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Abstract

Genomic selection (GS) has been used to optimize genetic gains when phenotypic selection

is considered costly and difficult to measure. The objective of this work was to evaluate the

efficiency and consistency of GS prediction for cassava yield traits (Manihot esculenta

Crantz) using different methods, taking into account the effect of population structure. BLUPs

and deregressed BLUPs were obtained for 888 cassava accessions and evaluated for fresh

root yield, dry root yield and dry matter content in roots in 21 trials conducted from 2011 to

2016. The deregressed BLUPs obtained for the accessions from a 48K single nucleotide

polymorphism dataset were used for genomic predictions based on the BayesB, BLASSO,

RR-BLUP, G-BLUP and RKHS methods. The accessions’ BLUPs were used in the validation

step using four cross-validation strategies, taking into account population structure and differ-

ent GS methods. Similar estimates of predictive ability and bias were identified for the differ-

ent genomic selection methods in the first cross-validation strategy. Lower predictive ability

was observed for fresh root yield (0.4569 –RR-BLUP to 0.4756—RKHS) and dry root yield

(0.4689 –G-BLUP to 0.4818—RKHS) in comparison with dry matter content (0.5655 –

BLASSO to 0.5670 –RKHS). However, the RKHS method exhibited higher efficiency and

consistency in most of the validation scenarios in terms of prediction ability for fresh root yield

and dry root yield. The correlations of the genomic estimated breeding values between the

genomic selection methods were quite high (0.99–1.00), resulting in high coincidence of

clone selection regardless of the genomic selection method. The deviance analyses within

and between the validation clusters formed by the discriminant analysis of principal compo-

nents were significant for all traits. Therefore, this study indicated that i) the prediction of dry

matter content was more accurate compared to that of yield traits, possibly as a result of the

smaller influence of non-additive genetic effects; ii) the RKHS method resulted in high and

stable prediction ability in most of the validation scenarios; and iii) some kinship between the

validation and training populations is desirable in order for genomic selection to succeed due

to the significant effect of population structure on genomic selection predictions.
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Introduction

Cassava (Manihot esculenta Crantz) is of great worldwide importance as a food security crop.

In Brazil, it is cultivated all over the country in adverse and quite contrasting conditions with

respect to water and nutrient availability, and in many cases where of commodities crops is

not recommended [1]. Despite the economic and social importance of cassava, the use of

quantitative genetics and plant breeding knowledge to develop this crop was initiated only a

few decades ago. Thus, great progress is still needed in germplasm development for cassava

compared to other globally important crops such as corn, rice, soybean and potato.

In general, breeding programs use quantitative and population genetics knowledge to gen-

erate and select new genotypes with higher yields than the commercial varieties available for

cultivation [2]. In cassava, breeders use vegetative propagation to their advantage, promoting

hybridizations between contrasting parents and aiming to select superior F1 individuals [3–5].

Once a superior genotype is identified, it can be clonally propagated and evaluated in field con-

ditions, i.e., clonal evaluation trials. However, the root system from plants derived from sexual

seeds often undergo changes of shape and size through seedlings to clonal propagation, and

the clone selection in early stages of cassava breeding programs, such as the seedling stage can

be inefficient due to no linear relationship for fresh root yield between seedlings and advanced

stages of clonal propagation [6]. This limitation affects the selection gain per unit of time,

since the identification of new varieties is also linked to their propagation rate over the evalua-

tion years. This affects the efficiency of the cassava breeding program, especially due to the

long time needed to develop new varieties and the high costs of phenotyping across various

locations and years of cultivation.

The ability to select individuals in early stages, thereby maximizing genetic gains and devel-

oping new varieties more quickly, is a key goal for several breeding programs. There are cur-

rently great expectations for the development of genomic selection applications to make this

possible [7–8], since genomic selection allows the selection and early recombination of prom-

ising genotypes and families without phenotypic evaluation. This approach is even more valu-

able when phenotypic selection is expensive and/or inefficient [9], as has been observed in the

seedling phase in cassava, in which heritability for important agronomic traits is low.

According to Resende et al. [10], genomic selection efficiency can be estimated by the selec-

tion accuracy, which depends on the trait heritability, number of loci and distribution of their

effects, training population size, effective population size and the number and distribution of

markers in the genome of the species. However, only the last three factors can be controlled,

aiming for greater efficiency and accuracy regardless of the genomic selection method used.

According to Isidro et al. [11], population structure is a consequence of having different popu-

lation genetic histories composing a larger population; these distinct subpopulations could

have differences in allele frequencies for many polymorphisms throughout the genome, as

fixed alleles resulting from different selection pressures or directions. The population structure

can mimic association signal, increasing the number of false positives or to missed real effects

in association studies [12]. Oliveira et al. [3] demonstrated the importance of designing the

training sets for genomic selection in cassava in order to achieve a highly efficient selection

model, since, in general, populations with complex population structures tend to have lower

accuracy [13].

Genomic selection models make it possible to obtain the genomic estimated breeding val-

ues (GEBVs), which are the genetic values predicted by genomic selection model for each indi-

vidual. The prediction of GEBVs can be performed using several methodologies, including

RR-BLUP, G-BLUP, BayesA, BayesB, BayesCπ, BayesDπ, Lasso, BLASSO, IBLASSO, and

RKHS [1, 14–18]. However, the proportion of the genetic variance explained by markers
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differs according to the prediction method used, since each method has different assumptions

with respect to the markers’ distribution effects, the selection of covariates and/or the genetic

variances and covariances matrix. Different combinations of these assumptions modify the

genetic variation explained by markers, which reflects directly on the accuracy. Different accu-

racies between the genomic selection methods can occur in real data due to trait inheritance,

which can alter the genetic variation due to the number of genes and the epistatic and non-epi-

static allelic relationships [19].

In general, there is great expectation for the adoption of genomic selection in both the pub-

lic and private sectors world-wide [20], given the possibility of increasing the efficiency and

productivity of plant breeding [20–25]. As reported by Oliveira et al. [3], reduction of the

breeding cycle allows higher selection gains per unit of time, even with low to medium

accuracy.

By shortening the selective cycle by one-year, genomic selection was more efficient than

phenotypic selection by 4.6% for fresh root yield, and these gains may be even higher (73%) if

the cassava selection cycle can be reduced from 4–5 years to 2 years [3]. According to Heffner

et al. [8], reducing the breeding cycle allows breeders to concentrate resources in promising

individuals in new breeding cycles or to advance in the selection trials of new varieties. How-

ever, according to these authors, low accuracy and high initial cost, especially in the implemen-

tation phase of this method, may reduce interest in genomic selection.

Recently, there have been several efforts to implement genomic selection in cassava breed-

ing programs. The results have shown potential for increased genetic gains for several traits,

especially resistance to cassava mosaic disease (CMD), dry matter content and fresh root yield

[4–5, 26–27]. For CMD resistance, adopting genomic selection through two recurrent selec-

tion cycles in two years increased the allelic frequency of resistance from 44 to 66% [27]. Com-

monly, the development of a new cassava cultivar takes eight to ten years [1–4]. Therefore,

there is a great expectation in the use of genomic selection in this species to speed up the devel-

opment of new varieties.

This work evaluated the efficiency of different genomic selection methods for clone selec-

tion for yield traits, such as fresh root yield, dry root yield and dry matter content. These meth-

ods were tested in different scenarios of population structure with the aiming to estimate and

infer the effect of population structure on the efficiency and consistency of genomic selection

methods. The results for early selection using genomic selection are discussed, as well as the

implications of population structure on genomic prediction.

Materials and methods

Training population

The training population consisted of 888 cassava accessions obtained from the Cassava Germ-

plasm Bank of Embrapa Cassava and Fruits (Cruz das Almas, Bahia, Brazil). They included

835 landraces and 53 improved varieties of which, 190 were characterized as sweet cassava, 125

as intermediary cyanide content, 557 as bitter cassava and 16 accessions were not yet classified

for this trait. All 26 Brazilian states were represented by at least one genotype. The genotypes

were evaluated in Cruz das Almas and Laje, both in the State of Bahia, Brazil, totaling 21 trials

distributed in six years from 2011 to 2016.

Phenotypic data

The 21 trials included two randomized complete block design (RCBD) trials and 19 aug-

mented block design (ABD) trials with 16 plants per plot. Three replicates were used in the

CRBD, while in the ABD, 10 to 22 replicates of the common checks were used, with equal
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distribution of accession numbers per block. Improved clones (9602–02, 9607–07, 9824–09,

9655–02) and cultivated varieties (BRS Dourada, BRS Gema de Ovo and BRS Novo Horizonte)

were used as controls in different field trials.

In most experiments, 15–20 cm stem cuttings were planted in double lines during the

region’s rainy season (May to July). The spacings between rows and plants were 0.9 and 0.8 m,

respectively. All recommended cassava cultural practices were adopted. The plants were har-

vested between 11 and 12 months after planting. The traits measured to estimate the genomic

selection efficiency were fresh root yield (t.ha-1), dry matter content in roots (%) according to

Kawano et al. [28], and dry root yield (t.ha-1), estimated by the product of dry matter content

in roots [28] and fresh root yield. Dry matter content was estimated by root specific gravity,

determined from the weights in air and in water [28]. Due to genotype and repetition imbal-

ance between trials, the BLUP and deregressed BLUP were obtained for each genotype and the

phenotypic heritability for each trait. The BLUPs were obtained by the following mixed linear

model: yijl = μ + ci + βj + rl(j) + εijl, where yijl is the vector of phenotypic observations; ci is the

clone random effect with ci � Nð0; s2
i Þ; βj is the combination of location and year, assumed as

fixed effect; rj(l) is the replication nested within location and year, assumed as random effect

with rjðlÞ � Nð0; s2
r Þ; and εijl is the residual with εijl � Nð0; s2

eÞ. The deregressed BLUPs were

estimated as follows: deregressed BLUP ¼ BLUP
1� PEV

s2
i

[29], where PEV is the prediction error vari-

ance of each clone and s2
i is the clonal variance component. The package lme4 [30] of R 3.3.3

software [31] was used to obtain the BLUPs and deregressed BLUPs for each clone.

Genotyping and SNPs quality control

The DNA was extracted following the cetyltrimethylammonium bromide (CTAB) protocol of

Doyle and Doyle [32]. To evaluate the DNA’s integrity and standardize its concentration, 1.0%

(w/v) agarose gels were stained with ethidium bromide (1.0 mg L-1) and visually compared

with a series of phage Lambda DNA (Invitrogen) concentrations. The DNA samples were sent

to the Genomic Diversity Facility at Cornell University (http://www.biotech.cornell.edu/brc/

genomic-diversity-facility) for Genotyping by Sequencing (GBS) [33]. Individual DNA sam-

ples were digested with ApeKI restriction enzyme, barcode ligated and multiplexed into

95-plex libraries [33]. Library sequencing was performed on an Illumina HiSeq2500 platform.

Subsequent sequence reads were demultiplexed and aligned to the cassava reference genome

v.6 [34] using BWA [35]. SNP calling was performed using the TASSEL GBS pipeline [36]. A

total of 72,023 SNPs distributed across all 18 cassava chromosomes was obtained. The geno-

typic data were selected considering a minimum call rate of 90% and the missing markers

were then imputed using Beagle 4.1 software [37]. Finally, the SNPs with a minor allele fre-

quency of at least 5% were selected. After the marker quality control, 48,655 SNPs were

selected for the prediction. The GBS data are available through the Cassavabase (https://www.

cassavabase.org/). The multilocus heterozygosity of individual and the observed heterozygosity

(Ho) for SNP loci are presented in a supplementary material (S1 and S2 Tables). The pattern

of LD for each chromosome was analyzed and all pairwise LD combinations (r2) were esti-

mated (S1 Fig).

Discriminant Analysis of Principal Components (DAPC)

The Discriminant Analysis of Principal Components clustering method [38] with an island

migration model was used to infer meaningful clusters in the cassava germplasm, which were

then used to evaluate the effect of population structure on the efficiency and consistency of

genomic selection methods. The population structure of the 888 accessions was estimated via
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discriminant analysis of principal components using the coefficients of relationship due to

identity by state [39]. After defining the number of groups, the main component analysis axes

that explained more than 85% of the total variance of the data were maintained in the analysis

(S2 Fig). Only the first four discriminant functions were used by the migration model to esti-

mate the population structure, since they account for more than 94% of all variation between

the accessions (S3 Fig). The population structure chosen was composed of five clusters with

high accession discrimination capacity between clusters. This analysis was carried out using

the adegenet package [40] from R 3.3.3 software [31].

Genomic selection methods

The genomic selection methods were chosen based on different statistical assumptions as

well as demonstrated success in accurately predicting GEBV in different crops. The additive

models tested were RR-BLUP, G-BLUP, RKHS, BayesB, and BLASSO. BayesB, BLASSO and

RR-BLUP shared the following model: yd = Jμ + Zβ + ε, where yd is the deregressed BLUPs vec-

tor; μ is the general mean; β is the allelic substitution effect vector; ε is the residual effect vector;

and J and Z are the incidence matrices for μ and β, respectively. G-BLUP and RKHS followed

the corresponding model: yd = Jμ + Xβ + ε, where yd is the deregressed BLUPs vector; μ is the

general mean; g is the genetic individual effect vector; ε is the residual effect vector; and J and

X are the incidence matrices for μ and g, respectively. These models differ in the distribution

of marker effects and covariate selection (markers). RR-BLUP, G-BLUP and RKHS assume a

normal distribution for the marker effects. RR-BLUP uses the Z marker matrix in the indirect

prediction of GEBVs [7], while G-BLUP accounts for additive effects via the genomic relation-

ship matrix (G), and RKHS accounts for both additive and non-additive effects using the

Gaussian kernel matrix (K). These matrixes were estimated by the equations G ¼ ZZ0
2
P

pið1� piÞ

and K ¼ exp � hD
medianðDÞ

� �
, where Z is the codified markers matrix (-1, 0, and 1), p is the major

allele frequency of marker i, h is the reduction coefficient to K values, h is equal to 1, and D is

the Euclidean distance of codified markers matrix [41,42]. The distribution of marker effects

for the Bayesian methods is t-student and exponential for the BayesB [7,16] and BLASSO [17]

models, respectively. Moreover, the BayesB method has covariate selection due to the esti-

mated parameter π, which is the prior probability that marker i has a nonnull effect on the

trait. The RR-BLUP method was carried out using the rrBLUP package [23], while G-BLUP

and RKHS were carried out with the sommer package [21], and the BayesB and BLASSO meth-

ods with the BGLR package [24]. All of these packages are available in R 3.3.3 software [31].

For BayesB and BLASSO convergence, 10,000 Markov Chain Monte Carlo (MCMC) iterations

were used, with a burn-in of the first 2,000 MCMC iterations and a sampling interval (thin-

ning) of 10. All of the MCMC residual variances were obtained to evaluate the convergence

diagnosis of the BayesB and BLASSO methods.

Cross validation strategies

To estimate the efficiency and consistency of the genomic selection methods, different cross-

validation strategies were performed. In the first strategy, cross-validation was performed

using three replicates with five folds each, independently of the population structure. Three

other cross-validation strategies were performed considering the population structure effect,

both with three folds and three replicates. The second cross-validation strategy was conceived

considering the validation and training populations composed by the same DAPC cluster (Fig

1A). The last two cross-validation strategies were performed to prevent the presence of clones

from the same cluster in training and validation populations. So, the following cross-validation
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strategies were used: for the third cross-validation strategy, the training populations were com-

posed of accessions from all clusters, except the cluster used for validation. For example, in the

validation of the first cluster, the accessions belonging to the second, third, fourth and fifth

clusters were used for training (first training population–TP–Fig 1B). Finally, for the fourth

cross-validation strategy, the training populations were composed of accessions from only

three clusters, excluding the cluster used for validation and one of the four remaining clusters.

For example, in the validation of the first cluster, the accessions belonging to clusters 3, 4 and 5

were used for training in one scenario (second TP); and clusters 2, 4, and 5 (third TP); 2, 3,

and 5 (fourth TP); and 2, 3, and 4 (fifth TP) in the other scenarios (Fig 1B).

All of the genomic prediction methods had the same scenarios of training population pre-

dicting a validation population. This was ensured by using the “set.seed()” function of R 3.3.3

software [31].

Cross-validation was used to estimate the following parameters: i) predictive ability

ðrŷy ¼ CORð dGEBVVal; yValÞÞ, where dGEBVVal was the genomic estimated breeding values

(GEBVs) of the validation population and yVal was the BLUPs from the validation population;

ii) bias ðb ¼ COVð dGEBVTrain; yTrainÞ=sdGEBV Train
Þ, where dGEBVTrain was the GEBVs of the train-

ing population, yTrain was the deregressed BLUPs from the training population, and sdGEBV Train

was the GEBVs standard deviation of the training population; iii) prediction accuracy

ðrŷg ¼ rŷy=hphenÞ, where hphen is the root square of phenotypic trait heritability; and iv) and

genomic heritability ðh2
gen ¼ s

2
ĝ=ðs

2
ĝ þ s

2
eÞÞ, where s2

ĝ was the genomic variation and s2
e was

the residual variation.

Convergence diagnostics

The Bayesian methods, BayesB and BLASSO, were evaluated via the Raftery and Lewis diagno-

sis [43] implemented in the coda package [44] from R 3.3.3 software [31]. This diagnostic

Fig 1. Cross validations performed to estimate the effect of population structure in genomic selection. A. 2nd cross

validation strategy–Within-cluster cross validation formed by discriminant analysis of principal components (DAPC);

B. Illustration of between-clusters cross validation for DAPC cluster 1: 3rd cross-validation strategy–cross validation

with training population composed of a third part of DAPC clusters 2–5 and validation in a third part of DAPC cluster

1 (1stTP); 4th cross-validation strategy–cross validation with the training population composed by a third part of three

of the DAPC clusters (2nd, 3rd 4th, and 5th TPs). Therefore, the first training population (1st TP) is formed from the

four remaining DAPC clusters (3rd cross validation strategy), while the second, third, fourth and fifth training

populations (2nd, 3rd 4th and 5th TPs) were each created from only three of those four DAPC clusters (4th cross

validation strategy).

https://doi.org/10.1371/journal.pone.0224920.g001
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evaluates the Bayesian analysis convergence using residual variances of the MCMC iterations

to estimate the number of MCMC iterations required for each cross validation.

Deviance analysis and mean test

The deviance analyses were performed to evaluate the effects of the genomic selection meth-

ods and population structure on genomic prediction. Genomic selection methods were

assumed as fixed effects for predictive ability (rŷy) and bias (b) estimates for dry matter con-

tent, fresh root yield and dry root yield. These analyses were performed using the lme4 pack-

age [30] from R 3.3.3 software [31]. The following model was used to estimate the methods’

efficiency in the 1st cross validation strategy: y = s + m + e, where y is the dependent variable,

being either predictive ability or bias; s is the cross validation random effect; m is the genomic

selection methods fixed effect; and e is the residual. To estimate the effect of population struc-

ture on genomic selection efficiency and consistency, the following model was used in the

2nd, 3rd, and 4th cross validation strategies: y = s + p + m +e, where y is the dependent variable,

being either rŷy or b; s is the cross validation random effect; p is the interaction random effect

between the training and validation populations; m is the genomic selection methods fixed

effect; and e is the residual. The means of the different genomic prediction methods were sub-

mitted to Tukey’s comparison test as implemented in the emmeans package [45] from R 3.3.3

software [31].

Cohen’s Kappa coefficient between GEBVs from different genomic

selection methods

The Cohen’s Kappa coefficient [46] was estimated from the coincidence selection of genomic

selection methods, which was performed between the different prediction methods with a

selection proportion (SP) ranging from 1 to 30%. The coincidence selection was performed

using a binary code; the selected and unselected individuals received codes of 1 and 0, respec-

tively. The Kappa coefficient and the coincidence selection were calculated using R 3.3.3 soft-

ware [31].

Results

Estimates of genomic selection efficiency

The BayesB and BLASSO models were evaluated for convergence in all cross validations. Ten

thousand MCMC iterations proved to be sufficient for both convergence methods in all cross

validations, according to the Raftery and Lewis method [43]. All of the genomic prediction

methods showed higher genomic heritability estimates (Table 1) than the phenotypic heritabil-

ity for all traits (0.337, 0357, and 0.545, for fresh root yield, dry root yield and dry matter con-

tent, respectively). The BayesB, BLASSO and RKHS methods resulted in higher genomic

heritability for fresh root yield, i.e., 0.679, 0.641, and 0.520, respectively, compared to the other

methods (Table 1). However, for dry root yield and dry matter content, the genomic heritabil-

ity was higher with BayesB and RKHS (0.673 and 0.504 for dry root yield and 0.736 and 0.668

for dry matter content, respectively). Therefore, the BayesB and RKHS methods were able to

capture a great part of genomic variation across all traits. In addition, the genomic heritability

standard deviation estimates were low, with the exception of the BLASSO method for fresh

root yield (0.249) and dry root yield (0.169). In general, the Bayesian methods presented higher

standard deviations than the methods predicted by mixed models.

Similar predictive ability and bias estimates were identified for the different genomic selec-

tion methods for the first cross-validation strategy independently of the population structure
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(Fig 2). On the other hand, regarding the agronomic traits, we observed smaller predictive

ability means among the genomic selection methods for fresh root yield (0.4569—RR-BLUP to

0.4756—RKHS) and dry root yield (0.4689—G-BLUP to 0.4818—RKHS) when compared

with dry matter content (0.5655—BLASSO to 0.5670—RKHS).

Table 1. A posteriori means for genomic estimates of fresh root yield, dry root yield and dry matter content for the first cross-validation strategy.

Methods ĥ2
gen SD ĥ2

gen
σ̂ 2

g σ̂ 2 π λ

Fresh root yield

G-BLUP 0.347 0.029 17.01 32.03 - -

RKHS 0.520 0.026 31.55 29.04 - -

RR-BLUP 0.376 0.030 19.33 32.04 - -

BayesB 0.679 0.055 64.82 29.76 0.455 -

BLASSO 0.641 0.249 49.81 28.27 - 140.2

Dry yield

G-BLUP 0.332 0.028 1.39 2.81 - -

RKHS 0.504 0.028 2.61 2.57 - -

RR-BLUP 0.360 0.029 1.58 2.81 - -

BayesB 0.673 0.051 5.52 2.62 0.449 -

BLASSO 0.410 0.169 1.67 2.79 - 240.8

Dry matter content

G-BLUP 0.517 0.021 2.10 1.96 - -

RKHS 0.668 0.020 3.58 1.78 - -

RR-BLUP 0.549 0.021 2.39 1.96 - -

BayesB 0.736 0.040 5.33 1.87 0.547 -

BLASSO 0.504 0.045 2.13 2.09 - 187.4

h2
gen� Genomic heritability; SD h2

gen� Genomic heritability standard deviation; ŝ2
g � genotypic variance; ŝ2� residual variance; π –a priori pi for BayesB method; λ –a

priori lambda of BLASSO method.

https://doi.org/10.1371/journal.pone.0224920.t001

Fig 2. Predictive ability and bias boxplot for different genomic selection methods (BayesB, BLASSO, RR-BLUP, G-BLUP and RKHS) with

the 1st cross validation strategy, for fresh root yield, dry root yield and dry matter content.

https://doi.org/10.1371/journal.pone.0224920.g002
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All bias estimates were greater than one, and therefore all genomic selection methods

underestimated the marker effects and GEBVs (Fig 2). Among the genomic selection methods,

BayesB presented the lowest bias for all agronomic traits, whereas the RKHS method presented

lower bias only for fresh root yield (Fig 2). The other genomic selection methods showed simi-

lar bias estimates. Comparing traits, dry matter content has smaller bias estimates than fresh

root yield and dry root yield, which was expected due to its predominantly additive inheritance

and lower environmental influence.

Deviance analysis

According to the deviance analysis, there were significant differences between the genomic

selection methods on the first cross-validation strategy, independently of population structure,

especially for fresh root and dry root yield (Table 2). For these two traits, the genomic selection

methods had significant differences for predictive ability, while for dry root yield and dry mat-

ter content, the genomic selection methods also presented bias estimation differences. Similar

results were also observed for prediction accuracies (S3 Table).

The highest estimates of predictive ability were observed for the RKHS method (p�0.05) in

all traits, except for dry matter content, for which there was no significant difference between

the different selection methods (Table 2). The other methods (BayesB, BLASSO, G-BLUP, and

RR-BLUP) showed similar predictive abilities for fresh root yield (range of 0.4546 to 0.4571),

and the BayesB, BLASSO, and RR-BLUP methods also showed similar results for dry root

yield (range of 0.4543 to 0.4737).

Considering the bias, the methods BayesB, G-BLUP and RR-BLUP had the smallest bias

estimates for the dry root yield and dry matter content. Therefore, there was no significant dif-

ference between the methods for fresh root yield (p�0.05).

Correlation of GEBVs among the different genomic selection methods

The Pearson correlations of the GEBVs among the genomic selection methods were quite high

for dry matter content, fresh root yield and dry root yield, ranging from 0.99 to 1.00 (Fig 3).

Table 2. LRT analysis and Tukey’s pairwise test (p�0.05) for genomic selection prediction for the first cross-validation strategy for fresh root yield, dry root yield

and dry matter content.

DF Fresh root yield Dry root yield Dry matter content

Deviance rŷy b rŷy b rŷy b

Methods 4 95.62� 1.20 42.44� 60.36� 1.26 23.7�

Cross validation 1 255.41� 50.72� 243.31� 148.42� 271.18� 114.11�

Tukey multiple comparison test

BayesB 0.4571B

(0.0472)

1.5935A

(0.0922)

0.4737B

(0.0361)

1.5435B

(0.0866)

0.5668A

(0.0261)

1.3595B

(0.0826)

BLASSO 0.4546B

(0.0477)

1.5982A

(0.0746)

0.4743B

(0.0426)

1.5686A

(0.0438)

0.5655A

(0.0488)

1.3702A

(0.0438)

G-BLUP 0.4570B

(0.0469)

1.5979A

(0.0412)

0.4689C

(0.0456)

1.5469B

(0.0329)

0.5667A

(0.0487)

1.3604B

(0.0205)

RKHS 0.4756A

(0.0452)

1.5904A

(0.0381)

0.4818A

(0.0444))

1.5603A

(0.0339)

0.5671A

(0.0497)

1.3662A

(0.0235)

RR-BLUP 0.4570B

(0.0411)

1.5980A

(0.0929)

0.4740B

(0.0329)

1.5469B

(0.0870)

0.5666A

(0.0205)

1.3605B

(0.0811)

rŷy: predictive ability; b: bias, DF: degrees of freedom.

�significance deviance for 5% probability in χ2 test.

Major letters indicate significance differences between genomic prediction methods (p<0.05) by Tukey’s pairwise test. Standard error for the genomic prediction

method is in parentheses.

https://doi.org/10.1371/journal.pone.0224920.t002
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Therefore, despite some differences in quality prediction parameters, the prediction methods

coincided greatly in genotype selection. Therefore, regardless of the genomic selection method

applied, the selection for new crosses, the recombination of elite materials or even the clonal

selection for new varieties tended to be practically the same in common validation popula-

tions. In addition, the correlation of GEBVs for different genomic selection methods with the

BLUPs were high for all traits, although the correlations were higher for the dry matter con-

tent, whose variation was 0.81 to 0.86.

The RKHS, BLASSO and BayesB methods showed the highest correlations between the

genomic selection methods and BLUPs for fresh root yield (0.78, 0.78 and 0.77, respectively),

Fig 3. Pearson correlations of genomic estimated breeding values (GEBVs) from different genomic selection methods (BayesB, G-BLUP,

RKHS, RR-BLUP and BLASSO) with the 1st cross validation strategy for fresh root yield, dry root yield and dry matter content.

https://doi.org/10.1371/journal.pone.0224920.g003
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whereas for dry root yield the highest correlations were identified for the RKHS (0.77) and

BayesB (0.76) models. Similarly to dry root yield, dry matter content had the highest correla-

tions between GEBVs and BLUPs for the RKHS and BayesB methods, although with higher

magnitudes than other traits (0.86 for RKHS and 0.84 for BayesB) (Fig 3).

The Kappa coefficients of the coincidence selection of the best accessions between different

genomic selection methods were high (selection range of 5 to 30%), with a minimum Kappa

coefficient of 0.804 considering an 8.1% selection proportion (SP) for fresh root yield (coinci-

dences between the RKHS versus G-BLUP and RR-BLUP methods); 0.761 Kappa at an 8.2%

selection proportion (SP) for dry root yield (Kappa between RKHS versus G-BLUP and

RR-BLUP); and 0.879 Kappa when selecting 7% of the genotypes for dry matter content

(Kappa between RKHS versus G-BLUP and RR-BLUP) (Fig 4). The largest coincidence selec-

tion occurred between the G-BLUP and RR-BLUP methods, independent of the SP applied in

all evaluated agronomic traits. Therefore, even if there were statistical differences for the pre-

dictive ability of the G-BLUP and RR-BLUP methods for dry root yield, the expected genetic

gains were practically the same. In addition, the BLASSO method also showed great coinci-

dence in genotype selection with the G-BLUP and RR-BLUP methods for dry root yield and

dry matter content, even though there were differences in the GEBV prediction parameters.

The Kappa coefficients among GS methods with BLUPs were high, with the highest esti-

mates closer to 30.0% SP. Additionally, the RKHS method showed less coincidence of selection

with the other GS methods but had the highest coincidence with the BLUPs. Thus, it is

expected that the RKHS will achieve a greater expected genetic gain, especially for dry root

yield, whose coincidence reached 0.634 at 10.4% SP. The RKHS method was also very promis-

ing for clone selection of fresh root yield and dry matter content, even with similar results to

the other methods. There was a high coincidence of clone selection between the G-BLUP and

RR-BLUP. However, G-BLUP had the lowest Kappa coefficients with BLUPs (0.405 for 16%

SP), resulting in the lowest expected genetic gain.

Training population clustering

The DAPC grouped the cassava accessions into five clusters based on the genomic relationship

matrix (Fig 5). The distribution of the accessions into different clusters was quite balanced,

with 162, 175, 185, 155 and 211 accessions present in clusters 1, 2, 3, 4, and 5, respectively. The

first three discriminant functions were able to capture most of the genomic data variation,

explaining more than 92% of the variance. Therefore, these functions might represent the rela-

tionship of the cassava accessions in each cluster with high efficiency (Fig 5). Considering the

1st and 2nd discriminant functions, cluster 1 was the most distinct, while clusters 2, 3, 4, and 5

had closer genetic relationships. Based on the 1st and 2nd discriminant functions, there was an

overlap of the cassava accessions belonging to clusters 2 and 3 due to the stronger relationship

between the clusters. For the 2nd and 3rd discriminant functions, the clusters were distributed

in the four quadrants with overlaps of accessions between clusters. The accessions from cluster

1 overlapped with some accessions from clusters 2 and 3, also indicating some genetic relation-

ship between these clusters. We also found a low correlation between the cyanide content of

the germplasm and the DAPC clustering, as four of the five clusters were grouped with sweet

and bitter cassava. Only cluster 1 was composed primarily of bitter cassava.

Efficiency and consistency of genomic selection methods in different

population structure scenarios

The population structure estimated based on the DAPC was used to evaluate the predictions of

the different genomic selection methods, considering modified cross validation between and
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Fig 4. Cohen’s Kappa for the selection coincidence of higher GEBV cassava genotypes, considering selection

proportion (5% to 30%—SP) with the 1st cross validation strategy of different genomic selection methods BayesB,

BLASSO, G-BLUP, RR-BLUP, RKHS and phenotypic REML/BLUP, for fresh root yield, dry root yield and dry

matter content.

https://doi.org/10.1371/journal.pone.0224920.g004
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within clusters. The results presented in this section were obtained using the 2nd, 3rd, and 4th

cross validation strategies. According to the deviance analysis of between- and within-cluster

validations, the population structure and cross validation factors were significant for all traits.

However, after including the population structure of the accessions, there was a reduction in

the predictive ability of the genomic prediction models, since the variance of the population

structure was removed from cross validation variance (Tables 2 and 3). The prediction accu-

racy had high correlation with predictive ability for all the genomic selection methods

Fig 5. Distribution of the five clusters identified by discriminant analysis of principal components of single nucleotide polymorphism

markers (SNPs).

https://doi.org/10.1371/journal.pone.0224920.g005

Table 3. LRT analysis and Tukey’s pairwise test (p�0.05) for genomic selection prediction considering the 2nd, 3rd, and 4th cross-validation strategies to estimate

the effect of population structure for fresh root yield, dry root yield and dry matter content.

Deviance DF Fresh root yield Dry root yield Dry matter content

rŷy b rŷy b rŷy b

Methods 4 79.75� 855.48� 70.99� 479.64� 10.81� 375.23�

Cross validation 1 581.54� 85.18� 512.58� 149.22� 490.46� 277.74�

Population structure 1 1956.77� 342.7� 1716.17� 611.94� 1466.70� 778.03�

Tukey multiple comparison test

BayesB 0.0821B

(0.1770)

1.5013B

(0.0902)

0.1327B

(0.1539)

1.4778C

(0.0805)

0.2675B

(0.1480)

1.3458C

(0.0818)

BLASSO 0.0773B

(0.1738)

1.4105C

(0.1059)

0.1434B

(0.1604)

1.6179B

(0.1330)

0.2779AB

(0.1382)

1.4896A

(0.1461)

G-BLUP 0.0848B

(0.1756)

1.6941A

(0.1856)

0.1415B

(0.1808)

1.6519A

(0.0795)

0.2735AB

(0.1427)

1.4179B

(0.1397)

RKHS 0.1176A

(0.1680)

1.6866A

(0.1995)

0.1722A

(0.1808)

1.6631A

(0.0795)

0.2840A

(0.1366)

1.4181B

(0.1443)

RR-BLUP 0.0858B

(0.1736)

1.6903A

(0.1870)

0.1415B

(0.1808)

1.6493A

(0.0795)

0.2752AB

(0.1459)

1.4214B

(0.1414)

rŷy: predictive ability; b: bias, DF: degrees of freedom.

�significance deviance for 5% probability in χ2 test.

Major letters indicate significance difference between genomic prediction methods (p<0.05) by Tukey’s pairwise test. Standard error for the genomic prediction method

is in parentheses.

https://doi.org/10.1371/journal.pone.0224920.t003
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(S4 Table). This happened due prediction accuracy is estimate by predictive ability divided by

the square root of the phenotypic trait heritability, which is a constant.

When the population structure was included in the predictions, the factor of genomic selec-

tion method showed significance of predictive ability for all traits. Similar to the estimates

obtained without population structure control, the RKHS method yielded higher predictive

ability in comparison to the other genomic selection methods. However, for dry matter con-

tent, the predictive ability of RKHS was only higher than that of BayesB (p�0.05) (Table 3).

The RKHS method was also highlighted by its greater consistency between the different popu-

lation structure scenarios (S4, S5 and S6 Figs). This may be because the Gaussian kernel matrix

predicts not only additive effects but also non-additive effects, which is the unique contrasting

assumption with the G-BLUP method.

The predictive ability estimates for all traits had low consistency between different popula-

tion structure scenarios (S4, S5 and S6 Figs) and small differences between genomic selection

methods in within-cluster cross validations (S4A, S5A and S6A Figs). In the cross validation

between clusters, the predictive ability differences for genomic selection methods were also

small, although the RKHS method presented higher predictive ability for the fresh and dry

root yield traits between the different scenarios (S4C, S5C and S6C Figs). The predictions of

the cross validations between clusters composed of three or four DAPC clusters in the training

population were similar among the genomic selection methods, although of smaller magnitude

in relation to those found in the cross validation without the population structure control.

Therefore, the population structure had a great effect on the genomic prediction efficiency,

even presenting a predictive ability close to zero in some situations for yield traits.

The cross validations between four clusters composing the training population present

smaller but consistent predictive ability estimates than those cross validations formed by three

clusters.

The RKHS method had the highest estimate of predictive ability for all traits (p�0.05)

(Table 3), but also was the most biased method. In general, Bayesian methods were less biased

than REML/BLUP methods for all traits (Table 3). In addition, the between-clusters cross

validations with four clusters as the training population showed smaller bias estimates, with

emphasis on the RKHS method (S7, S8 and S9 Figs).

The fresh root yield and dry root yield had similar results under different genomic predic-

tion scenarios. For these two traits, it was observed that the absence of cluster 2 from the train-

ing population increased the prediction efficiency of the other clusters in all of the prediction

scenarios, whereas the absence of cluster 5 from the training population reduced the predic-

tion efficiency for all validation clusters except for cluster 1. In the validation of cluster 4, the

absence of cluster 1 dramatically reduced the predictive ability in comparison with cluster 5. In

addition, the absence of cluster 3 reduced the genomic selection efficiency when validating

cluster 5.

For dry matter content, the presence of cluster 5 in the training populations was important

only for clusters 1 and 2 prediction (S5 Table; S6 and S9 Figs), as its absence decreased the pre-

dictive ability estimates for these clusters. The absence of cluster 2 from the training popula-

tions reduced predictive ability to almost zero when validation was performed for cluster 5.

Moreover, the presence of cluster 3 in the training populations was more important for cluster

4 prediction. On the other hand, the validation of cluster 3 did not depend on the presence of

any DAPC cluster in the training population, since all estimates of genomic selection efficiency

were similar in the different cross validation scenarios between clusters. Thus, the higher the

genetic relationship between training and validation populations, the higher the genomic

selection efficiency, possibly due to the weaker effect of population structure on prediction

estimates.
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The RKHS method showed higher efficiency and consistency in most validation scenarios,

even in between-cluster cross validation scenarios with three or four clusters as the training

population. Therefore, RKHS results in higher genetic gain for clonal selection in cassava for

yield traits.

Discussion

Phenotypic versus genomic heritability and its implications for genomic

selection in cassava

Fresh root yield, dry root yield and dry matter content are important traits in cassava breeding

for industrial uses. However, the phenotype heritability estimates in this work were extremely

influenced by the environment, considering their low magnitudes (0.337, 0357, and 0.545 for

fresh root yield, dry root yield and dry matter content, respectively). In addition, fresh and dry

root yields do not have a high correlation between the seedling phase and the clone perfor-

mance in the advanced stages of the cassava breeding program due to morphological differ-

ences between the roots of seedling nursery plants and those of stem cutting plants [6].

Therefore, considering these factors and the low heritability of these traits, clone and parental

phenotypic selection at the seedling phase tends to be ineffective.

Previous studies of general and specific combining abilities in cassava have shown that

fresh root yield, number of roots, harvest index and plant height traits have a predominant

non-additive effect, while dry matter content and root diameter are predominantly governed

by additive effect [47–49]. Thus, the dry matter content is a trait that allows greater predictive

ability, even in earlier breeding program stages, whereas parental selection for yield traits is

more complex, requiring more refined strategies for analysis and selection [49].

The genomic heritability indicates the adjustment of marker distribution effects on trait

heredity and variation. The genomic selection methods evaluated gave higher heritability

estimates than the phenotypic heritability. This implied that all the genomic methods overesti-

mated the marker effects except G-BLUP, which was consistent with the phenotypic heritabil-

ity for fresh and dry root yields. Methodologically, the RKHS and BayesB methods presented a

better adjustment to the genetic variation of cassava agronomic traits. However, the G-BLUP

method presented the closest genomic heritability estimates to the phenotypic heritability

found in advanced field trials in cassava breeding programs.

Genomic selection efficiency considering different prediction models

Although the differences between the genomic selection methods were not of high magnitude

for predictive ability, in the cross validation scenario independent of the population structure

(1st cross-validation strategy), the RKHS method had slightly higher predictive ability com-

pared to the other genomic selection methods for fresh root yield (0.4756) and dry root yield

(0.4818). Wolfe et al. [4] also reported lower predictive ability for fresh root yield (0.18 to 0.37)

and dry matter content (0.24 to 0.68) and did not find great differences between the genomic

selection methods, especially for dry matter content. Although Wolfe et al. [4] explored

different methods to evaluate the dry matter content (specific gravity and oven method), our

predictive ability results were higher than theirs estimated by the gravity method. Moreover,

according to these authors, the RKHS method was more accurate for the following traits: fresh

root yield (0.21 to 0.37), harvest index (0.41 to 0.48), number of roots (0.25 to 0.39), shoot

yield (0.24 to 0.39), and initial vigor (0.18 to 0.38), the amplitude being due to the different

breeding programs evaluated. Small differences between genomic selection methods have also

been reported for Cassava Brown Streak Disease (CBSD) virus resistance, with a predictive
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ability of 0.27 to 0.42 [50]. Several other authors have also evaluated different genomic selec-

tion methods and reported small differences between methodologies in both simulated data

[7, 14] as well as real data for maize, wheat and barley [19, 42, 51].

In general, genomic selection methods with the same genetic assumptions tend to have sim-

ilar predictive ability. However, the inclusion of an extra genetic effect in the predictions can

result in differences in predictive ability, even using the same prediction method [26], which

in fact was found in the present work for fresh root yield due to the great influence of non-

additive effects.

The RKHS method was more promising for clone selection, despite the genetic

relationship between the training and validation populations, because it presented a good

adjustment for prediction of cassava agronomic traits. The RKHS method has similar

assumptions to G-BLUP, except for the genetic relationship matrix. So, it is possible that

the method’s superiority is related to prediction of partial non-additive plus additive effects

[52–53].

The nonlinear models such as RKHS allow the estimation of additional genetic variance

fractions, since the inheritance and variation of complex traits are nonlinear [52]. Morota and

Gianola [53] reported that semi-parametric methods have great potential to estimate all addi-

tive and non-additive effects in real data. In clonal propagated cultures such as cassava, non-

additive effects may have an important influence on phenotype expression and clone selection

[26]. These methods therefore, are of interest in cassava breeding since additive and dominant

genetic effects explain much of cassava’s genetic variation [5]. In this case, methods that can

predict the non-additive genetic effects are quite useful at early stages in clone selection aimed

at the development of new varieties. Indeed, the RKHS method was recommended by Heslot

et al. [19] for clone selection due to its high predictive ability and good fit, even if it was more

biased than other genomic selection methods.

Population structure effect in genomic prediction

The population structure effect, evaluated using by the DAPC method, was quite pro-

nounced in different cross validation scenarios for genomic prediction efficiency estimates

(2nd, 3rd, and 4th cross validation strategies). In general, the estimates of predictive ability

and bias were high for cross validation with total accession randomization, followed by

within-cluster cross validation and lastly by between-clusters cross validation. The within-

cluster cross validation did not outperform the all randomized cross validation, as expected

in genomic selection for inbred populations with smaller effective population size [13,54–

57]. This may be related to the training population’s lack of kinship relationship due to hav-

ing been formed by germplasm bank accessions with high heterozygosity loci in each cassava

clone.

Wolfe et al. [4] evaluated the possibility of using a training population composed of data

from different breeding programs in order to increase the predictive ability. These authors

reported that even in highly related populations, this approach was only effective when some

of the validation population clones were in the training population. Ly et al. [25] have also

shown that higher estimates of predictive ability are associated with higher levels of genetic

relationship in the population. Therefore, the higher the genetic relationship between individ-

uals, the greater the haplotype blocks in linkage disequilibrium (LD), which increases the prob-

ability that at least one marker is in linkage disequilibrium (LD) with a QTL. Slatkin [58]

reported that one marker in total linkage disequilibrium (LD) with each haplotype block is

enough to identify the association between the molecular marker and the trait under analysis.

According to Sorkheh et al. [59], the factors that contribute to increased LD are high
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inbreeding rates, a low recombination rate, small population size, genetic drift, migration,

morphology or geographical isolation and epistasis.

In order to maintain the predictive ability of genomic selection between generations, it is

recommended to conduct recurrent selection [4], with a large number of progeny to maintain

the effective population size. Currently there are training optimization algorithms such as the

STPGA [60], when allied with recurrent selection, promises to increase the genomic selection

efficiency. This algorithm selects individuals to represent the prediction population to be phe-

notyped, aiming only to increase or maintain the efficiency of genomic prediction for the next

generations [4]. Therefore, ignoring the population structure in genomic selection may com-

promise the methodology’s efficiency and expected results.

Potential application of genomic selection in cassava

Considering that inbreeding depression is quite pronounced for cassava yield traits such as

fresh root yield (range of 1.78% to 55.20%, mean 19.38%) and dry root yield (range of 0% to

55.57%, mean 17.54%) [6,61], most cassava breeding programs use heterozygous progenitors

to generate highly segregant F1 populations [3], and therefore, each F1 individual is a single

recombinant event. In general, this hinders the selective process in the early stages of breed-

ing, since heritability estimates in the seedling stage are quite biased. On the other hand, the

clonal reproduction of cassava seedlings allows the exponential multiplication of individuals,

allowing the estimation of all genetic variation and the genetic effects inheritance in con-

trolled trials.

Due to the advantages of clonal propagation, the family structure is usually neglected by

breeders in clonal selection [5], with little adoption of pedigree information. Thus, genomic

selection methods using a genetic relationship matrix, such as G-BLUP and RKHS, may con-

tribute to increasing selection gains, using covariance information among individuals for

estimation of GEBVs. These methodologies are more efficient than pedigree prediction since

they estimate relationships by markers, even without previous kinship knowledge [39].

According to Edriss et al. [62], the G-BLUP method is greatly superior to the pedigree predic-

tion method, with a predictive ability nine times higher than that provided by the pedigree

matrix.

Genomic selection has been used as an important method for selection of complex traits

controlled by several small effects QTLs [23]. According to Crossa et al. [9], the results of geno-

mic selection have been quite promising when applied in breeding program phases or situa-

tions in which phenotypic selection is impossible or inefficient. Even with low predictive

ability, genomic selection might allow shortening of the recurrent selection cycle [8] or the dis-

carding of undesirable individuals, thereby reducing phenotyping costs [62], which in most

cases are high. An example is the work of Wolfe et al. [27], who conducted two recurrent selec-

tion cycles over two years, increasing the cassava African mosaic virus resistance allelic fre-

quency from 44% to 63%. This selection gain evidences the potential of genomic selection in

the early stages (mainly seedlings), resulting in shortening of the breeding program selection

cycle. Using conventional methods, it would take at least eight years in total to complete two

cycles of phenotypic selection.

The success of genomic selection for African cassava mosaic virus resistance [27] is due to

the high genomic heritability of this trait (56.5%) [63]. However, for complex traits such as

fresh and dry root yields, the inclusion of non-additive effects in the prediction model tends to

increase genomic selection efficiency, since the non-additive genetic variation prevails for low-

heritability cassava traits. Thus, genomic selection methods with non-additive effects predic-

tion should be considered [26–27].
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Supporting information

S1 Fig. Heat map of pairwise linkage disequilibrium measurements for the single nucleo-

tide polymorphism markers in 888 cassava accessions.

(TIF)

S2 Fig. Cumulative variance of the principal components estimated from additive relation-

ship matrix (G).

(TIF)

S3 Fig. Variance of the first four discriminant functions of principal components esti-

mated from additive relationship matrix (G), and clustering of the discriminant analysis

of principal components.

(TIF)

S4 Fig. Predictive ability boxplots of different genomic selection methods for fresh root

yield for 2nd, 3rd, and 4th cross-validation strategies. (A): Validation and training within

clusters created by Discriminant Analysis of Principal Components (DAPC), informed in line.

(B): Validation in DAPC line cluster and training population with all the remaining DAPC

clusters. (C): Validation in DAPC line cluster and training with DAPC clusters column

informed. Colors represent the absent cluster in training population. Black– 1st Cluster;

Green– 2nd Cluster; Orange– 3rd Cluster; Red– 4th Cluster; Blue– 5th Cluster; Brown–None

absent Cluster.

(TIF)

S5 Fig. Predictive ability boxplots of different genomic selection methods for dry yield for

2nd, 3rd, and 4th cross-validation strategies. (A): Validation and training within clusters cre-

ated by Discriminant Analysis of Principal Components (DAPC), informed in line. (B): Vali-

dation in DAPC line cluster and training population with all the remaining DAPC clusters.

(C): Validation in DAPC line cluster and training with DAPC clusters column informed. Col-

ors represent the absent cluster in training population. Black– 1st Cluster; Green– 2nd Cluster;

Orange– 3rd Cluster; Red– 4th Cluster; Blue– 5th Cluster; Brown–None absent Cluster.

(TIF)

S6 Fig. Predictive ability boxplots of different genomic selection methods for dry matter

content for 2nd, 3rd, and 4th cross-validation strategies. (A): Validation and training within

clusters created by Discriminant Analysis of Principal Components (DAPC), informed in line.

(B): Validation in DAPC line cluster and training population with all the remaining DAPC

clusters. (C): Validation in DAPC line cluster and training with DAPC clusters column

informed. Colors represent the absent cluster in training population. Black– 1st Cluster;

Green– 2nd Cluster; Orange– 3rd Cluster; Red– 4th Cluster; Blue– 5th Cluster; Brown–None

absent Cluster.

(TIF)

S7 Fig. Bias boxplots of different genomic selection methods for fresh root yield for 2nd,

3rd, and 4th cross-validation strategies. (A): Validation and training within clusters created

by Discriminant Analysis of Principal Components (DAPC), informed in line. (B): Validation

in DAPC line cluster and training population with all the remaining DAPC clusters. (C): Vali-

dation in DAPC line cluster and training with DAPC clusters column informed. Colors repre-

sent the absent cluster in training population. Black– 1st Cluster; Green– 2nd Cluster; Orange–

3rd Cluster; Red– 4th Cluster; Blue– 5th Cluster; Brown–None absent Cluster.

(TIF)
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S8 Fig. Bias boxplots of different genomic selection methods for dry yield for 2nd, 3rd, and

4th cross-validation strategies. (A): Validation and training within clusters created by Dis-

criminant Analysis of Principal Components (DAPC), informed in line. (B): Validation in

DAPC line cluster and training population with all the remaining DAPC clusters. (C): Valida-

tion in DAPC line cluster and training with DAPC clusters column informed. Colors represent

the absent cluster in training population. Black– 1st Cluster; Green– 2nd Cluster; Orange– 3rd

Cluster; Red– 4th Cluster; Blue– 5th Cluster; Brown–None absent Cluster.

(TIF)

S9 Fig. Bias boxplots of different genomic selection methods for dry matter content for

2nd, 3rd, and 4th cross-validation strategies. (A): Validation and training within clusters cre-

ated by Discriminant Analysis of Principal Components (DAPC), informed in line. (B): Vali-

dation in DAPC line cluster and training population with all the remaining DAPC clusters.

(C): Validation in DAPC line cluster and training with DAPC clusters column informed. Col-

ors represent the absent cluster in training population. Black– 1st Cluster; Green– 2nd Cluster;

Orange– 3rd Cluster; Red– 4th Cluster; Blue– 5th Cluster; Brown–None absent Cluster.

(TIF)
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disequilibrium, genetic association mapping and gene localization in crop plants. Genet Mol Biol, 2008;

31(4): 805–814.

60. Akdemir D, Sanchez JI, Jannink JL. Optimization of genomic selection training populations with a

genetic algorithm. Genet Sel Evol, 2015; 47(38): 1–10.

61. Freitas JPX, Santos VS, Oliveira EJ. Inbreeding depression in cassava for productive traits. Euphytica,

2016; 209: 137–145.

62. Edriss V, Gao Y, Zhang X, Jumbo MB, Makumbi D, Olsen MS, et al. Genomic prediction in a large Afri-

can maize population. Crop Sci, 2017; 57(5): 2361–2371.

63. Parkes EY, Fregene M, Dixon A, Boakye-Peprah B, Labuschagne MT. Combining ability of cassava

genotypes for cassava mosaic disease and cassava bacterial blight, yield and its related components in

two ecological zones in Ghana. Euphytica, 2013; 194(1): 13–24.

Genomic selection for yield traits in cassava

PLOS ONE | https://doi.org/10.1371/journal.pone.0224920 November 14, 2019 22 / 22

https://doi.org/10.1534/genetics.110.118521
http://www.ncbi.nlm.nih.gov/pubmed/20813882
https://CRAN.R-project.org/package=emmeans
https://doi.org/10.1534/genetics.107.084285
https://doi.org/10.1534/genetics.107.084285
http://www.ncbi.nlm.nih.gov/pubmed/18430950
https://doi.org/10.1534/genetics.112.146290
https://doi.org/10.1534/genetics.112.146290
http://www.ncbi.nlm.nih.gov/pubmed/23267052
https://doi.org/10.1038/nrg2361
http://www.ncbi.nlm.nih.gov/pubmed/18427557
https://doi.org/10.1371/journal.pone.0224920

