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Abstract

Background: Analysis of gene expression from different species is a powerful way to identify evolutionarily conserved
transcriptional responses. However, due to evolutionary events such as gene duplication, there is no one-to-one
correspondence between genes from different species which makes comparison of their expression profiles complex.

Results: In this paper we describe a new method for cross-species meta-analysis of gene expression. The method
takes the homology structure between compared species into account and can therefore compare expression data
from genes with any number of orthologs and paralogs. A simulation study shows that the proposed method results
in a substantial increase in statistical power compared to previously suggested procedures. As a proof of concept, we
analyzed microarray data from heat stress experiments performed in eight species and identified several well-known
evolutionarily conserved transcriptional responses. The method was also applied to gene expression profiles from five
studies of estrogen exposed fish and both known and potentially novel responses were identified.

Conclusions: The method described in this paper will further increase the potential and reliability of meta-analysis of
gene expression profiles from evolutionarily distant species. The method has been implemented in R and is freely
available at http://bioinformatics.math.chalmers.se/Xspecies/.
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Background
Gene expression microarray and RNA-seq provide fast
and cost-efficient measurement of mRNA abundance for
thousands of genes simultaneously. The amount of gene
expression data generated by these techniques is con-
stantly increasing and public repositories such as Gene
Expression Omnibus and ArrayExpress contains today a
large body of information from a wide range of species and
experimental conditions [1,2]. Large-scale gene expres-
sion assays are however plagued with high variability
which complicates data interpretation. The abundance of
mRNA is stochastic by nature, both on a cellular and mul-
ticellular level [3,4], and there are often large variability
between gene expression patterns from different organ-
isms [5]. In addition, technical parameters such as tissue
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heterogeneity, probe affinities and batch effects may intro-
duce substantial levels of noise [6-8]. Gene expression
data is therefore non-trivial to analyze and to put into a
biological context.

One way to increase the potential of large-scale gene
expression analysis is to combine information between
different species. If a biological process is evolutionar-
ily conserved between two species, it is also likely that
the transcriptional responses associated with that process
share similarities. Indeed, cross-species meta-analysis of
gene expression profiles has previously been used to
address many questions in biology and medicine. For
example, gene expression analysis performed in model
species such as mouse and rat are commonly used
to study human diseases [9] including cancer [10,11],
Alzheimer’s disease [12], diabetes [13] and hyperten-
sion [14]. Comparative analysis of gene expression pro-
files in human and mouse embryonic stem cells has
been used to identify similarities and differences asso-
ciated with the developmental biology in these species
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[15]. Cross-species meta-analysis has also proven useful
in biogeronotology where evolutionarily conserved age-
related gene expression responses have been identified
based on data from several species, including the fruit
fly Drosophila melanogaster and the worm Caenorhab-
ditis elegans [16,17]. Another example is ecotoxicology,
where changes of molecular biomarkers are used to detect
toxic effects and to monitor populations and ecosystem
health[18]. Such biomarkers should be as general as possi-
ble and thus responsive in a wide range of species. Meta-
analysis of gene expression profiles from multiple species
therefore provides a powerful tool for identification and
evaluation of biomarkers [19,20].

Cross-species meta-analysis is however not straight-
forward. Different species have different genomes and
thus also essential differences in their transcriptomes. The
evolutionary process of the eukaryotic genome includes
events such as duplication and recombination, which cre-
ates complex relations between genes [21]. There is no
guarantee that genes from different species with a shared
common ancestry (orthologs) have a one-to-one corre-
spondence since gene duplications after speciation may
have resulted in one or more additional gene copies (in-
paralogs). For species with a relatively short evolution-
ary distance, such as human and mouse, the number
of in-paralogs is low (5.9% of all homologs according
to Homologene release 65). The numbers are however
higher for species with larger evolutionary distance. For
example, 9.6% of all human homologs in Drosophila
melanogaster have at least one in-paralog and the cor-
responding numbers for Saccharomyces cerevisiae and
Arabidopsis thaliana are 13.2% and 51% respectively
(Homologene release 65). The function of paralogous
genes tends to diverge over time and have in general a high
gene expression diversity compared to single-copy genes
[22-27]. Hence, information from all genes, including both
orthologs and paralogs, is vital for cross-species analysis
of gene expression profiles.

Several methods have previously been suggested for
cross-species analysis of gene expression profiles. Fisher’s
combined probability test, which transforms p-values
from any number of tests into one single p-value, has been
a popular method for comparing multiple gene expres-
sion experiments [28-31]. Another approach, which was
developed by Stuart et al., was used to compare gene
expression of homologs (identified using reciprocal best
BLAST hits) over a wide range of experimental condi-
tions[32]. Le et al. developed a computationally efficient
procedure that compares the distance between ranks of
genes from pairs of species [33]. The method was then
applied to a large set of microarrays from man and
mouse. Another method called mDEDS was developed
by Campain and Yang and uses several different statisti-
cal measures to perform cross-species comparison of gene

expression profiles [30]. Other methods includes LOLA
[34] and L2L [35] which are both online tools for com-
parisons of ranking lists of differentially expressed genes
from microarrays studies, including lists from different
species. However, all these methods assume a one-to-one
correspondence between genes from different species.
This assumption may be acceptable when comparing rel-
atively closely related species such as mouse and man, but
it makes these procedures inapplicable when comparing
more distantly related species.

Lu and co-authors have previously developed methods
for analysis of gene expression between different species
that takes many-to-many relations into account [36-38].
By using Markov random fields and belief propagation,
they were able to identify cell cycling genes in human
and yeast [37]. The methods were also used to analyze
genes which shared expression profiles in human and mice
infected by various pathogens [38]. However, the topology
of the Markov random fields depends on the experimen-
tal design which makes them hard to adapt to many forms
of gene expression experiments. They also make explicit
assumption of the distribution of the gene expression,
either in the form of an extreme value distribution [37] or
a Gaussian distribution [38]. This makes them unsuitable
for many heterogeneous datasets with observations from
multiple measurement platforms, such as gene expres-
sion microarrays and RNA-seq. To enable cross-species
meta-analysis of existing and future gene expression data,
novel flexible methods that can handle many-to-many
relationships between genes are needed [30,39].

In this paper we describe a new statistical method for
meta-analysis of gene expression profiles from different
species. The method was derived to take all ortholo-
gous and co-orthologous genes into account. Similar to
Fisher’s method, the proposed method uses gene-specific
p-values, which makes it applicable to many forms of mea-
surement platforms including microarrays and sequenc-
ing based techniques such as RNA-seq. A simulation study
showed that the proposed method resulted in a substantial
gain of statistical power for identification of differen-
tially expressed genes. As a proof of concept, we used
the method to identify evolutionarily conserved regula-
tion of stress responsive genes in eight species subjected
to heat stress. We also applied the method to gene expres-
sion data from aquatic vertebrates exposed to estrogens to
demonstrate its applicability within ecotoxicology.

Results
A novel method for cross-species analysis of gene
expression
Assume that a number of large-scale gene expression
experiments have been performed in a set of species
investigating an evolutionarily conserved transcriptional
response. Assume further that each experiment has been
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analyzed individually resulting in a p-value for each mea-
sured gene describing the significance of the differen-
tial expression (e.g. between two treatments). We will
also assume that there is a fixed and known evolution-
ary structure describing all groups of orthologous and
co-orthologous genes present in the species of interest.
Such homology groups are readily available from multiple
sources, such as Homologene [40], OrthMCL-DB [41] and
InParanoid [42] or can alternatively be inferred de novo by
tools such as OrthoMCL [43].

The method proposed in this paper operates on the
gene-specific p-values generated from each experiment.
For each homology group and species, the method sum-
marizes all in-paralogs into one single value by selecting
the minimum (most significant) p-value. A weighted score
is then calculated by summing the negative logarithms of
the minimum p-values from each gene expression exper-
iment. A combined p-value for each homology group is
finally derived by comparing the observed score to the null
distribution which has a known, but non-trivial, analytic
form. Finally, a Benjamini-Hochberg false discovery rate
(FDR) is calculated to control for the multiple testing of
several homology groups (typically ∼ 10, 000 homology
groups are tested).

The weights used to combine the different experi-
ments are based on the evolutionary structure. Under
the assumption of no differential expression, genes with
many in-paralogs are more likely to result in a lower min-
imum p-value than genes with few or no in-paralogs. The
weights therefore decrease with the number of in-paralogs
to generate an unbiased score. The weights also contain
an arbitrary component, which can be used to weigh indi-
vidual experiments up or down. For example, the arbitrary
weights can be used to prevent bias if multiple experi-
ments are performed in the same species.

Full mathematical details, including the derivation of
the weights and the analytical null distribution, can be
found in Methods. An R-implementation of the methods
if freely available at http://bioinformatics.math.chalmers.
se/Xspecies/.

Evaluation of the statistical power
The statistical power of the proposed method was inves-
tigated using simulations together with three other proce-
dures that have been previously suggested for handling of
in-paralogous genes. The following four approaches were
analyzed

(i) The proposed method: the most significant p-value
of the in-paralogs in each species is combined across
species.

(ii) The combination method: the expression data from
in-paralogs are treated as independent biological
replicates from the same gene [44].

(iii) The average method: expression data from
in-paralogs are combined into one single observation
by taking the average value of the raw expression
data [39].

(iv) The random method: only expression data from one
in-paralog is used (randomly selected). All other
values are discarded [39].

For the combined, average and random method the
cross-species p-value is calculated by Fisher’s combined
probability test.

Homology groups from eight different species contain-
ing at least two in-paralogs in at least one of the species
were used in the simulations (the same species as used in
the heat stress data analysis below). The simulations were
performed in the simplest possible setting where data cor-
responding to two treatment groups was generated for
each experiment by sampling the Gaussian distribution
(μ = 0, σ 2 = 1). Ten percent of the homology groups was
randomly selected to be differentially expressed and for
each such group an effect ranging from 0 to 10 was added
to one single in-paralog (x-axis of Figure 1). P-values were
calculated based on the two-population t-test assuming
equal variances (see Methods for full details).

Figure 1 shows the power as a function of the size of
the differential expression. The proposed method had a
substantially higher power than other approaches among
which the average method performed best followed by
random and combined methods. The increased statisti-
cal power had a high impact on the false discovery rate,
which was considerable lower for the proposed method.
At a relatively small effect of μ = 2, the false dis-
covery rate among the 5% most significant groups was
32.8% for the proposed method and 37.5%, 39.1% and
43.2% for the average, random and combined methods
(Figure 2). The corresponding numbers of the false dis-
covery rate for μ = 5 were 0.64%, 1.1%, 2.9%, 7.1% for
the proposed, average, random and combined methods
respectively.

The methods were also evaluated using simulations in
more diverse settings. When a second in-paralog was dif-
ferentially expressed in the same direction, i.e. the same
effect added to two genes, the performance of the com-
bined and average method increased (Additional file 1:
Figure A1). However, when an effect in the opposite direc-
tion was added to a second in-paralog (half of the effect
subtracted), the power of the average method decreased
substantially. At an effect of 6, the power of the average
method was reduced from 0.68 to 0.28 while the power
for the proposed method decreased from 0.82 to 0.71
(Figure 1 and Additional file 1: Figure A2). When the
normal distribution was replaced by a t-distribution with
five degrees of freedom, the power decreased equally for
all methods (Additional file 1: Figure A3). A similar result
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Figure 1 Comparison of the statistical power. The proposed method (solid black) results in a substantial increase in power of detecting
homology groups that were differentially expressed in multiple species compared to other methods (average - dotted blue, random - mixed green
and combined - dashed red). The x-axis shows the size of the differential expression and the y-axis the corresponding power. See Methods for full
details about the simulation.

was seen when errors were introduced in the homology
structure by randomly replacing orthologous genes with
non-orthologous genes from the same species (Additional
file 1: Figure A4 and A5).

Evolutionarily conserved expression changes in response
to heat stress
The cellular response to heat stress is comprised by multi-
ple mechanisms that protect the cell from damage. One of

the most vital parts of this defense system is the molecu-
lar chaperons which stabilizes and folds proteins into their
proper conformations. Chaperons are present in all liv-
ing organisms and their gene expression response, which
is known to be evolutionarily conserved, has been studied
in detail [45,46]. To test the model proposed in the study
in a biological context, we analyzed gene expression data
from heat stress experiments performed in eight species
ranging from yeast to man (Table 1).
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Figure 2 Comparison of the false discovery rate. The false discovery rate (FDR) decrease when homology groups were ranked with the proposed
method (solid black) compared to other methods (average - dotted blue, random - mixed green and combined - dashed red). The FDR was
simulated for differentially expressed genes with a small effect (μ = 2, σ 2 = 1). The x-axis shows percentage of selected genes and the y-axis the
true false discovery rate. See Methods for full details about the simulation.
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Table 1 A summary of the experiments used in the meta-analysis of heat stress

Organism Samples Temperature Treatment length Reference

Homo sapiens 3+3 42°C 1 h GEO:GSE7458, [47]

Mus musculus 3+3 42°C 40 min GEO:GSE14869, [48]

Danio rerio 3+3 37°C 1 h GEO:GSE17949 (unpublished)

Drosophila melanogaster 2+4 36°C 1 h GEO:GSE5147, [49]

Oryza sativa 3+3 42°C 3 h GEO:GSE14275, [50]

Arabidopsis thaliana 4+4 38°C 1 h [51]

Schizosaccharomyces pombe 2+4 39°C 1 h ArrayExpress:E-MEXP-29, [52]

Saccharomyces cerevisieae 5+5 37°C 15 min GEO:GSE8335, [53]

The NCBI Homologene release 65 database was used
to retrieve 37909 homology groups connecting the genes
from the eight species. Of these were 28241 (74.5%) rep-
resented by at least one observation in at least one exper-
iment. Among the represented groups, 11049 (39.1%) had
at least one in-paralog in at least one species and the
traditional Fisher’s method was thus not applicable to
this dataset. Applying the method proposed in this paper
resulted in 1074 homolog groups (3.8%) with a false dis-
covery rate less than 0.01. In contrast, the combined,
average and random methods resulted in 552, 795 and
586 groups with an FDR less than 0.01 respectively (Addi-
tional file 2). Among the 15 most significant homology
groups identified by the proposed method (Figure 3), ten
were molecular chaperons corresponding to four of the
five major chaperon super families (Hsp60, Hsp70 Hsp90,
Hsp100) [45]. The fifth family, the small heat stress pro-
teins (sHSP), is less well-conserved and thus less clustered,
was still found significant in smaller homology groups
(e.g. homology group 93388 with genes from A.thaliana
and O. sativa, FDR = 2.7 × 10−9). The most significant
homology groups (FDR ≤ 0.01) were tested for func-
tional enrichment of Gene Ontology terms. Not surpris-
ingly, many of the significant terms were associated with
heat stress, including response to stress (GO:0006950,
p = 1.5 × 10−27), response to temperature stimulus
(GO:0009266, p = 8.7 × 10−15) and protein refold-
ing (GO:0042026, p = 1.0 × 10−10). We also observed
that GO terms associated with other biological functions
and processes, such as processes involving non-coding
RNA (e.g. GO:0030515 snoRNA binding, GO:0034660
ncRNA metabolic process) and ribosome synthesis (e.g.
GO:0042254) were significant. See Additional files 2 and
3 for full results.

The analysis of the heat stress data also revealed that the
number of highly significant genes (unadjusted p < 10−6)
increased with the number of included experiments.
When each dataset were analyzed individually, only two of
the eight experiments resulted in genes with p-values less
than 10−6 (two and three genes in the datasets from A.

thaliana and O. sativa respectively). As more species were
combined, the number increases monotonously (Figure 4,
solid line) and when all eight experiments were included,
42 homology groups had a p-value less than 10−6. The
effect was reduced when the evolutionary relationships
between genes from different species were removed by
randomization of the homology groups (Figure 4, dashed
line).

Analysis of the transcriptional responses to estrogens in
fish
Estrogenic substances reach the aquatic environment, for
example via municipal waste water, and can affect the
reproductive health of wild fish [54-57]. To investigate
the evolutionarily conserved transcriptional response to
estrogen exposure we applied the method to data from five
microarray studies on hepatic gene expression data from
juvenile or male fish (Table 2). OrthoMCL was used to
identify 5640 homology groups containing genes included
on the microarrays. Among these groups, 4701 (83.4%)
had at least one in-paralog in at least one species. Anal-
ysis with the proposed method resulted in 549 homology
groups with a false discovery rate less than 0.01 of which
430 had homologs in at least two species. The 15 most
significant homology groups (Figure 5) contained many
well-established estrogen responsive genes, such as zona
pellucida sperm-binding protein 3, vitellogenin 1, vitel-
logenin 3 and cathepsin D [58-60]. Among the 15 most
significant groups, at least seven have shown to be dif-
ferentially expressed also on protein level [61,62] and
80% (12) have previously been associated with estrogen
exposure in vertebrates according to the Comparative
Toxicogenomics Database [63]. Full lists are available as
Additional file 4.

Furthermore, several significant homology groups
contained genes that were not identified as estro-
gen responsive by any of the individual studies, e.g.
fatty acid desaturase 2 (group 582, FDR=1.5 × 10−7),
sodium/potassium-transporting ATPase subunit alpha-1
(group 61, FDR=7.8 × 10−6) and translocon-associated
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Figure 3 The most significant homology groups in the cross-species analysis of heat stress. The figure shows the 15 most significant
significant homology groups from cross-species analysis of heat stress microarray data with homologs in at least four of the eight species. All of the
15 homology groups were up-regulated during heat stress. The heatmap shows the contribution from each individual experiment where higher
intensity corresponds to a more significant p-value. White squares indicate the absence of a homologous gene while grey squares indicate the
presence of homologs that have not been measured (e.g. missing one the microarray). The other columns in the figure corresponds to the
Homologene accession number (Group), the false discovery rate (FDR), the chaperon class (Class) and a gene description (Annotation). Full results
for all 37909 homology groups are available as Additional file 2.
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Figure 4 Highly significant heat stress homology groups. The number of highly significant (p < 10−6) differentially expressed homology
groups regulated by heat stress (y-axis) increased when more species were included in the analysis (x-axis). The figure was created by performing a
cross-species analysis for all possible configurations containing n species (with 1 ≤ n ≤ 8). For each fixed value of n, the average number of highly
significant p-values were calculated. The error bars shows the corresponding standard deviations. The dashed curve was calculated by performing
the same analysis on homology groups with randomized homology groups (the sizes of the homology groups were fixed).
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Table 2 A summary of the experiments used in the meta-analysis of estrogen-exposed fish

Organism Samples Exposure Exposure length Reference

Platichthys flesus 5+5 E2, injected, 10 mg/kg 8 days Pers. com. TD Williams, [64]

Gasterosteus aculeatus 3+3 E2, water, 50 ng/L 2 days Pers. com. TD Williams, [65]

Danio rerio 4+4 EE2, water, 10 ng/L 21 days GEO:GSE7220, GEO:[66]

Oncorhynchus mykiss 2+2 E2, dietary, 5ppm 12 days GEO:GSE7837, [67]

Oncorhynchus mykiss 4+4 EE2, water, 10 ng/L 14 days ArrayExpress:E-MEXP-1149, [19]

proteins delta and gamma (groups 561 and 1423,
FDR=2.9×10−8 and 3.9×10−9 respectively). These genes
have all previously been shown to be estrogen respon-
sive in mammals [68-70]. In addition, the translocon-
associated protein subunit delta has been shown to be
differentially expressed on protein level in Danio rerio
exposed to estrogen [61].

Discussion
Meta-analysis of gene expression profiles is hampered
by the lack of a one-to-one correspondence between
orthologous genes from different species. Evolutionary
events, such as gene duplications, have resulted in par-
alogous genes which makes traditional approaches for
meta-analysis inapplicable. We therefore developed a new

Figure 5 Cross-species analysis of fish exposed to estrogens. The figure shows the 15 most significant homology groups from five microarray
studies with estrogenic exposed fish. Only homology groups with gene expression data from at least two of the five studies are shown. The
heatmap describes the contribution from each individual experiment where higher intensity corresponds to a more significant p-value. White
squares indicate the absence of a p-value (e.g. no homlogous gene or gene missing on the microarray). The columns in the figure corresponds
homology group identifier (Group), the false discovery rate (FDR), the direction of the differentially expression (Direction) and a gene description
(Annotation). Full results for all 6449 homology groups are available as Additional file 4.



Kristiansson et al. BMC Bioinformatics 2013, 14:70 Page 8 of 14
http://www.biomedcentral.com/1471-2105/14/70

statistical method for meta-analysis of gene expression
profiles between experiments performed in evolutionar-
ily distant species. The method takes advantage of the
homology structure between the species of interest and
can therefore take any number of orthologous and co-
orthologous genes into account. The method is general in
the sense that it operates on p-values from individual gene
expression experiments and is therefore independent of
the type of the raw gene expression data. This makes the
method applicable to any gene expression measurement
platform, including DNA microarrays and quantitative
PCR as well as techniques based on sequencing such as
RNA-seq. Using p-values also makes it possible to include
results from already analyzed experiments where the raw
data is not publicly available or missing.

The proposed method can be seen as an extension of
Fisher’s combined probability test [28], which is widely
used statistical method for meta-analysis. In fact, when
no in-paralogous genes are present in any of the species,
the proposed method and Fisher’s method are equivalent.
Similarly to the Fisher’s combined probability test, the
proposed method is dependent on the validity of the sta-
tistical models used to analyze the individual experiments.
The combined cross-species p-values are calculated from
an analytical distribution derived based on the assump-
tion of gene-specific p-values that are independently and
uniformly distributed under the null hypothesis. An alter-
native approach, which is less dependent on the model
assumptions, is to use permutations [71]. For many exper-
imental designs, the null-distribution can be estimated
by randomly permuting the labels of the samples in each
experiment. However, permutation-based estimation of
the null-distribution requires a relatively large number
of biological replicates in order to generate a sufficiently
large number of permutations. The heat stress data ana-
lyzed in this study had, for example, too few observations
for estimation of the null-distribution using permutations.

Cross-species meta-analysis of gene expression is
dependent of the evolutionary relationship between the
orthologous and co-orthologous genes present in the
species of interest. Identification of homologous genes
in evolutionarily distant species is however complex and
can result in false predictions [72]. Such errors will either
group non-related genes in the same homology group or,
vice versa, scatter homologous genes between different
homology groups. Since the proposed method assumes
that the evolutionary structure is known and correct,
such errors will affect the results negatively. Improved
and more accurate algorithms for predicting homologous
genes will thus further increase the potential of cross-
species meta-analysis of gene expression. On the other
hand, the conserved expression profiles generated by the
proposed method can be used to correct false predic-
tions of homology. In the heat stress analysis Homologene

group 111895 (HSP70-homologs, Homologene release 65)
was found to be highly significant in all species except
for D. melanogaster. Interestingly, a closer examination of
that homology group showed that the HSP70 functional
domain was missing from the D. melanogaster gene and
which suggests that it may indeed not be a true homolog.

The statistical power of the proposed method and three
previously suggested methods for combining multiple
observations in microarray analysis was evaluated using
simulations. The proposed method was the only solu-
tion that was explicitly developed to handle in-paralogous
genes and its power was, not surprisingly, considerably
higher (Figure 1). The resulting false discovery rate was
also lower (Figure 2). When multiple in-paralogs from the
same homology group had a similar transcriptional pat-
tern the difference in performance between the methods
was reduced. However, when then multiple in-paralogs
showed a divergent transcriptional pattern, the differ-
ence in performance increased in favor of the proposed
method. This reflects the underlying assumptions, where
the proposed method assumes that only one of the in-
paralogs in homology group is differentially expressed
while the others are non-responsive. The combination and
average methods does, on the other hand, assume that all
in-paralogs are affected by the treatment. It should also
be noted that conditions used in the simulations are ide-
alized and the results should therefore be interpreted as
such. Real gene expression data does not follow a Gaus-
sian distribution and has a complex correlation structure,
both between genes and samples [6,73-75]. The simu-
lation study shows, however, that the loss in statistical
power of detecting differentially expressed genes in cross-
species meta-analysis may be substantial if in-paralogs are
not properly incorporated in the analysis.

The proposed method was used to compare the gene
expression response to heat stress based on microarray
data from eight eukaryotes. The analysis identified several
well-known mechanisms involved in the transcriptional
response to heat. Most pronounced was the up-regulation
of molecular chaperons and 10 of the 15 most significant
homology groups corresponded to heat stress proteins
from four of the five major chaperon families (Figure 3).
Functional enrichment of gene ontology terms revealed
additional biological processes associated with the cellu-
lar response to heat. The number of significant homology
groups was also shown to increase with the number of
included species. These results show that the proposed
model generated biologically relevant results by combin-
ing gene expression profiles from evolutionarily distant
species. Analysis of evolutionarily conserved gene expres-
sion changes under heat stress has previously been sug-
gested as an efficient approach to further understand the
underlying biological processes[45]. It is therefore plausi-
ble that a more in-depth analysis of our result from the



Kristiansson et al. BMC Bioinformatics 2013, 14:70 Page 9 of 14
http://www.biomedcentral.com/1471-2105/14/70

cross-species meta-analysis may result in more insights
and novel findings within this area.

Inter-species extrapolations is a cornerstone of eco-
toxicological risk assessment since only a tiny fraction
of the species present in the environment can be stud-
ied in the laboratory [76]. Comparisons of inter-species
gene expression profiles provide an attractive way to
identify evolutionarily conserved modes of action and
novel biomarkers of exposure or effect. We therefore
used the proposed method to find common transcrip-
tional responses in four different fish species. The analysis
revealed several known and well-established responses of
estrogen, some which have been associated with adverse
physiological effects. The method also identified differen-
tially regulated genes that were not classified as estrogen
responsive by the individual experiments. This shows that
the method can be used to identify evolutionarily con-
served transcriptional responses to toxicants in ecologi-
cally relevant species and it demonstrates the potential of
cross-species meta-analysis within ecotoxicology.

Cross-species analysis of gene expression is dependent
on the similarities in the transcriptional responses of the
studied species. However, evolutionarily distant species
have fundamental differences in their physiology which
makes it hard, or even impossible, to perform experi-
ments under identical conditions. Even though the asso-
ciated biological processes are evolutionarily conserved
the differences in experimental design and execution
can introduce substantial variability in the transcriptional
responses. In the cross-species analysis of heat stress
we included data from eight species that were treated
with different degrees of heat stress during different time
spans. There were also differences in the designs of the
estrogen exposures, e.g. exposure concentrations, times
and routes. Our results show, however, that for both these
examples of cross-species analysis, the experiments were
similar enough to generate biological relevant results. It
is, on the other hand, hard to estimate what evolutionarily
conserved transcriptional responses that are not identi-
fied due to differences in the experimental designs.

Conclusion
Cross-species analysis of gene expression is compli-
cated by the non-trivial relationships between genes
from different species. The new statistical method pro-
posed in this study takes the evolutionary structure
into account and can therefore compare transcriptional
profiles from species with any number of orthologous
and co-orthologous genes. The performance of the pro-
posed method, compared to other existing solutions,
was therefore considerably higher when in-paralogous
genes are present. As a proof-of-concept, the method was
used to identify evolutionarily conserved transcriptional
responses in microarray data from heat stress experiment

performed in eight diverse species. The applicability of
the method within ecotoxicology was also demonstrated
by the identification of known and novel responses in fish
exposed to estrogens. An implementation of the method
for the statistical language R is available for free at http://
bioinformatics.math.chalmers.se/Xspecies/.

Methods
Mathematical details
Assume that we are interested in a meta-analysis of gene
expression profiles from m experiments performed in m
species (which does not have to be unique). Assume also
that the orthologous and co-orthologous genes ([21]) of
the species are described by n homology groups G1, . . . ,Gn
where each group Gi be defined as

Gi = {Gi1, . . . , Gim}
and where Gij is the set of genes in group Gi for species j.
Assume further that there are lij such genes in group i and
species j, i.e.

Gij =
{

gij1, . . . , gijlij

}
.

It follows that any pair of genes gijk and gij′k′ in homol-
ogy group i are in-paralogs if j = j′ and orthologs or
co-orthologs if j �= j′.

Assume that experiments have been performed mea-
suring the gene expression for each gene gijk and that
differential expression is tested using the hypotheses

H0
ijk : gene gijk is not differentially expressed,

HA
ijk : gene gijk is differentially expressed,

resulting in a p-value pijk (only the two-sided hypoth-
esis will be considered, the generalization to one-sided
hypotheses is straight forward). The p-values are assumed
to follow a similar structure as the homolog groups, i.e.

Pi = {Pi1, . . . , Pim} where Pij is Pij =
{

pij1, . . . , pijlij

}
.

For each homology group i we will test

H0
i : None of the genes in Gi are

differentially expressed
(1)

versus the alternative that H0
i is not true. Let p̃ij be

the most significant p-value for paralogs in group i and
species j, i.e.

p̃ij = min
k=1,...,lij

pijk .

The statistic that will be used to test (1) is the cross-
species score Si defined as

Si =
m∑

j=1
wjKij log p̃ij

http://bioinformatics.math.chalmers.se/Xspecies/
http://bioinformatics.math.chalmers.se/Xspecies/
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where Kij is a constant and wj are arbitrary experiment-
specific weights summing to 1.

The null distribution of Si is non-trivial and will now be
derived. Let Xijk = − log pijk and

Yij = − log p̃ij = max
k=1,...,lij

Xijk

Under the assumption that H0
i is true all p-values {pijk}

are independent and uniformly distributed between 0 and
1. Hence, Xijk is exponentially distributed with inten-
sity 1 and Yij is the maximum of lij such independent
exponentially distributed random variables. By rewriting
Yij as a sum of the order statistic

(
Xij(1), . . . , Xij(lij)

)
of

Xij1, . . . , Xijk , i.e.

Yij = max
(
Xij1, . . . , Xijk

) = Xij(1)+
+ (Xij(2) − Xij(1)) + . . . + (Xij(lij) − Xij(lij−1)).

It follows by the memoryless property of the exponential
distribution that Xij(1) ∼ Exp(1/n) and that

P
(
Xij(2)−Xij(1) ≤ x

) =
∫ ∞

0
P

(
Xij(2) ≤ x

)
P

(
Xij(1) = y

)
dy

= P

(
min

k=2,...,lij
Xijk ≤ x

)
.

Thus, Xij(2) −Xij(1) ∼ Exp(1/(n−1)) and by repeating the
same arguments Yij can be written as

Yij =
lij∑

k=1

1
k

Zijk

where Zij1, . . . , Zijlij are lij independent exponentially dis-
tributed random variables with intensity 1. The expected
value of Yij can be calculated to

Exp[ Yij] =
lij∑

k=1

1
k

.

If we let

Kij =
⎛
⎝ lij∑

k=1

1
k

⎞
⎠

−1

,

where Kij = 0 if lij = 0, the cross-species statistic Si can
be written as

Si =
m∑

j=1
wjKij log p̃ij =

m∑
j=1

wj
Yij

Exp
[
Yij

]

=
m∑

j=1

lij∑
k=1

wj

kExp[ Yij]
Zijk =

m∑
j=1

lij∑
k=1

w̃ijkZijk

where the weights w̃ijk are defined as

w̃ijk = wj

k Exp[ Yij]
.

Si is thus a weighted sum of independent exponentially
distributed random variables with intensity 1. The weights
w̃ijk contains two parts, an experimental specific weight wj
and 1/(kExp[ Yij] ). The latter compensates for the num-
ber of paralogs in order to avoid bias from large homology
groups. The weights wj are arbitrarily and can be set
to weigh individual experiments up and down. This is
for example useful when multiple experiments are per-
formed in a single organism (see Estrogen exposure below
for an example). However, more sophisticated weighting
strategies are also possible, such as weights based on the
evolutionary distance between the included species (e.g.
evolutionary distinctiveness score [77]).

The density function of Si can be calculated explicitly
depending on the weights w̃ijk . For the case when all w̃ijk
are different the density function becomes [78]

fSi(s) =
m∑

j=1

lij∑
k=1

w̃mlij−2
ijk

m∏
j′=1,j′ �=j

lij∏
k′=1,k′ �=k

(
w̃ijk − w̃ij′k′

)e−s/w̃ijk .

Analogously, density functions for the cases when two
or more weights are equal can also be derived. However,
evaluating the cumulative density function (CDF) requires
numerical integration which is computationally expen-
sive. We therefore approximate the distribution of Si using
a Gamma distribution with the same expectation value
and variance. Approximating a weighted sum of exponen-
tially distributed variables with a Gamma distribution has
previously shown to accurate enough for our purpose [79].
The expected value and variance of Si becomes

Exp[ Si] = 1

Var[ Si] =
m∑

j=1
w2

j

∑lij
k=1 k−2[∑lij

k=1 k−1
]2

Hence, the shape and scale parameters α and β should be

αi = βi =
⎡
⎢⎣ m∑

j=1
w2

j

∑lij
k=1 k−2[∑lij

k=1 k−1
]2

⎤
⎥⎦

−1

The hypothesis in 1 can now be tested and a correspond-
ing p-value calculated by comparing the observed value si
with the null distribution of Si.

Simulations
Simulations were performed on homology groups from
Homologene for the species Saccharomyces cerevisiae
(4932), Schizosaccharomyces pombe (4896), Arabidop-
sis thaliana (3702), Oryza sativa (4530), Drosophila
melanogaster (7227), Danio rerio (7955) Mus musculus
(10090), Homo sapiens (9606) (NCBI Taxonomy IDs are



Kristiansson et al. BMC Bioinformatics 2013, 14:70 Page 11 of 14
http://www.biomedcentral.com/1471-2105/14/70

given in parenthesis). Each gene was assumed to be mea-
sured in two different groups, one control and one treated,
with three independent observations from each. Data
was simulated from a Gaussian distribution with mean
value 0 and variance 1 and p-value calculated using a
two-population t-test assuming equal variance. For dif-
ferentially expressed orthologous groups (10%, randomly
selected) an effect ranging from 0 to 10 was added to the
treated group (e.g. changing the expected value from 0
to the effect). For groups and species with in-paralogous
genes the effect was added to one single in-paralog (ran-
domly selected). The weights wij in Si were set to be
uniform. For the combined method all observations from
in-paralogs treated as independent replicated observa-
tions for one single gene (homology group). For the aver-
age method, an average was taken over all observations
from in-paralogs generating one single observation for
each observation. For the random method one of the in-
paralogs was randomly selected and other discarded. For
these three methods the cross-species p-value was calcu-
lated by Fisher’s combined probability test[28]. The false
discovery rate for homology group i was estimated by cal-
culating the proportion of false positives among the i most
significant groups.

Meta-analysis of gene expression
Pre-processing and analysis of microarray data
Intensity data from Affymetrix type of microarrays was
pre-processed using RMA [80] while intensity data from
two-channel microarrays was normalized using global
loess [81]. The quality of each microarray was assessed by
inspecting scatter and MA plots of probe-wise intensity
before and after normalization. For all include exper-
iments, differentially expressed genes were identified
using the moderated t-statistic [82] implemented in the
LIMMA R-package. Cross-species analysis using was per-
formed using the proposed method where up- and down-
regulated genes were tested separately using one-sided
tests. The most significant p-value was then selected.
The cross-species p-values were finally corrected for mul-
tiple testing using Benjamini-Hochbergs false discovery
rate.

Heat stress
Gene expression data from eight experiments investigat-
ing the effects of heat stress in eight species were fetched
from Gene Express Omnibus and ArrayExpress (Table 1).
Homologene release 65 was used to describe the evolu-
tionary relationship between the genes from the different
species. The arbitrary component of the weights was set
to be uniform over the eight experiments. The homol-
ogy groups were populated with Gene Ontology terms
based on species-specific annotations retrieved from the
GO Consortium FTP (ftp://ftp.geneontology.org/pub/go/

gene-associations/). Only terms with an experimental evi-
dence code (i.e. EXP, IDA, IPI, IMP, IGI and IEP) were
considered. Functional enrichment was inferred using the
topGO R package [83].

Estrogen exposure
The five gene expression experiments included in the
analysis are summarized in Table 2. Gene expression
data was retrieved from the Gene Expression Omnibus,
ArrayExpress or through direct contact with the authors.
Homology groups were inferred from the correspond-
ing EST and transcript sequences using OrthoMCL [41]
with an inflation index of 1.5 (all other parameters had
default values). To avoid bias from the multiple experi-
ments performed in Oncorhynchus mykiss the arbitrary
weight component was set to 0.25, 0.25, 0.25, 0.125 and
0.125 (following the order in Table 2).

Additional files

Additional file 1: Additional figures demonstrating the power of the
method using simulations. Power characteristics for the proposed and
previously suggested methods. The file contains results from the following
simulations: (1) multiple in-paralogs with similar expression profile (2)
multiple in-paralogs with divergent expression profile, (3) noise with thick
tails (t-distribution with five degrees of freedom), (4) errors in homology
structure, error rate=0.1 and (5) errors in the homology structure, error
rate=0.5.

Additional file 2: List of analyzed homology groups from the
meta-analysis of heat stress experiments. Results for each homology
group based on heat stress experiments performed in eight different
species. The list contains combined p-value and false discovery rate as well
as individual p-values from each experiment.

Additional file 3: Results of the functional enrichment of Gene
Ontology terms. Results from the Gene Ontology (GO) term enrichment
analysis of the significant homology groups from the heat stress analysis.
The file contains results from the biological process (BP), cellular
component (CC) and molecular function (MF) ontologies.

Additional file 4: List of analyzed homology groups from the
meta-analysis of aquatic vertebrates exposed to estrogens. Results for
each homology group based on estrogen exposure experiments
performed in four aquatic vertebrates. The list contains combined p-value
and false discovery rate as well as individual p-values from each experiment.
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