Volume 11 | Article 693090
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categories of molecular recovery—0.1 to 1% and above 1%—were
77% (seven of nine) and 71% (five of seven), respectively (Figure
5). Twelve swabs were negative for HuNoV by molecular
methods; five of these were also negative for infectious
HuNoV. When controlling for HuNoV GE on fomite and
fomite type, no relationship was found between detection of
infectious HuNoV and molecular HuNoV percent recovery
(binomial regression, all p-values >0.04).

Recovery of MS2
In addition to HuNoV stool filtrate, fomite inoculum for 25
swabbing experiments contained MS2 ranging from 1.86 × 102–3
× 106 GE/3 cm2. Infectious MS2 measured by plaque assay was
found in all swab experiments run with MS2, and MS2 RNA was
also detected in 18 of these swabs (Figure 6). Two bed tray-
recovered swabs negative for MS2 RNA but not infectious MS2
were from fomites inoculated with <2 × 103 MS2 GE/3 cm2.
The other 7 swabs negative for MS2 RNA and positive for
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
infectious MS2 were from door handle or sanitizer dispenser
experiments with 3.1 × 104 MS2 GE/3 cm2 in fomite inoculum.
For samples that were positive for MS2, average percent recovery
of MS2 RNA was 74% by RT-qPCR and the average percent
recovery of infectious MS2 was 75% by plaque assay; no
difference in either measure was found across fomite types
(ANOVA p-values = 0.9 and 0.4).
DISCUSSION

The presence of HuNoV on fomites can inform measures of
public health risk, identify targets for intervention, and indicate
the efficacy of inactivation methods. The pioneering development
of an HIE model for culturing infectious HuNoV promises to fill
in important gaps around detection of infectious HuNoV
particles after recovery from fomites (Ettayebi et al., 2016).
However, the HIE model faces numerous logistical hurdles
FIGURE 3 | Number of fomite-recovered swabs that were tested and positive for infectious human norovirus (HuNoV) by surface inoculum volume and amount of
HuNoV on fomite [genome equivalents (GE)/3 cm2]. Non-porous laminated fiberboard from a hospital bed tray was inoculated with either 50 or 100 ml HuNoV stool
suspension containing 104, 105, or 106 HuNoV GE/3 cm2. Fomites were swabbed with macrofoam swabs pre-moistened in phosphate buffered saline plus 0.02%
Tween80. Human intestinal enteroid (HIE) monolayers were infected with swab eluate and were considered positive for infectious HuNoV if the fold increase in
HuNoV GE between 1 and 72 h post infection (hpi) exceeded five.
July 2021 | Volume 11 | Article 693090
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before it can be readily applied in fomite recovery research (Estes
et al., 2019). This work aimed to tackle the first of these hurdles—
whether swab recovered virus can successfully replicate in HIEs.
We demonstrated that HuNoV GII.4 Sydney can be
experimentally applied to fomites, recovered via swab, eluted,
and subsequently replicated in HIE cell culture. Further, the data
shows that the use of swab eluate comprised of PBS plus Tween80
does not lead to HIE death or prevent replication of HuNoVGII.4
Sydney in HIE culture, paving the way for use of the HIEmodel to
cultivate swab recovered HuNoV. Our base experiments used a
hospital bed tray with a smooth, laminated surface, as this type of
fomite is common in health care settings where fomite swabbing
is particularly necessary (Morter et al., 2011). We determined that
in our experimental setup, at least 1.4 × 105 HuNoV GII.4 Sydney
GE/3 cm2 must be present on a surface to successfully recover
infectious HuNoV GII.4 Sydney. Accounting for losses from
swabbing, this value is consistent with previous reports of 103–
104 GE/HIE well as a requirement for successful HuNoV
replication (Ettayebi et al., 2016; Costantini et al., 2018). We
also found that inoculums with equally high viral titer but applied
to the surface in larger volumes (100 ml) did not result in
successful recovery of infectious HuNoV GII.4 Sydney. This
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may be due to dilution introduced by larger volumes and the
inability of the pre-moistened swab to fully recover large
inoculum volumes. Importantly, HuNoVs are frequently shed
at high titers and thus small droplets inoculated onto fomites can
be clinically relevant (Atmar and Estes, 2006).

We first measured presence of infectious HuNoV GII.4
Sydney as binary, where a swab was considered positive if we
observed a 5-fold or greater increase in GE between 1 and 72 hpi
in HIEs. The number of swabs positive for infectious HuNoV
was inconsistent even within equivalent surface inoculum
categories, except for high viral titer (>106) in 50 ml of
inoculum. This indicates that high concentration viral titers
provide the most successful and consistent recovery of positive
virus, consistent with previous work on molecular recovery of
HuNoV (Tung-Thompson et al., 2017). These values can guide
future bench-scale evaluations of HuNoV fomite inactivation
and having the HIE system used as a binary measure of infectious
HuNoV post-fomite disinfection will be a powerful first step
when developing risk models. Quantification may be possible by
inoculating portions of samples in a dilution series into the HIE
system, with subsequent enumeration of viral load using the
most probable number (MPN) method. Another potential
FIGURE 4 | Human norovirus (HuNoV) replication from swabs recovered off lab-inoculated fomites. Three fomites—a laminated fiberboard hospital bed tray (n = 7),
a brushed stainless steel door handle (n = 8), and an acrylonitrile butadiene styrene (ABS) plastic sanitizer dispenser (n = 7)—were inoculated with 50 ml HuNoV stool
suspension containing 106 or greater HuNoV genome equivalents (GE) per 3 cm2. Fomites were swabbed with macrofoam swabs pre-moistened in phosphate
buffered saline plus 0.02% Tween80. Human intestinal enteroid (HIE) monolayers were infected with swab eluate and HuNoV replication is reported as the fold
increase in HuNoV GE between 1 and 72 h post infection (hpi). Fold-increase of five or lower was considered negative for infectious HuNoV; only swabs positive for
infectious HuNoV are shown.
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option for quantifying recovered infectious HuNoV is the fold
increase in GE between 1 and 72 hpi in HIEs. Consistent with
previous work, we found that fold increases ranged from 10–
10,000 and varied from 2–3 logs within tests that used equivalent
surface inoculum (Costantini et al., 2018; Chan et al., 2019;
Randazzo et al., 2020). We are not the first to report high
variability among measured fold increase in HIEs and this
inconsistency remains a key challenge for application of the
HIE system to monitoring infectious HuNoV (Costantini et al.,
2018; Estes et al., 2019; Koromyslova et al., 2019).

In addition to the melamine-laminate bed tray, we tested two
other fomites common in healthcare settings—a brushed
stainless-steel lever-type door handle and a smooth ABS plastic
sanitizer dispenser. We found no measurable differences in
recovery of infectious HuNoV GII.4 Sydney off of these two
fomites, compared to bed tray experiments. This is promising for
future environmental monitoring work as the data suggest that
multiple types of fomites can be swabbed for infectious HuNoV.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
We measured molecular recovery of HuNoV GII.4 Sydney
with RT-qPCR to serve as a point of comparison with infectious
HuNoV data. We found that average recovery of HuNoV GII.4
Sydney from fomites as measured by molecular methods was
0.74% and ranged from 0.03 to 4.3%. These recovery values are
slightly lower than most reported in the literature, which range
from 4.3–100% (Scherer et al., 2009; De Keuckelaere et al., 2014;
Park et al., 2015; Ibfelt et al., 2016; Tung-Thompson et al., 2017;
Jones and Gibson, 2020). However, it is important to note that
previously reported recovery of HuNoV from hard surfaces is
highly variable both within and across studies and when reported
errors are accounted for, our observations fall within previously
reported ranges (Scherer et al., 2009; Ronnqvist et al., 2013;
Turnage and Gibson, 2017; Jones et al., 2020). Of note, even
when molecular recovery of HuNoV GII.4 Sydney was below
0.1%, approximately half of swabs were positive for infectious
HuNoV. It appears that even in scenarios with low molecular
recovery, infectious HuNoV particles can still be collected from
FIGURE 5 | Number of swabs tested and with detectable infectious human norovirus (HuNoV) compared to molecular percent recovery of HuNoV from
experimentally inoculated fomites. One of three fomites—hospital bed tray (n = 19), door handle (n = 10), or sanitizer dispenser (n = 11)—were inoculated with 50 ml
of HuNoV stool suspension containing 104 or greater HuNoV genome equivalents (GE) per 3 cm2. Fomites were swabbed with macrofoam swabs pre-moistened in
phosphate buffered saline plus 0.02% Tween80. Human intestinal enteroid (HIE) monolayers were infected with swab eluate and were considered positive for
infectious HuNoV if the fold increase in HuNoV GE between 1 and 72 h post infection (hpi) was greater than five. Molecular percent recovery of HuNoV was
calculated by comparing HuNoV GE added to fomite to HuNoV GE in recovered eluate, using RT-qPCR.
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fomites. We found that a few swabs were negative for HuNoV as
measured by RT-qPCR, but were positive for infectious virus.
This discrepancy between infectivity and molecular measures has
been observed in other viruses and is likely due to
methodological limitations of the RT-qPCR assay (Rose et al.,
1997; Jones et al., 2009). Additionally, a smaller amount of swab
eluate sample (5 µl) was tested in RT-qPCR runs, as compared to
250 µl for HIE infection, which may reduce the efficacy of RT-
qPCR for low-titer samples.

As is common in HuNoV literature, we also tested the
surrogate virus MS2 coliphage in a subset of swabbing
experiments with both molecular and infectivity methods
(Sobsey et al., 1995; Dawson et al., 2005). Recovery of MS2 via
molecular (74%) and infectivity (75%) methods were
comparable, which provides validity to our experimental set-
up. However, MS2 recovery was 2 logs greater than molecular
HuNoV recovery (0.74%). This recovery variation between
viruses, particularly those used as surrogates, has been
described in detail in the literature and in part could be due to
differences in capsid structure between MS2 and HuNoV
(Scherer et al., 2009; Gentry-Shields and Jaykus, 2015).
Differences in virus structure can affect viral adhesion to
fomites, containers, and swabs, which can then impact
recovery (Langlet et al., 2007). Similar to the HIE assay, MS2
infectivity assays assess larger volumes than the volumes
extracted for nucleic acid analysis which can result in positive
infectivity with the absence of RT-qPCR detection. Our work
adds to the extensive literature that questions the accuracy of
MS2 coliphage as a HuNoV surrogate (Bae and Schwab, 2008;
Richards, 2012; Knight et al., 2016; Dunkin et al., 2017b).
Though MS2 retains value due to its ease of cultivation, the
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data from this study shows that it cannot be employed as a
replacement for measuring HuNoV recovery from fomites. Thus,
even when faced with multiple methodological hurdles, the HIE
system has significant value as it remains the only option for
specifically identifying infectious HuNoV.

This work is subject to limitations that were beyond the scope
of the current study. The authors recognize the potential
limitations due to evaluating three fomites, which should be
considered when generalizing specific recovery measurements
from this work. Additionally, we did not examine drying or viral
aggregation as we were focused on confirming fomite recovery of
infectious HuNoV. Though dried inoculum potentially better
represents real-world fomite contamination, it was outside the
scope of the reported experiments. Further, future research
should consider evaluating other strains of HuNoV and
additional fomite swabbing methods. Exploration of the
behavior of other HuNoV genotypes and genogroups in the
HIE system after fomite recovery will be necessary before this
method can be used for environmental monitoring. Additional
research that employs non-sterile surfaces will also be important
to understand how HuNoV recovered from real-world fomites
with prior surface contaminants will behave in the HIE system.

We have successfully demonstrated that the HIE culture
method can be used to cultivate infectious HuNoV GII.4
Sydney recovered from fomites under prescribed conditions.
This adds new utility to the HIE method and opens the door
for numerous studies aimed at cultivating fomite recovered virus.
Though the HIE method remains an imperfect tool, our work
offers a blueprint for moving forward with fomite monitoring
and disinfection studies. The most important next steps will be to
address some of the hurdles that prevent wide application of the
FIGURE 6 | Recovery of MS2 by infectivity and molecular methods for each individual swab experiment. MS2 recovery is equivalent to plaque forming units for
infectivity and genome equivalents (GE) for molecular. Fomites were inoculated with 50 ml HuNoV stool suspension mixed with 102–107 MS2 GE/3 cm2. Fomites
were swabbed with macrofoam swabs pre-moistened in phosphate buffered saline plus 0.02% Tween80. Swab eluate was tested for MS2 replication with an E. coli
plaque assay and for MS2 molecular recovery using RT-qPCR.
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HIE system in monitoring. It will be important that future work
examines factors that impact inconsistent replication of HuNoV
in HIEs and aims to develop reliable methods of quantification.
Additionally, reduction of the time, labor, and expense required
to use HIEs for HuNoV cultivation will significantly increase the
applicability of the method. The HIE method remains the only
widely reproducible way to verify infectious HuNoV and our
ability to recover and cultivate swab-recovered viruses moves the
field one step closer to a broadly applicable system that can
measure infectious HuNoV in the environment.
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