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Abstract

Purpose

The purpose of this study was to compare early and late rapid torque parameters of the plan-

tar flexors (PFs) in middle-aged (MM) and older (OM) males, and determine the effect of

normalization to peak torque (PT) and muscle cross-sectional area (CSA).

Methods

Twenty-nine healthy, MM (n = 14; 45 ± 2 yrs) and OM (n = 15; 65 ± 3 yrs) performed rapid,

maximal isometric contractions of the PFs. PT, as well as rate of torque development and

impulse during the early (0–50 ms; RTD0-50, IMP0-50) and late (100–200 ms; RTD100-200,

IMP100-200) contraction phases were calculated. Torque at 50 (TQ50), 100 (TQ100), and 200

(TQ200) ms was also obtained. CSA and echo-intensity (EI) of the gastrocnemii were

acquired via ultrasonography. Torque variables were normalized to PT and CSA. Rate of

EMG rise (RER) for the medial gastrocnemius was calculated at 30, 50 and 75 ms.

Results

TQ100 (MM = 69.71 ± 16.85 vs. OM = 55.99 ± 18.54 Nm; p = 0.046), TQ200 (MM = 114.76 ±
26.79 vs. OM = 91.56 ± 28.10 Nm; p = 0.031), and IMP100-200 (MM = 4.79 ± 1.11 vs. OM =

3.83 ± 1.17 Nm�s; p = 0.032) were lower in OM. PT, TQ50, RTD0-50, IMP0-50, RTD100-200,

RER, CSA, and EI were similar between groups (p > 0.05). No differences were found for

normalized torque variables (p > 0.05). EI was moderately associated with normalized tor-

que parameters only (r = -0.38 –-0.45). RER, at 75 ms, was moderately correlated with

early, absolute torque measures and rapid torque variables made relative to PT and CSA (r

= 0.41 –-0.64).
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Conclusion

Late rapid torque parameters of the PFs were preferentially impaired in OM compared to

MM, and PT as well as CSA appeared to mediate this result.

Introduction

Muscle strength is an important marker of physical health that expresses a moderate decrease

from young to middle-age followed by a sharper decline with advanced age (8th decade) [1, 2].

However, increasingly more research has focused on rapid torque (or force) parameters (e.g.,

rate of torque development (RTD; Δtorque/Δtime)) as markers of neuromuscular function,

which emphasize torque production during the initial 200 ms of muscle contraction [3],

whereas maximal torque requires at least ~300 ms to be achieved [4]. Rapid torque measures

are more dramatically affected by age compared to maximal strength [5–7], although most

reports are limited to comparisons between young and older adults. Recent reports demon-

strate that RTD is an independent predictor of physical function tasks such chair rise ability,

timed “up and go”, as well as casual and maximal walking velocity in older adults [8, 9]. In

addition, an age-related decrease in rapid torque production of the support leg within 100–200

ms after tripping is believed to influence the diminished ability to recover from falls in older

adults [10]. Impulse, area under the torque-time curve, is another less frequently examined

measure of rapid torque production that is more reflective of the torque-time curve history

compared to RTD since the latter is derived from a line of best fit. Thus, assessing both RTD

and impulse may provide unique insight on rapid torque capacity, however, reports on age-

related changes in impulse between middle-aged and older adults are limited [11].

Typically, rapid torque measures are examined at different time intervals of a muscle con-

traction such as the early (i.e., 0–50 ms) and late phase (i.e., 100–200 ms) [6, 12]. Early rapid

torque variables are associated with initial motor unit recruitment and firing rates [5, 13], as

well as intrinsic muscle properties (i.e., fiber type composition, calcium kinetics) [14, 15],

while maximal strength and muscle size become more influential for late rapid torque mea-

sures [14, 16]. Other structural factors influencing RTD include tendon stiffness [17] and pen-

nation angle [12], both of which are negatively affected by age. The majority of studies

reporting on age-related changes in rapid torque measures at early and late time intervals

examined the knee extensors [11, 18–20]. To the best of our knowledge, only two studies have

assessed the plantar flexors (PFs) [6, 12] and the findings for early RTD were equivocal. It is

critically important to gain more evidence on the PFs due to the significance of this muscle

group for optimal gait in older adults [21], and due to the more mixed fiber type composition

of the PFs, age-related changes in neuromuscular function may differ from that of the knee

extensors. In addition, RTD during an isotonic contraction of the PFs was recently shown to

be a stronger predictor of power output compared to other factors such as velocity, muscle

strength or cross-sectional area (CSA) in middle-aged and older males [22]. Considering the

importance of muscle power preservation in older adults [23], this lends further support for

the need to investigate the effects of aging on rapid torque production, and the factors influ-

encing its decline.

Researchers commonly normalize rapid torque measures by peak torque (PT) (i.e., maximal

strength) to indirectly infer the influence of other physiological factors on age-, training-, or

fatigue-related changes in rapid torque parameters. Normalized rapid torque measures are

believed to be more influenced by qualitative factors such as muscle fiber type composition
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and neural drive in contrast to maximal strength [3, 14]. However, PT explains up to 78% of

the variance in RTD [14], thus these measures share some physiological contributors. There-

fore, it is likely more informative to normalize rapid torque measures to muscle size (i.e.,

CSA). Normalization to CSA enables more accurate dimensional scaling of a physiological

determinant of rapid torque production [17], which may be particularly useful if the intent is

to more precisely identify contributions from physiological factors. With that said, CSA may

only explain ~49% - 59% of the variance in maximal strength of older males [17, 24]. To the

best of our knowledge, there are no reports on the age-related differences of rapid torque mea-

sures normalized to both CSA and PT, for the PFs. Aside from the influence of CSA and PT,

muscle quality via echo-intensity (EI) [25], an ultrasound-derived quantitative gray-scale anal-

ysis of fat or fibrous tissue infiltration of muscle, and rate of muscle activation [5, 26] are asso-

ciated with rapid torque measures as well. Therefore, it is important to assess numerous

factors (i.e., muscle CSA and quality, muscle activation) when examining the effects of aging

on rapid torque production. The primary purpose of this study was to compare early and late

rapid torque parameters of the PFs in middle-aged and older males, as well as to determine the

effect of normalization to PT and CSA. In addition, we sought to examine physiological corre-

lates of early and late rapid torque measures. We hypothesized, based on the findings of Gerst-

ner et al. [12], that only late rapid torque measures would be lower in older males, and that

normalization to PT and CSA would have no influence on these findings.

Materials and methods

Participants

Twenty-nine healthy, middle-aged (n = 14; 45 ± 2 yrs) and older (n = 15; 65 ± 3 yrs) males

who reported not having performed structured endurance or resistance training exercise in

the past 5 yrs volunteered for this study. All participants were screened via self-reported ques-

tionnaire for the following exclusion criteria: presence of unstable cardiovascular, metabolic or

renal disease, diagnosed myocardial infarction within the last two-years, terminal illness, a his-

tory of cerebrovascular disease, any condition affecting neuromuscular function, an artificial

lower-body joint, rheumatoid arthritis, a fracture within the past year, reliance upon an assis-

tive walking device, and Mini-mental State Exam score <23. Participants were recruited from

senior centers and the surrounding community through word of mouth, email, and flyer

advertisements. This study was approved by the Kennesaw State University Institutional

Review Board prior to data collection. All participants provided oral and written consent prior

to beginning the study.

Experimental design

Participants visited the lab on two occasions separated by at least three days but not more than

seven. Familiarization with PF testing was completed during the first visit. Ultrasonography

and PF testing were performed during the second visit. In addition, participants were

instructed to avoid alcohol and vigorous physical activity for 24 and 48 hr, respectively, before

each visit.

Torque was recorded during maximal voluntary isometric contractions (MVICs) of the

dominant limb using a calibrated Biodex 4 isokinetic dynamometer (Biodex Medical Systems,

Inc. Shirley, NY, USA). Leg dominance was determined via inquiry of preferred kicking leg

[27]. EMG of the medial gastrocnemius (MG) was recorded using a parallel bar, bipolar sur-

face electrode (Delsys Trigno, Delsys, Inc., Natick, MA, USA). The skin over the muscle was

shaved, abraded, and cleaned with alcohol, and subsequently the electrode was placed over the

MG muscle belly in accordance with the recommendations of the SENIAM project [28].
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Torque as well as surface electromyography (EMG) signals were sampled at 10 kHz using

EMGworks software (Delsys, Inc., Natick, MA, USA). Participants were seated with hands

across their chest, restraining straps over their trunk, pelvis, and thigh, and the input axis of

the dynamometer aligned with the lateral malleolus as the axis of rotation for the ankle. The

knee was extended to 170˚ (full extension = 180˚) and hip was maintained at 120˚. The foot

was secured to the footplate with two straps over the dorsal aspect and a custom ankle wrap

technique to anchor the heel to the footplate. Ankle position was set at a neutral angle (neu-

tral = 90˚) for MVICs.

Physical activity

Physical activity (steps per day) was objectively measured via an Actigraph GTX3+ accelerome-

ter (Actigraph, Pensacola, FL, USA). Only data for participants with wear time of at least 10

hrs per day, for a minimum of 3 days was used for analysis, as previously described [22].

Ultrasonography

Panoramic images of the MG and lateral gastrocnemius were obtained using a B-mode ultra-

sound (LOGIQ S7, General Electric Company, Milwaukee, WI) using previously reported pro-

cedures [22]. Briefly, images were acquired with a multifrequency linear-array probe (ML6-15

L; 5–13 MHz; 50mm field of view; General Electric Company, Milwaukee, WI) using the

LogicVIEW function. Three images for each muscle were captured at 1/3 the distance from

the tibial articular cleft between the femur and tibia condyle to the lateral malleolus on the

dominant leg [29]. The polygon function in ImageJ software (version 1.46r, National Institutes

of Health, Bethesda, Md.) was used to select as much of the muscle as possible without includ-

ing the surrounding fascia. Subsequently, CSA and muscle quality were calculated for each

muscle. Muscle quality was determined from EI, assessed via gray-scale analysis using the his-

togram function. The mean EI was expressed as a value between 0 (black) and 255 (white).

Subcutaneous fat thickness for both muscles was measured using the straight line function,

and was used to calculate normalized EI as suggested by Young et al. [30]. For statistical analy-

sis, CSA was calculated as the sum of the gastrocnemii muscles, while EI was calculated as the

average of the gastrocnemii. The CSA and EI data as well as reliability statistics have been

reported elsewhere [22].

Maximal voluntary isometric contractions (MVICs)

Prior to MVIC testing, participants began by performing two submaximal isometric contrac-

tions at 50% and 75% of perceived maximal effort. Participants then performed 3, 5 sec

MVICs separated by 2 min of rest. Participants were instructed to push on the footplate as

“hard and fast as possible” using only the PFs, while avoiding involvement of the quadriceps.

Strong verbal encouragement and visual biofeedback was provided during testing. Participants

were instructed to avoid pretension or a countermovement prior to each trial. If pretension or

a countermovement was visualized, an additional MVIC was performed. In addition, during

subsequent analysis, the slope of torque signal prior (100 ms) to torque onset was determined

for each contraction and any MVIC with a slope value that exceeded ± 5 Nm�s−1 was discarded

[12].

Signal processing

The scaled, gravity corrected torque signal was digitally filtered with a zero lag, low-pass (150

Hz) [31] Butterworth filter using custom written software (LabVIEW, National Instruments,
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Austin, TX). Peak torque (PT) was considered the highest 500 ms rolling average and was used

for normalization of all torque variables. Absolute and normalized torque were recorded at 50

(aTQ50, nTQ50), 100 (aTQ100, nTQ100), and 200 (aTQ200, nTQ200) ms after contraction onset.

RTD was derived from the linear slope of the torque-time curve (Δtorque/Δtime) and absolute

as well as normalized early RTD was obtained from contraction onset to 50 ms (aRTD0–50,

nRTD0–50), while late RTD was acquired from 100 to 200 ms (aRTD100–200, nRTD100–200) [12].

In addition, each absolute torque measure was made relative to CSA (e.g., “specific” TQ50).

Impulse was calculated as the area under the torque-time curve (
R

Torque dt) for the same

early (IMP0-50) and late (IMP100-200) time intervals. Finally, RTD (aRTD0–200) and impulse

(IMP0-200) were also calculated from contraction onset to 200 ms to serve as overall measures

of rapid torque production. Torque onset was set at 2.5 Nm [19]. The zero means EMG signal

was processed using a 4th order Butterworth filter with a low- and high-frequency cutoff of 10

and 500 Hz, respectively. The signal was then smoothed using a zero-lag, low-pass filter (10

Hz) and normalized to its peak amplitude (PEMG). Rate of EMG rise (RER) (i.e., rate of mus-

cle activation) was calculated as the linear slope of the normalized EMG signal at 30 (RER0-30),

50 (RER0-50), and 75 (RER0-75) ms from onset [6, 22]. The EMG onset was determined as the

moment when baseline amplitude reached 2.5% of PEMG. The MVIC producing the highest

PT was used for subsequent analysis. An example of a processed torque signal from an MVIC

can be seen in Fig 1.

Statistical analyses

Normality of data was assessed within each group using the Shapiro-Wilk Test. Independent

samples t-tests were used to make comparisons between groups. However, in the case of a

non-normally distributed dependent variable, a Mann-Whitney U test was performed. Leve-

ne’s test was used to assess homogeneity of variance. Pearson product-moment partial (con-

trolling for age) correlation coefficients were calculated to examine the relationship between

ultrasound, RER, and torque variable with groups collapsed. Statistical analyses were per-

formed using PASW software version 26.0 (SPSS Inc., Chicago, IL, USA) and an alpha level of

p� 0.05 was used to determine statistical significance. One middle-aged participant was

excluded from the physical activity analysis due to not meeting the wear time criteria, and

physical activity level data for another middle-aged participant was not obtained due to techni-

cal problems. Effect size was reported as Cohen’s d for independent samples t-tests results and

0.30, 0.50, and 0.80 were used to indicate small, moderate, and large effect sizes, respectively

[32]. For non-normally distributed dependent variables, effect size was reported as “r” and

interpreted using Cohen’s criteria: small effect:� -0.3; moderate effect:< -0.3; large effect: <

-0.5 [32]. Correlation coefficients were categorized as weak, moderate, or strong relationships

for values of 0.35 or less, 0.36 to 0.67, and 0.68 or more, respectively [33]. All data in text and

tables are reported as mean ± SD, while data in figures is displayed as mean ± SEM.

Results

All dependent variables were normally distributed except RER0-75 (p = 0.009) and CSA

(p = 0.050) in the middle-aged group, as well as specific RTD0-50 (p = 0.043) in the older males.

Characteristics for both groups are displayed in Table 1. The groups were similar in height

(p = 0.884), body mass (p = 0.448), body mass index (p = 0.335), and physical activity level

(p = 0.971). PT was not different between groups (p = 0.105; d = 0.63), but aRTD0-200

(p = 0.024; d = 0.89) was lower in the older males (Table 1).
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Cross-sectional area (CSA) and echo-intensity (EI)

CSA (middle-aged: 24.52 ± 6.61 cm2 vs. older: 21.59 ± 4.93 cm2) and EI (middle-aged:

145.96 ± 10.05 au vs. older: 146.71 ± 12.00 au) were similar between groups (p = 0.295; r =

-0.19 and p = 0.857; d = -0.07, respectively).

Rapid torque parameters

aRTD0-50 (p = 0.162; d = 0.54) and aRTD100-200 (p = 0.075; d = 0.69) were similar between

groups (Fig 2). aTQ50 was similar between groups (p = 0.156; d = 0.54), while aTQ100 and

aTQ200 were lower in the older males (p = 0.046; d = 0.77 and p = 0.031; d = 0.84, respectively)

(Fig 3). IMP0-50 was comparable between groups (p = 0.239; d = 0.45; middle-aged: 0.32 ± 0.07

vs. older: 0.28 ± 0.09 Nm�s), but IMP100-200 (p = 0.032; d = 0.84; middle-aged: 4.79 ± 1.11 vs.

older: 3.83 ± 1.17 Nm�s) and IMP0-200 (p = 0.041; d = 0.80; middle-aged: 6.34 ± 1.46 vs. older:

5.12 ± 1.60 Nm�s) were lower in the older males. Torque onset (2.5 Nm), when calculated as a

Fig 1. Example of a processed torque signal from a maximal voluntary isometric contraction. Indicated is the

portion of the torque-time curve from which rate of torque development from 0 to 50 (aRTD0-50) and 100 to 200 ms

(aRTD100-200) were calculated as well as impulse from 0 to 50 (dark grey area) and 100 to 200 ms (lighter grey area).

https://doi.org/10.1371/journal.pone.0231907.g001

Table 1. Characteristics for the middle-aged and older group.

Variable Middle-aged Range Older Range

Age (yrs) 45.28 (2.64) 41–48 65.33 (3.26) 60–69

Height (cm) 176.97 (8.74) 165–194 177.50 (10.49) 150–192

Body mass (kg) 93.01 (15.67) 69.5–119.7 88.87 (13.24) 64–108.2

BMI (kgm2) 29.78 (5.24) 23.11–41.67 28.19 (3.34) 22.14–32.53

Steps Per Day 5423.21 (1737.59) 2,941–9,312 5441.62 (2766.86) 2,763–12,271

PT (Nm) 162.56 (37.55) 114.54–236.59 137.06 (43.79) 71.29–214.70

aRTD0-200 (Nm�s-1) 1,259.49 (304.96) 866.60–1,893.14 991.33 (300.92)� 498.49–1,590.49

PT, peak torque; aRTD0-200, absolute rate of torque development 0–200 ms

� indicates significantly lower in older males

https://doi.org/10.1371/journal.pone.0231907.t001
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percentage of PT, was not different between groups (p = 0.056; d = -0.74; middle-aged:

1.62 ± 0.34 vs. older: 2.03 ± 0.71%PT). There were no differences (p> 0.05) between groups

for torque variables normalized to PT (Table 2), nor torque variables normalized to CSA (“spe-

cific” variables) (Table 3).

Rate of EMG rise (RER)

RER0-30 (p = 0.072; d = 0.69), RER0-50 (p = 0.057; d = 0.74), and RER0-75 ms (p = 0.055; r =

-0.35) were similar between groups (Fig 4).

Correlations

All correlation coefficients between rapid torque measures and physiological determinants can

be seen in Table 4. CSA was not correlated with PT (r = 0.21; p = 0.267) or any early or late

rapid torque parameters. EI was moderately correlated with normalized torque parameters

only. Only RER0-75 was moderately correlated with early absolute torque parameters, while

RER at all time intervals was moderately correlated with the majority of rapid torque variables

when made relative to PT or CSA.

Discussion

The purpose of this study was to compare early and late rapid torque parameters of the PFs in

middle-aged and older males, as well as to determine the effect of normalization to PT and

CSA. In addition, we sought to examine physiological correlates of early and late rapid torque

measures. Similar to previous research, rapid torque characteristics were more dramatically

Fig 2. Early (0–50 ms) and late (100–200 ms) absolute rate of torque development (RTD) in the middle-aged and

older group.

https://doi.org/10.1371/journal.pone.0231907.g002
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affected by aging compared to PT [5–7]. The modest age group difference (~20 yrs) in this

study and finding that maximal strength was similar between groups further endorses this

notion. In particular, late rapid torque parameters were lower in older males, whereas early

rapid torque measures were similar between middle-aged and older males. Group differences

were eliminated when rapid torque parameters were made relative to both PT and CSA, which

may indicate that maximal strength and muscle size had an influential role for the age-related

differences in absolute, late rapid torque measures.

Our findings indicated that late rapid torque parameters were more influenced by age com-

pared to earlier rapid torque characteristics of the PFs. More specifically, while aRTD0-50 and

aTQ50 were similar between groups, aTQ100, aTQ200, as well as late impulse (i.e., IMP100-200)

were lower in older males. Interestingly, in contrast to IMP100-200, aRTD100-200 was not differ-

ent between groups even with the moderate effect size found (d = 0.69). It should also be noted

that “overall” rapid torque production (i.e., 0–200 ms) was lower in older males, which was

likely due to the age-related diminishment in quick torque production 100 ms after contrac-

tion onset and later. Our findings are similar to those of Gerstner et al. [12], in which late but

Fig 3. Absolute torque at 50, 100, and 200 ms from onset in both groups. � indicates significantly higher in middle-

aged males.

https://doi.org/10.1371/journal.pone.0231907.g003

Table 2. Torque parameters normalized to peak torque for both groups.

Variable Middle-aged Older Effect Size

nTQ50 0.18 (0.04) 0.18 (0.07) -0.13

nTQ100 0.43 (0.07) 0.43 (0.13) 0.03

nTQ200 0.71 (0.07) 0.69 (0.15) 0.17

nRTD0-50 6.45 (1.61) 6.56 (2.53) -0.05

nRTD100-200 5.37 (0.96) 5.06 (1.30) 0.27

https://doi.org/10.1371/journal.pone.0231907.t002
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not early rapid torque measures were negatively influenced by age, although young and older

males were examined in that study. The previous study that compared RTD of the PFs at dif-

ferent time intervals in middle-aged and older adults determined that both, early and late abso-

lute RTD were lower in the older group [6]. The age-related decrease in the current study for

aRTD100-200 is similar to that reported by Thompson et al. [6] (20.3% vs. 24.3%). The discrep-

ancy for the early RTD (i.e., aRTD0-50) findings may be due to differences in physical activity

levels of participants. The present findings should primarily represent the effects of aging due

to the absence of self-reported structured exercise and similar physical activity levels between

groups. Another possible explanation for the discrepancy related to the early RTD findings

could be the difference in the automated torque onset used for determining RTD, as a 4 Nm

onset was used by Thompson et al. [6] while a 2.5 Nm onset was used in the present study.

Rapid torque measures will vary depending on whether an automated or manual torque onset

is used since the onset tends to occur earlier in the torque signal for a manual onset [12, 34].

For example, Gerstner et al. [12] demonstrated that, although there was no difference when a

manual onset was used, aTQ50 was significantly different between young and older males

when an automated 4 Nm onset was used. Regardless of the onset value, the use of an auto-

mated onset is limited in its ability to capture initial torque production (i.e., 20–30 ms) [34],

although it is important to note that the torque onset used in the present study, when calcu-

lated as a percentage of PT, was not different between groups. Nevertheless, few studies have

specifically examined age-related changes in early and late rapid torque parameters [6, 12, 18,

19], and while some findings are in disagreement [6], other reports in conjunction with the

present findings suggest that rapid torque production during the late phase of muscle contrac-

tion, in particular, may be most dramatically affected by aging [12, 18, 19]. Considering the

unique physiological factors influencing early and late rapid torque production [14, 16], this

hypothesis warrants further investigation as it could prove insightful for identifying optimal

interventions.

CSA of the PFs is smaller in older adults compared to their younger counterparts [35, 36],

but contrasting findings have been reported [12]. The moderate age difference between groups

in the current study is likely the reason CSA and PT were similar between groups, but the

moderate effect size for PT (d = 0.63) is notable. Indeed, while CSA was not correlated with PT

or any of the rapid torque measures, PT was strongly associated with all absolute late rapid tor-

que parameters (r = 0.68–0.82). For the current study, we suspected that any potential age-

related differences in PT or CSA would be too modest to be influential for rapid torque pro-

duction. However, there were no longer age-related differences for any torque variables when

made relative to PT or CSA. These findings support the notion that CSA and PT had a mediat-

ing role for the age-related difference in late rapid torque production. RTD normalized to PT

has either been similar [37] or lower [12] (late RTD only) in older adults for the PFs. In con-

trast with our findings, Thompson et al. [6] reported lower normalized early and late RTD in

older males compared to middle-aged males. While variation in the calculation of RTD may

Table 3. Torque parameters normalized to muscle cross-sectional area for both groups.

Variable Middle-aged Older Effect Size

Specific PT 7.00 (2.15) 6.54 (2.35) 0.20

Specific TQ50 1.25 (0.52) 1.17 (0.55) 0.15

Specific TQ100 3.06 (1.15) 2.72 (1.14) 0.30

Specific TQ200 5.00 (1.68) 4.44 (1.78) 0.32

Specific RTD0-50 45.93 (20.46) 41.91 (21.70) 0.19

Specific RTD100-200 37.67 (12.67) 33.45 (14.96) 0.30

https://doi.org/10.1371/journal.pone.0231907.t003
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partially explain this discrepancy, it is noteworthy that in contrast to the current study, the

older males demonstrated a lower PT (-27.6%) compared to their middle-aged counterparts in

Thompson et al. [6]. The relatively homogenous groups used in this study was also likely influ-

ential for the discrepancy in normalized RTD findings between studies. Our finding that PT

was similar between groups is not necessarily surprising since previous research has demon-

strated little to no change in PT of the PFs from the 5th to 7th decade [38, 39]. Nonetheless, the

similarities in normalized and specific (i.e., relative to CSA) rapid torque parameters suggest

that qualitative properties such as tendon stiffness [17], EI [12], and muscle fiber type compo-

sition [15] were not substantially different between groups.

To the best of our knowledge, only one study has examined the association among early

and late rapid torque parameters with RER and EI of the PFs [12]. It was determined that mus-

cle activation during the first 200 ms of contraction was correlated with RTD during the corre-

sponding time intervals [12]. Similarly, positive correlations were found for RER0-75 and early

rapid torque production in the present study, which is in-line with previous work demonstrat-

ing that initial muscle activation primarily influences early torque production [16, 40]. Gerst-

ner et al. [12] reported lower muscle activation for the PFs in older compared to young males

during the late phase of muscle contraction (100–200 ms), in particular, although differences

in the age groups and procedures used to calculate muscle activation make comparisons to

Gerstner et al. [12] difficult. Unlike the current study, Thompson et al. [6] found RER of the

PFs to be lower in older males compared to their middle-aged counterparts. The greater differ-

ence in age between groups or larger sample size may be responsible for the discrepancy

between studies. While muscle architecture was not assessed in the present study, it is possible

Fig 4. Rate of electromyography rise (RER) at 30, 50, and 75 ms from onset for both groups.

https://doi.org/10.1371/journal.pone.0231907.g004
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that age-related differences in pennation angle may explain the diminished late-phase, absolute

rapid torque production in older males [12]. In regards to EI, Gerstner et al. [12] reported

higher EI (i.e., decreased muscle quality) for the MG in older compared to young males, but

our findings demonstrate very similar values between middle-aged and older males. In addi-

tion, EI was inversely associated with only normalized rapid torque measures, which is not sur-

prising since these parameters are believed to be indicative of qualitative muscle factors [12,

14]. The age difference between groups in the current study was likely too modest for EI to be

influenced, especially if infiltration of non-contractile adipose or connective primarily results

from myofiber apoptosis [41] since this should not be prevalent in the 7th decade. Previously,

EI of the quadriceps [42] and MG [12] was found to be correlated with absolute RTD, however,

Gerstner et al. [12] reported associations with late absolute RTD only. Although only correla-

tional, findings from previous work may indicate that the age-related increase in non-contrac-

tile adipose or connective tissue [43] inhibits muscle fiber shortening [44] and subsequently

rapid torque production [45].

The current study had a few limitations. While the comprehensiveness of this study is a fea-

ture, it should be noted that the cross-sectional design is more susceptible to confounding vari-

ables compared to a longitudinal design. However, the objective measurement of physical

activity level was a strength of this study, which addressed a common confounding factor for

age-related studies. Although the soleus appears to be well preserved with aging relative to the

gastrocnemii muscles [46], it is important to note that we did not include the soleus in our cal-

culation of PF CSA. In addition, interpretation is limited to males only, especially since the

age-related decline in some neuromuscular properties can differ between sexes. Future

research investigating rapid neuromuscular function should make considerations for muscle-

specific differences, age of the study sample, as well as the procedures for calculating RTD. For

example, the use of brief (~1 sec) rapid isometric contractions has been recommended for the

Table 4. Partial correlation coefficients between torque variables and physiological determinants.

CSA EI RER0-30 RER0-50 RER0-75

Absolute aRTD0-50 -0.17 -0.31 0.30 0.33 0.43�

aTQ50 -0.12 -0.30 0.30 0.33 0.43�

aIMP0-50 -0.17 -0.34 0.33 0.36 0.46�

aRTD100-200 0.11 -0.00 -0.21 -0.22 -0.17

aTQ100 -0.10 -0.22 0.17 0.19 0.30

aTQ200 -0.01 -0.14 0.01 0.02 0.11

aIMP100-200 -0.17 -0.18 0.06 0.08 0.19

Normalized nRTD0-50 -0.31 -0.45� 0.46� 0.52�� 0.64��

nRTD100-200 -0.08 -0.06 -0.02 -0.07 -0.08

nTQ50 -0.32 -0.44� 0.47� 0.52�� 0.64��

nTQ100 -0.32 -0.38� 0.39� 0.44� 0.56��

nTQ200 -0.32 -0.38� 0.35 0.39� 0.52��

Specific Specific PT -0.55�� 0.01 0.20 0.21 0.19

Specific RTD0-50 -0.60�� -0.25 0.47� 0.50�� 0.56��

Specific RTD100-200 -0.55�� -0.06 0.18 0.17 0.17

Specific TQ50 -0.64�� -0.25 0.48�� 0.51�� 0.57��

Specific TQ100 -0.66�� -0.19 0.43� 0.46� 0.51��

Specific TQ200 -0.65�� -0.15 0.36� 0.38� 0.41�

�Correlation is significant at the 0.01 level

��Correlation is significant at the 0.05 level

https://doi.org/10.1371/journal.pone.0231907.t004
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study of RTD [34], but the present study derived RTD from a longer duration MVIC which

could have underestimated RTD. Finally, some caution is needed for interpretation of these

findings due to our relatively small sample size.

Our findings provide additional support for previous work showing that rapid torque mea-

sures are more dramatically influenced by aging compared to maximal strength [5–7]. In addi-

tion, our results demonstrated that rapid torque production was preferentially impaired

during the late phase of muscle contraction in older males compared to their middle-aged

counterparts. However, differences between groups disappeared when torque parameters were

normalized to peak torque and gastrocnemii cross-sectional area, suggesting the amount of

contractile tissue and maximal force generating capacity was likely the primary reason for the

age-related difference in late rapid torque production. The lack of association between late

rapid torque measures with qualitative properties (i.e., echo-intensity, rate of muscle activa-

tion) provided further support for this conclusion.
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