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Abstract: Nitrated-pyrazole-based energetic compounds have attracted wide publicity in the field
of energetic materials (EMs) due to their high heat of formation, high density, tailored thermal
stability, and detonation performance. Many nitrated-pyrazole-based energetic compounds have
been developed to meet the increasing demands of high power, low sensitivity, and eco-friendly
environment, and they have good applications in explosives, propellants, and pyrotechnics.
Continuous and growing efforts have been committed to promote the rapid development of
nitrated-pyrazole-based EMs in the last decade, especially through large amounts of Chinese
research. Some of the ultimate aims of nitrated-pyrazole-based materials are to develop potential
candidates of castable explosives, explore novel insensitive high energy materials, search for low
cost synthesis strategies, high efficiency, and green environmental protection, and further widen the
applications of EMs. This review article aims to present the recent processes in the synthesis and
physical and explosive performances of the nitrated-pyrazole-based Ems, including monopyrazoles
with nitro, bispyrazoles with nitro, nitropyrazolo[4,3-c]pyrazoles, and their derivatives, and to comb
the development trend of these compounds. This review intends to prompt fresh concepts for
designing prominent high-performance nitropyrazole-based EMs.

Keywords: nitrated pyrazoles-based; energetic salts; synthesis; high energy density material;
insensitivity

1. Introduction

Energetic materials (EMs), including explosives, propellants, and pyrotechnics, are a significant
class of compounds containing large amounts of stored chemical energy, which can liberate heat and
exert high pressure under some stimuli, like impact, shock, or thermal effect [1–8]. With the development
of science and technology, more and more attention has been paid to the high energy density materials
(HEDMs) used for energy and as explosives or propellants [9]. Thus, the representatives of traditional
HEDMs are 2,4,6-trinitrotoluene (TNT) [10,11], 1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) [12,13],
1,3,5-trinitro-1,3,5-triazine (RDX) [14], triaminotrinitrobenzene (TATB) [15], and 2,4,6,8,10,12-hexanitro-
2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) [16]. The key properties for HEDMs include density (ρ),
melting point (Tm), decomposition temperature (Td), heat of formation (HOF), calculated detonation
velocity (D, calculated propagation velocity of detonation wave in explosive grain), calculated
detonation pressure (P, calculated pressure on the front of detonation wave), oxygen balance (OB,
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residual amount of oxygen when explosive explodes to produce CO2 and H2O, OB = 16[c-(2a + b/2)]/M
for molecule CaHbOcNd), specific impulse (Isp, impulse produced by the unit quantity of propellant),
content of nitrogen (N), impact sensitivity (IS, sensitivity of explosive to impact), friction sensitivity
(FS, sensitivity of explosive to friction), electrostatic discharge sensitivity (ESD), and sensitivity of
explosive to electrostatic discharge, etc. There are several standards a novel HEDM should meet if it
would be applied widely, including insensitivity toward mechanical stimuli (heat, impact, fraction,
and electrostatic discharge) to ensure the safety of operation, high performance for various purposes,
less toxicity, and producing less hazardous waste after detonation [17–19]. Among them, conflict
between the increasing energetic level and decreasing sensitivity has become more and more severe.
Therefore, the exploration and development of high energy density compounds with low sensitivity
have been a priority. A significant amount of effort has been made to resolve this problem, such as
recrystallization of Ems [20], preparing polymer bonded explosives (PBXs) [21,22], forming energetic
cocrystals [23–25], and synthesizing novel energetic compounds [26–29]. In contrast with other
technologies, synthesizing new HEDMs may be the most direct and effective method.

Nitrogen heterocyclic energetic materials that have large numbers of N–N bonds and C–N
bonds with high energy can form the large π bond similar to benzene, which endows this kind of
compounds low sensitivity, high positive heat of formation, and good thermal stability. In addition,
the low percentage of C and N in these compounds always lead to high density and good oxygen
balance. The decomposition of these compounds can result in the N2, which is environmentally
friendly [30]. There is a big difference between nitrogen-rich energetic compounds and traditional
explosives, namely the energy of nitrogen heterocyclic compounds is released from the high positive
heat of formation rather than the oxidation of carbon backbone like traditional explosive (such as
TNT and TATB) [19,31]. Therefore, nitrogen heterocyclic materials have garnered large interest in the
research areas of HEDMs.

As an outstanding representative of nitrogen heterocyclic compounds, nitropyrazoles and their
derivatives are aromatic stable substances with π electrons in their structures. The system is easy
to carry out electrophilic substitution reactions such as nitration, sulfonation and halogenation,
etc. [32]. These compounds are characterized by oxidation resistance, heat resistance and hydrolysis
resistance [19], and are widely applied in civil fields, such as medicine, pesticide, photosensitive
materials, and fine chemicals [33–35]. Due to the compactness, stability, and modifiability of the
molecular structure of pyrazoles, nitration and derivatization of pyrazoles are relatively easy. The ring
tension in the structures of nitropyrazoles and their derivatives is large. The density and nitrogen
content of nitropyrazoles increase with the presence of nitro groups on the ring, and the oxygen balance
is closer to the ideal value, which can improve the detonation performance of the target compounds.
Many energetic compounds based on nitropyrazoles have been synthesized successively, which have
good applications in highly energy insensitive explosives, propellants, pyrotechnic agents, and other
fields [2,3,19,36,37].

In the past decade, a lot of papers on the synthesis and properties of nitrated pyrazoles have been
published, including many Chinese references which are not accessible for most Western researchers
due to language barriers. This review article presents the recent processes in synthesis, physical
and explosive performances of the nitropyrazole-based Ems, including monopyrazoles with nitro,
bispyrazoles with nitro, nitropyrazolopyrazoles and their derivatives, and to comb the development
trend of these compounds. The aim of this review is to provide readers with an overview of
the relationship between structures and properties and guide the future design of novel HEDMs.
This review also intends to prompt fresh concepts for designing prominent high-performances
nitropyrazole-based EMs.

2. Nitrated-Monopyrazole Based Compounds

In this section, the sum of nitro group substituted on carbon position of pyrazole ring in
mononitropyrazoles, binitropyrazoles, and trinitropyrazoles are one, two, and three, respectively.
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For example, mononitropyrazole represents that only one C position in pyrazole ring is substituted by
the nitro group.

2.1. Mononitropyrazoles and Their Derivatives

Mononitropyrazoles and their derivatives due to their energetic property are favored by people in
many fields, such as medicine, pesticide, energetic material and so on. Among them, 3-nitropyrazole
(3-NP), 4-nitropyrazole (4-NP), 1-methyl-3-nitropyrazole (3-MNP), and 1-methyl-4-nitropyrazole
(4MNP) are typical examples, which are commonly used as energetic materials and intermediates
for further products of other energetic materials because they contain only one nitro group and have
relatively low energy. The syntheses of these compounds is often facile and can meet the development
requirements of green chemistry.

As a typical heterocyclic compound, 3-NP is an important intermediate in the synthesis of
pyrazole-based compounds such as 3,4-dinitropyrazole (DNP) and other new explosives [36,38].
In 1970, Habraken and co-authors [39] firstly reported synthesis of 3-NP by dissolving N-nitropyrazole
in anisole for 10 h at 145 ◦C. Later, Verbruggen et al. [40] synthesized 3-NP from diazomethane
and chloronitroethylene by one-step cyclization, while this reaction was high riskful due to the
extremely vivacious raw materials. Nowadays, the main synthesis method of 3-NP was a two-step
reaction, that is, nitration of pyrazole to obtain N-nitropyrazole and then rearrangement of
N-nitropyrazole in organic solvent to acquire 3-NP (Figure 1, Scheme A). The nitration agents
could be HNO3/H2SO4 or HNO3/Ac2O/HAc, and the organic solvent for rearrangement could be
anisole, n-octanol and benzonitrile [41–43]. Among these solvents, benzonitrile was always preferred to
be the rearrangement medium since anisole could require an excessively long time and n-octanol would
lead to poor-quality product. In 2014, Zhao et al. [44] reported one convenient and green approach to
synthesizing the 3-NP. They chose the oxone as the nitration agents of 3-aminopyrazole and water as
the solvent (Figure 1, Scheme B). This approach owns some advantages over the previous approach:
simple operation, safety, economical reagents, the use of water as solvent, and mild conditions.
As shown in Figure 1, 3-MNP is one of the most important derivatives of 3-NP. Its synthesis is mainly
accomplished by nitrated 1-methylpyrazole with various nitration agents. Katritzky et al. [45] added
1-methylpyrazole to trifluoroacetic anhydride for 1 h in ice bath, and then concentrated nitric acid
was added in the solution. After stirring for 12 h, and evaporation of trifluoroacetic anhydride and
nitric acid, the 3-MNP could be obtained (Figure 1, Scheme C). In 2013, Ravi et al. [46] proposed
that 1-methylpyrazole could reacted with silicon oxide-bismuth nitrate or silicon dioxide-sulfuric
acid-bismuth nitrate in tetrahydrofuran (THF) to produce 3-MNP (Figure 1, Scheme D), this facile route
is a synthetic method of low toxicity, high efficiency, and green environmental protection. In addition,
metal salts of 3-NP expand its derivatives. Li et al. [42] prepared the metal Cu(II) salt and basic Pb
salt of 3-NP, by dissolving 3-NP in NaOH solution and reacting with the CuSO4·5H2O solution and
Pb(NO3)2 solution, respectively (Figure 1, Scheme E).

4-NP is an isomer of 3-NP with melting point of 163–165 ◦C, density of 1.52 g/cm3, detonation
velocity of 6.68 km/s and detonation pressure of 18.81 Gpa [47]. Similar to 3-NP, 4-NP can be obtained
by nitro group rearrangement. As Rao et al. [48] reported N-nitropyrazole could be rearranged to 4-NP
in sulfuric acid at room temperature (Figure 2, Scheme A). Ravi et al. [49] synthesized 4-NP in THF
with 4-iodopyrazole as raw material, fuming HNO3 as nitration agents, octahedral zeolite or silica as
solid catalyst (Figure 2, Scheme B). Li et al. [50] reported one-pot two steps route that pyrazole could be
nitrated to 4-NP by fuming HNO3 (90%)/fuming H2SO4 (20%) (Figure 2, Scheme C). 4-MNP is another
important derivative of nitropyrazole with the similar performance to 3-MNP (Table 1). In 2015,
Corte et al. [51] reported that 4-MNP could be synthesized by adding sodium hydride and iodomethane
into the THF solution of 4-NP at room temperature for overnight. Ioannidis et al. [52] improved the
method by adding sodium hydride and iodomethane to the acetonitrile solution of 4-NP under nitrogen
protection for 16 h. However, it is dangerous to handle sodium hydride due to its high chemical
reaction activity which can easily cause combustion and explosion, limiting the further application of
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this method. Han et al. [53] simplified the above method and replaced sodium hydride with potassium
carbonate. They added potassium carbonate and iodomethane to the N,N-dimethylformamide (DMF)
solution of 4-NP at 25 ◦C for 14 h. This method not only reduces the risk in the process, but improves
the reaction yield (80–98%).Molecules 2020, 25, x FOR PEER REVIEW 4 of 42 
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Table 1 shows the energetic performances of the four typical monopyrazoles. We can see that these
energetic performances of pyrazole-based compounds are not satisfying, especially the detonation
properties and the nitrogen content. So, these nitropyrazoles are always used as intermediates for
the preparation of novel high-performance energetic materials. Furthermore, it is also necessary
to explore new high performances energetic materials based on mononitropyrazoles. For example,
Deng et al. [54] prepared 5-methyl-4-nitro-1H-pyrazol-3(2H)-one (MNPO) and its energetic salts,
showing better performances than these above mononitropyrazoles.
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Table 1. Properties of 3-NP, 4-NP, 3-MNP and 4-MNP.

Explosive ρ/g·cm−3 D/km·s−1 P/GPa Tm/
◦C OB/% N/% Ref.

3-NP 1.57 7.02 20.08 174–175 −77.88 37.17 [55]
4-NP 1.52 6.86 18.81 163–165 −77.88 37.17 [55]

3-MNP 1.47 6.62 17.11 80–83 −107.09 26.77 [3]
4-MNP 1.40 6.42 15.52 82 −107.09 26.77 [3]

The introduction of a polynitromethyl group into a heterocyclic compound is interesting for
energetic field, because it can increase the oxygen content and improve the energetic properties
of energetic material. Generally, the incorporation of a polynitromethyl group (trinitromethyl
and dinitromethyl) to nitropyrazoles is essentially equivalent to introducing at least one -NO2

(since one -NO2 is used for the complete oxidation of the C atom in -CH3) [56]. For the
trinitromethyl group, it can be incorporated into N position or C position of nitropyrazoles
with different energetic properties. The N-H bond of nitropyrazole is relatively active which
could provide a reaction site for functionalization easily. In 2014, Yin et al. [57] obtained the
carbon and nitrogen functionalization of nitropyrazole with N-trinitroethylamino group (Figure 3,
Scheme A). Thereby, 4-NP reacted with NH2OSO3H acid and K2CO3 to accomplish amination,
and after functionalization of amino group, the 1-amino-4-nitropyrazole underwent the Mannich
reaction with trinitroethanol to get 4-nitro-N-(2,2,2-trinitroethyl)-1H-pyrazol-1-amine (1). In 2015,
Dalinger et al. [58] prepared and characterized a nitropyrazole bearing a trinitromethyl moiety
at N atom, 4-nitro-1-(trinitromethyl)-pyrazoles (2). They synthesized the target compound by
a destructive nitration of 4-nitro-1-acetonpyrazole with a mixture of concentrated HNO3 and H2SO4

(Figure 3, Scheme B). Although the compound 1 was successfully synthesized, the yield was
very low (28%) and this process was comparatively too time-consuming (15 d). To explore new
high-performance EM, several C-trinitromethyl-substituted mononitropyrazoles have been reported.
In 2018, Zhang and co-authors [56] first synthesized the C-trinitromethyl-substituted nitropyrazole
(Figure 4, Scheme A). The reaction of 3-pyrazolecarbaldehyde oxime with N2O4 produced the
3-trinitromethylpyrazole and 1-nitro-3-trinitromethylpyrazole (3). They found that the increasing
N2O4 concentration could improve the proportion of 3 and 3-trinitromethylpyrazole reacting with
N2O4 also form 3, indicating N2O4 enable nitrate the N position of pyrazole. After the introduction of
trinitromethyl group on C position, the 4-nitro-3-trinitromethylpyrazole (4) could be obtained with
fuming nitric acid and oleum by -NO2 rearrangement of 3 or nitration of 3-trinitromethylpyrazole.
In 2019, Xiong et al. [59] further designed 3-Trinitromethyl-4-nitro-5-nitramine-1H-pyrazole (5).
It was notable that the yield of 5 could improve with the concentration of HNO3 increasing in
the last nitration step of Scheme B (Figure 4). For the dinitromethyl group, Semenov et al. [60]
prepared the 4-nitro-1-dinitromethylpyrazole by nitrating 4-nitro-1-acetonylpyrazole using H2SO4/H2O
mixture, and while the yield was low and it was not investigated as energetic material. In 2019,
Pang et al. [61] introduced the dinitromethyl group into nitropyrazole and developed the salt,
hydrazinium 5-nitro-3-dinitromethyl-2H-pyrazole (6), according to Scheme A in Figure 5. In 2020,
Cheng et al. [62] synthesized 3-nitro-4-dinitromethyl-2H-pyrazole (7) and its salts, further exploring
the application of dinitromethyl group in mononitropyrazolle. Table 2 shows the energetic properties
of the polynitromethyl-substituted mononitropyrazoles and salts compared with TNT and RDX.
All the density of the derivatives of mononitropyrazole was higher than TNT and close to that of
RDX, especially 7a showed the highest density. 3 and 5 owned the desirable detonation properties,
while exhibited poor safety. It was notable that C-trinitromethyl-substituted derivatives owned higher
heat of formation than those of N-trinitromethyl-substituted derivatives, and the derivatives with
dinitromethyl group owned lower heat of formation than derivatives with trinitromethyl group.
Most of the neutral derivatives hold low decomposition temperatures owing to the instability of the
polynitromethyl moiety. Compound 4 had the highest decomposition temperature possibly because
of the strong intermolecular hydrogen bonding interactions. By comparing 4 and 5, we can see the
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nitramino group could further increase the power with low sensitivities. For the salts of compound 7, 7d
with high detonation properties (comparing with RDX) and low sensitivities could serve as a promising
candidate as a new high energy density oxidizer.
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Table 2. Properties of the derivatives of compounds 1–7.

Entry ρ/g·cm−3 D/km·s−1 P/GPa Tm/
◦C Td/

◦C OB/% N/% HOF/kJ
·mol−1 IS/J FS/N Ref.

1 1.74 8.39 30.8 109.0 112 +2.75 33.68 140.9 15.0 360 [57]
2 1.80 8.65 33.9 39.0 145 −6.10 32.07 181.0 7.5 120 [58]
3 1.85 8.93 35.9 59.9 113 +18.3 32.07 311.4 2.5 36 [56]
4 1.80 8.60 32.2 147.2 154 +18.3 32.07 208.1 3.0 80 [56]
5 1.90 9.12 37.2 74 124 +24.8 34.79 320.2 5.0 80 [59]
6 1.84 8.79 33.8 - 128 −9.64 39.35 194.8 7.0 192 [61]
7 1.76 8.53 30.8 - 117 −25.79 32.26 205.6 17.0 114 [62]

7a 2.01 8.13 29.5 - 171 −21.94 27.44 −55.7 4.0 36 [62]
7b 1.87 8.26 28.6 - 203 −23.42 29.29 28.2 9.0 120 [62]
7c 1.78 8.60 33.0 - 141 −34.16 35.90 85.4 >20.0 192 [62]
7d 1.80 8.70 34.1 - 166 −24.20 33.60 135.5 >20.0 162 [62]
7e 1.72 8.26 28.7 - 161 −46.37 40.58 43.8 >20.0 240 [62]
7f 1.71 8.48 30.1 - 140 −46.74 43.29 231.4 >20.0 252 [62]

TNT 1.65 6.88 19.5 80. 5 295 −73.8 18.49 −67.0 15.0 358 [62]
RDX 1.80 8.75 34.9 204.1 210 −21.6 37.82 70.0 7.0 120 [62]

Connecting nitropyrazoles with nitrogen-rich compounds (including tetrazole, triazole,
furazan, tetrazine, triazine, and others) has attracted more interest in many fields, it also be
an effective approach to increasing the content of nitrogen and getting new high-performance
energetic materials. In 2015, Yin et al. [63] synthesized energetic salts based on N-methyl
6-nitropyrazolo[3,4-d][1,2,3]triazol-3(4H)-olate in a similar manner exhibiting good detonation
performance with relatively low sensitivities. In 2016, Dalinger et al. [64] synthesized and investigated
systematically a series of 1- and 5-(pyrazolyl)tetrazole amino and nitro derivatives which could be
components of dyes and luminophores, and high-energy materials. Some of them were always used
as intermediates due to their poor energetic properties. In 2017, Zyuzin et al. [65] introduced the
2,2-bis(methoxy-NNO-azoxy)ethyl group to nitropyrazoles to increase the hydrogen content for some
special application (gun propellants, solid rocket propellants and others). The derivatives of 3-NP and
4-NP showed high heat of formation, while the oxygen balances and calculated detonation velocity
were not ideal. Then, Zyuzin et al. [66] further introduced the trinitromethyl moiety owning the most
oxygen-rich block into the combination of tetrazole and pyrazole rings to obtain oxygen-balanced
energetic materials with high nitrogen content (8–11) (Figure 6). In 2019, Tang et al. [67] developed
several compounds and salts based 3,5-diamino-4-nitropyrazole functionalizing the with tetrazole
group and triazine group (12–15) (Figure 7). As shown in Table 3, all the compounds had high density,
high nitrogen content and good detonation properties, while the thermal stability of 12–15 was better
than that of 8–11. In particular, the derivatives 12–15 showed excellent insensitivities. In addition,
most compounds owned positive and high heat of formation, but the presence of water molecules in 13a
result in its negative heat of formation. Considering the low sensitivities, good detonation properties,
and high thermal stabilities, these derivatives with nitrogen-rich groups may be the candidates of
insensitive high energetic materials.
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Table 3. Energetic characteristics of compounds 8–15. The data of compounds 8–11 are from
reference [66], the data of compounds 12–15 are from reference [67].

Entry ρ/g·cm−3 D/km·s−1 P/GPa Td/
◦C N/% HOF/kJ·mol−1 IS/J FS/N

8 1.79 8.86 34 127 42.43 602 - -
9 1.81 8.47 31 111 41.59 386 - -
10 1.91 8.99 36 138 41.67 589 - -
11 1.76 8.78 32 132 42.43 629 - -
12 1.76 8.26 25.9 272 59.70 408 30 360

12a 1.78 8.82 29.9 187 56.89 445 32 360
12b 1.75 8.80 28.9 229 63.36 547 35 >360
12c 1.70 8.29 24.9 251 61.39 399 40 >360
12d 1.69 8.24 23.9 224 63.84 486 40 >360
12e 1.72 8.14 23.6 287 63.21 338 40 >360
13 1.72 8.00 22.8 200 52.96 127.6 >40 >360

13a 1.68 8.00 23.8 196 45.15 −483.3 32 360
14 1.75 8.81 32.6 148 47.94 462.8 30 360
15 1.78 7.79 21.8 406 53.52 127.1 >40 >360
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Moreover, nitrogen-rich heterocycles with a nitramino moiety could exhibit better performance
than the corresponding nitro-substituted analogs as above mentioned [59,68]. In 2019, Shreeve and her
group [69] reported a green synthetic route for high-performance nitramino nitropyrazoles. Figure 8
depicted the synthesis of corresponding derivatives, among them the 3,5-dinitramino-4-nitropyrazole
(16) was quite sensitive to mechanical stimulation. From Table 4, the compound 16b showed
promising properties with a high density (1.87 g·cm−3), good detonation properties (D of 9.58 km·s−1

and P of 38.5 GPa), decomposition temperature of 194 ◦C, and acceptable sensitivities. Xu et al. [70]
introduced nitramino and triazole groups into mononitropyrazole to construct multiple hydrogen bonds
(17), and synthesized the 4-nitro-3,5-bis(1H-1,2,4-triazol-3-nitramino)-1H-pyrazole (19) and its ionic
derivatives (19a–i) as shown in Figure 9. Table 4 also showed their energetic properties. Compound 17
had the highest decomposition temperature (353.6 ◦C) and excellent low sensitivity (IS > 40, FS > 360),
indicating it could be used as heat-resistant insensitive explosive. The compounds (18–19i) exhibited
moderate detonation properties, high positive heat of formation and ideal insensitivities which had
great potential application in green and safe energetic materials. Ma et al. [71] also fused nitropyrazole
with triazine and nitramino groups, and prepared a series of salts based on compounds 20 and 21
(Figure 10). These compounds owned high thermal stability and excellent insensitive properties
because of the existence of triazine ring.
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Table 4. Energetic characteristics of compounds 16a–21d. The data of compounds 16a–d are from
reference [69], the data of compounds 17–19i are from reference [70], the data of compounds 20a·H2O
–21d·H2O are from reference [71].

Entry ρ/g·cm−3 D/km·s−1 P/GPa Td/
◦C HOF/kJ·mol−1 IS/J FS/N

16a 1.90 9.39 40.0 155.0 74 6 120
16b 1.87 9.58 38.5 194.0 266 12 160
16c 1.80 8.84 32.6 192.0 −20 15 240
16d 2.12 7.64 26.4 232.0 246 2 120
17 1.77 8.24 23.1 353.6 555.0 >40 >360
18 1.87 8.75 33.0 238.2 737.6 30 360
19 1.92 9.01 35.9 134.4 791.8 20 270

19a 1.76 8.68 30.0 186.6 711.4 >40 >360
19b 1.79 9.08 33.6 171.3 842.0 >40 >360
19c 1.73 8.76 30.2 186.6 1062.4 >40 >360
19d 1.71 8.19 25.1 195.4 677.9 >40 >360
19e 1.71 8.50 27.3 191.3 1068.7 >40 >360
19f 1.75 8.71 29.7 208.2 1014.6 22.4 >360
19g 1.72 8.12 25.7 168.5 1300.5 >40 >360
19h 1.74 8.16 26.0 189.7 1270.5 >40 >360
19i 1.72 8.14 25.9 175.9 1511.2 >40 >360
20a 1.82 8.39 28.2 180.0 60.0 >40 360
20b 1.83 8.10 28.0 279.0 105.0 40 240
21 1.89 8.71 31.9 248.0 314.6 >40 >360

21a·H2O 1.95 8.29 29.1 341.0 260.9 >40 >360
21b·H2O 1.81 8.98 32.1 218.0 386.2 >40 >360
21c·H2O 1.80 9.06 31.7 190.0 557.5 >40 >360
21d·H2O 1.60 8.22 24.6 223.0 690.0 >40 >360
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In summary, most of mononitropyrazoles and their derivatives owned relatively low thermal
properties and detonation properties. They are always used as intermediates for novel complicated
energetic materials. The introduction of polynitromethyl group can improve the oxygen balance
efficiently, while have a little influence on the heats of formation. The nitramino group and nitrogen-rich
heterocyclic can enhance the detonation properties, improve the safety, and increase the heats of
formation of mononitropyrazoles. The choice of solvent and nitrification in synthesis routes should be
more environmental and facile.

2.2. Dinitropyrazoles and Their Derivatives

Dinitropyrazoles own higher density and better detonation performance than mononitropyrazoles
attributing to one more nitro group. The typical dinitropyrazoles include 3,4-dinitropyrazole (3,4-DNP),
3,5-dinitropyrazole (3,5-DNP), 1-methyl-3,4-dinitropyrazole (3,4-MDNP), 1-methyl-3,5-dinitropyrazole
(3,5-MDNP), and 4-amino-3,5-dinitropyrazole (LLM-116).

3,4-DNP is a kind of white crystal, possessing higher density (1.87 g·cm−3), lower melting point
(86–88 ◦C), higher decomposition temperature (285 ◦C), higher detonation velocity (8.1 km·s−1) and
detonation pressure (29.4 GPa) than TNT. This compound was first reported by Biffin’s team in
1966 [72]. In an earlier study, pyrazole, 4-NP, 3-nitro-4-cyanopyrazole and other raw materials have
been investigated to prepare 3,4-DNP, while most of the methods did not satisfied industrialization due
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to complex process, high production cost or low yield [45,55,73–76]. At present, the three-step synthetic
route as shown in Figure 11 (Scheme A), and the two-step route (Scheme B) are the most widely
used [77–80]. 3,4-MDNP is a typical thermal stability nitropyrazole, exhibiting stable thermodynamic
state at 300 ◦C. Its melting point and density are lower than those of 3,4-DNP (20–23 ◦C, 1.67 g·cm−3),
and 3,4-DNP shows low detonation velocity (7.76 km s−1) and detonation pressure (25.57 GPa) due to
the introduction of methyl group. It has potential application in liquid explosive, which can reduce the
melting point of liquid phase carrier in castable explosive [32]. Recently, Ravi et al. [73] had synthesized
3,4-MDNP by nitrating 1-methylpyrazole or 1-methyl-3-nitropyrazole with montmorillonite (K-10)
and Bi(NO3)3, while this method was high cost and the products were difficult to separate. Li et al. [81]
reacted 3,4-DNP and dimethyl carbonate (DMC) in DMF with K2CO3 as catalyst, then, his group
further synthesized 3,4-MDPN with 3-NP as raw material (Figure 11, Scheme C) [82]. In this method,
DMC was used as methylation agent and the yield of methylation was high (95.6%), which could
meet the requirement of green chemistry. As 3,5-DNP with a melting point of 173–174 ◦C and density
of 1.80 g·cm−3, the decomposition temperature of 316.8 ◦C owns higher detonation properties than
3,4-DNP (7.76 km·−1 and 25.57 GPa). Moreover, 3,5-DNP is relatively stable because of the symmetrical
molecular distribution, it can be used as a simple explosive or as a key intermediate in the synthesis of
insensitive explosives [55]. Generally, the starting materials for preparing 3,5-DNP could be pyrazole
and 3-NP. Wang et al. [83] nitrated 3-NP to get 1,3-dinitropyrazole, then 1,3-dinitropyrazole was
reacted with NH3 in PhCN to produce the ammonium salt of 3,5-DNP. After neutralization with
hydrochloric acid, the 3,5-DNP could be obtained (Figure 12, Scheme A). Liu et al. [28] also nitrated
3-NP, and rearranged 1,3-dinitropyrazole to get 3,5-DNP (Figure 12, Scheme B). For pyrazole as starting
material, 3,5-DNP was always prepared by a four-step route (nitration of pyrazole, rearrangement of
N-nitropyrazole, nitration of 3-NP, and rearrangement of 1,3-dinitropyrazole). 3,5-MDNP owns the
similar energetic properties with 3,4-MDNP, while it has a higher melting point (about 60 ◦C). Moreover,
3,5-MDNP could be synthesized by methylation of 3,5-DNP [84]. However, most methylation agents
were extremely toxic, thus searching for a green methylation agent would be the key factor.
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LLM-116 is a powerful and insensitive explosive, its energy is 90% of HMX and its impact sensitivity
is extremely low [55,85]. It was first synthesized by the Lawrence Livermore National Laboratory
(LLNL) in 2001, and many studies were performed to assess its synthesis in the following years.
Wang et al. [86] utilized vicarious nucleophilic substitution (VNS) of 3,5-DNP and trimethylhydrazine
iodideto (TMHI) to prepare LLM-116 with a yield of 60%, while the toxic TMHI was the main factors
restricting wide application of this method. In 2014, Stefan et al. [87] developed four synthetic routes
of LLM-116, using 4-NP, 3,5-dimethylpyrazole, 3,5-DNP and 4-chloropyrazole as starting materials,
respectively (Figure 13, Scheme A–D). Table 5 shows the comparison of the four routes. The synthesis of
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Scheme D was simple and its yield was high, which was suitable for industrialization. Zhang et al. [88]
also used 4-chloropyrazole as a starting material to synthesize LLM-116 with an overall yield of 65%.Molecules 2020, 25, x FOR PEER REVIEW 12 of 42 
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Table 5. A brief comparison of four routes by Stefan.

Via 4-NP (Method A) Via 3,5-Dimethylpyrazole
(Method B) Via 3,5-DNP (Method C) Via 4-Chloropyrazole

(Method D)

Four steps Six steps Five steps Two steps
Moderate amount of waste High amount of waste Moderate amount of waste Small amount of waste

No unfavorable solvents
required

No unfavorable solvents
required DMSO used in the last step No unfavorable solvents

required
Moderate overall yield, 40% Moderate overall yield, 37% Low overall yield, 21% Moderate overall yield, 61%

Average yield/step: 80% Average yield/step: 85% Average yield/step: 73% Average yield/step: 78%

In addition, 4-Chloro-3,5-dinitropyrazole was a useful intermediate in the preparation of various
3,5-DNP [89], owning good reactivity towards nucleophiles. He et al. [90] synthesized a series of
3,5-DNP derivatives based on 4-chloro-3,5-dinitropyrazole and 1-methyl-4-chloro-3,5-dinitropyrazole
shown in Figure 14. From Table 6, all compounds exhibited better detonation properties than those of
TNT, and these compounds owned better IS than RDX except compound 33. Compounds 26 and 28
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had an especially good balance between physical properties and detonation properties as well as
excellent insensitivity, making them potential replacement of RDX.
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Table 6. Physical and detonation properties of compounds 22–35. The data of compounds 22–35 are
from reference [90].

Entry ρ/g·cm−3 D/km·s−1 P/GPa Td/
◦C HOF/kJ·mol−1 IS/J

22 1.74 8.22 30.1 178 137.0 17
23 1.69 8.25 28.7 176 104.6 35
24 1.72 8.31 30.2 176 220.7 18
25 1.63 8.14 26.3 275 64.8 >60
26 1.88 8.73 35.0 241 166.0 >40
27 1.66 7.82 23.4 245 133.5 >40
28 1.84 8.46 31.0 308 182.6 >40
29 1.78 8.39 31.4 233 236.6 10
30 1.74 8.41 31.0 161 436.0 14
31 1.63 7.42 21.7 228 177.0 22
32 1.71 8.72 30.9 146 549.6 8
33 1.70 8.18 27.6 101 414.4 6
34 1.67 7.80 24.6 270 64.5 >40
35 1.78 8.25 31.2 285 109.1 >40

Energetic salts often possess superior properties comparing with non-ionic species since they
always show lower vapor pressures, lower impact and friction sensitivities, and enhanced thermal
stabilities [19]. In addition to the derivatives mentioned above, Klapötke group [26] developed the ionic
salts of 3,4-DNP and 3,5-DNP shown in Figure 15, and these salts were extremely insensitive in Table 7.
Comparing with 3,4-DNP, 36 and 38 owned much lower decomposition temperatures, similar to that
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of 37, 39 and 3,5-DNP. Zhang et al. [91] developed the ionic salts of LLM-116 with several nitrogen-rich
cations as shown in Figure 16. These compounds showed extraordinary insensitivity to impact (>60 J),
as the detonation properties of 40i and 41k were comparable to those of TATB (31.15 GPa, 8.11 km·s−1)
(Table 7).
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Table 7. Physical and detonation properties of ionic salts of dinitropyrazoles. The data of compounds
36–39 are from reference [26], the data of compounds 40a–41o and TATB are from reference [91].

Entry ρ/g·cm−3 D/km·s−1 P/GPa Td/
◦C HOF/kJ·mol−1 IS/J FS/N

36 1.69 - - 127 - 40 360
37 1.70 8.11 25.9 300 - 40 360
38 1.63 7.59 21.1 156 - 40 360
39 1.59 7.32 19.1 295 - 40 360
40a 1.63 8.14 26.3 275 64.8 >60 -
40b 1.64 8.19 26.4 221 222.6 >60 -
40c 1.63 7.72 21.6 303 36.1 >60 -
40d 1.69 8.24 25.2 223 140.1 >60 -
40e 1.62 7.44 22.7 179 310.4 >60 -
40f 1.67 7.73 22.4 257 283.6 >60 -
40g 1.73 8.12 25.8 223 411.1 >60 -
40h 1.79 8.42 27.2 270 241.6 >60 -
40i 1.84 8.74 32.6 193 211.9 >60 -
41j 1.67 8.35 25.9 201 250.5 >60 -
41k 1.71 8.75 28.9 229 356.9 >60 -
41l 1.72 7.98 24.2 169 100.4 >60 -

41m 1.73 7.94 23.1 243 −166.3 >60 -
41n 1.54 7.71 21.0 206 389.3 >60 -
41o 1.60 7.78 22.4 173 471.8 >60 -

TATB 1.93 8.11 31.2 324 −140.0 50 -

N-oxidation of nitrogen-rich heterocycles including transformation of amino group to nitroso,
azoxy, or nitro groups is another approach to designing HEDMs, which opens new avenues for
the development of HEDMs [92,93]. The efforts to developing N-oxidation of dinitropyrazoles
have been made recently. Bölter et al. [94] introduced -OH on N atom of 3,4-DNP and 3,5-DNP,
and obtained several salts (Figure 17, Scheme A). From Table 8, these compounds were less sensitive
than RDX, and did not exhibited excellent detonation properties. Yin et al. [95] synthesized a family of
4-amino-3,5-dinitro-1H-pyrazol-1-ol (44) and its ionic derivatives (44a–f) (Figure 17, Scheme B).
Except 44·H2O, all the compounds (44a–f, and 45) with thermal decomposition temperatures
(169–216 ◦C) shown good balance between detonation properties and insensitive properties as
shown in Table 8. Zhang et al. [96] synthesized the 4-nitramino-3,5-dinitropyrazole by nitrating
the -NH2 of LLM-116, and prepared several energetic salts which exhibited good insensitivity and
moderate detonation properties.
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Table 8. Physical and computational properties of ionic salts of dinitropyrazoles. The data of
compounds 42a–43d are from reference [94], the data of compounds 44·H2O–45 are from reference [95].

Entry ρ/g·cm−3 D/km·s−1 P/GPa Td/
◦C IS/J FS/N

42a 1.96 7.92 26.9 197 5 216
42b 1.68 8.28 28.2 167 10 360
42c 1.70 8.06 25.1 180 30 360
42d 1.64 8.02 24.7 169 10 360
43a - - - 229 6 240
43b 1.62 7.91 24.4 224 30 288
43c 1.68 7.94 24.2 266 40 360
43d 1.68 8.16 25.7 131 10 360

44·H2O 1.86 - - 93 20 240
44a 1.79 8.94 34.4 216 25 240
44b 1.86 9.00 37.6 182 35 360
44c 1.84 8.80 34.0 175 40 360
44d 1.71 8.20 26.4 204 40 360
44e 1.71 8.54 28.0 169 40 360
44f 175 8.88 30.7 214 40 360
45 1.80 8.81 33.9 212 40 360

As mentioned above, polynitromethyl are considered to be more favorable groups to give
remarkable improvements in densities and detonation properties of energetic materials. Especially the



Molecules 2020, 25, 3475 16 of 42

N-trinitroethylamination of nitropyrazole is more available since it is stable to be handled
safely. The N-trinitroethylamination of dinitropyrazole was firstly proposed by Shreeve team [57].
They obtained several N-amino-dinitropyrazoles firstly, then these compounds underwent Mannich
reactions with trinitroethanol to acquire the corresponding derivatives (46–50) (Figure 18, Scheme A).
It was noteworthy that 1-amino-3,5-dinitropyrazole and 1-amino-3,4-dinitro-5-cyanopyrazole failed
to get the corresponding compounds due to the electron-withdrawing effect of substituent
groups bonded to dinitropyrazole ring. In addition, they employed an alternative synthetic
method to obtain 1,5-diamino-3,4-dinitropyrazole (51) (Figure 18, Scheme B) because attempted
amination of this compound using TsONH2 acid or NH2OSO3H failed. From Table 9, although the
azido-functionalized dinitropyrazole (47) decomposed at 121 ◦C, compound 46 and 51 had high
decomposition temperatures, and 47 and 50–52 owned higher density than RDX. These indicated the
introduction of an -NH2 could enhance density. In addition, N-trinitroethylamination of dinitropyrazole
(48–50 and 52) shown high HOF and good detonation properties. N-trinitromethyl moiety was
introduced by Dalinger’s team [58], they synthesized 3,4-dinitro–1-(trinitromethyl)-pyrazoles
(53) and 3,5-dinitro-1-(trinitromethyl)-pyrazoles (54) with excellent physical and computational
properties as shown in Figure 19. They were a little less insensitive than the RDX and PETN,
similar to N-trinitroethylamination dinitropyrazoles shown in Table 9. Fluorine and fluorinated
functional groups are importantly promising substituents in the field of energetic materials [97].
C(NO2)2F and C(NO2)2NF2 moieties bring high energy, maintaining high density and good thermal
property were incorporated into dinitropyrazole by fluorinated compound 55 (Figure 19, Scheme C).
The two compounds had high density (≥1.92 g·cm−3), good oxygen balance (+2.55% for 57 and 0% for
56), and high detonation pressure and velocity [98].
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Table 9. Physical and computational properties of several polynitropyrazoles. The data of compounds
46–52 are from reference [57], the data of compounds 53–54 are from reference [58].

Entry ρ/g·cm−3 D/km·s−1 P/GPa Tm/
◦C Td/

◦C HOF/kJ·mol−1 IS/J FS/N

46 1.71 7.46 20.1 58 241 200.3 >40 360
47 1.82 9.05 35.8 120 121 548.2 1.5 5
48 1.78 8.67 33.1 87 110 142.3 6 80
49 1.82 9.00 35.6 - 117 491.7 2.5 20
50 1.81 8.75 34.3 - 116 124.1 12 120
51 1.82 8.69 32.8 133 238.2 173.0 >40 360
52 1.83 8.80 35.0 - 134.4 112.0 8 80
53 1.91 8.67 35.5 80 157 244.0 8 130
54 1.94 8.73 36.6 81 159 206.0 9 145
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Dinitropyrazoles bearing other heterocycles are also interesting and notable. To obtain the melt-
castable explosives with good compatibility, improved oxygen balance and moderate detonation 
properties, compound 58 incorporating both N-trinitromethyl and C-methyl substituents in addition 
to nitro groups was synthesized by Sheremetev’s group [99] (Figure 20). This low melting 
temperature compound has been proved to own higher detonation pressure and velocity values than 
those of others melt-castable energetic heterocycles bearing methyl group, which provided feasible 
route to castable energetic materials. In addition, introduction of polynitrogen heterocycle and 
formation of energetic salts are main methods to improve the thermal stability of explosives [100]. In 
2016, a heat-resistant energetic material, compound 59 bearing triazole ring, was synthesized using 
5-amino-3-nitro-1H-1,2,4-triazole (ANTA) and 3,4,5-trinitrated-1H-pyrazole (TNP), and several salts 
based on it were developed by Zhou et al. [101] (Figure 21, Scheme A). As shown in Table 10, 
compound 59 had high decomposition temperature (270 °С) and high positive HOF (833 kJ·mol−1). 
All the salts showed good thermal stability, excellent insensitivity, and good detonation properties. 
In particular, the guanidinium salt 59d exhibited the best thermal stability superior than that of most 
explosives. Considering thermal stability and energetic properties, compounds 59 and 59d could be 
used as heat-resistant explosives and it was possible that these compounds can be applied as heat-
resistant materials. Afterwards, their group reported a family of unsymmetrical N-bridged 
dinitropyrazoles synthesized by TNP and 5-amino-1H-tetrazole (ATZ) and its organic salts (Figure 

Figure 19. Synthesis of compounds 53–57.

Dinitropyrazoles bearing other heterocycles are also interesting and notable. To obtain the
melt-castable explosives with good compatibility, improved oxygen balance and moderate detonation
properties, compound 58 incorporating both N-trinitromethyl and C-methyl substituents in addition
to nitro groups was synthesized by Sheremetev’s group [99] (Figure 20). This low melting temperature
compound has been proved to own higher detonation pressure and velocity values than those of
others melt-castable energetic heterocycles bearing methyl group, which provided feasible route to
castable energetic materials. In addition, introduction of polynitrogen heterocycle and formation of
energetic salts are main methods to improve the thermal stability of explosives [100]. In 2016,
a heat-resistant energetic material, compound 59 bearing triazole ring, was synthesized using
5-amino-3-nitro-1H-1,2,4-triazole (ANTA) and 3,4,5-trinitrated-1H-pyrazole (TNP), and several salts
based on it were developed by Zhou et al. [101] (Figure 21, Scheme A). As shown in Table 10, compound
59 had high decomposition temperature (270 ◦C) and high positive HOF (833 kJ·mol−1). All the salts
showed good thermal stability, excellent insensitivity, and good detonation properties. In particular,
the guanidinium salt 59d exhibited the best thermal stability superior than that of most explosives.
Considering thermal stability and energetic properties, compounds 59 and 59d could be used as
heat-resistant explosives and it was possible that these compounds can be applied as heat-resistant
materials. Afterwards, their group reported a family of unsymmetrical N-bridged dinitropyrazoles
synthesized by TNP and 5-amino-1H-tetrazole (ATZ) and its organic salts (Figure 21, Scheme B).
Several compounds (60, 60b, and 60c) with high N contents exhibited superior detonation velocities
but inferior detonation pressures compared to HMX and insensitivities to impact (IS > 40 J) and friction
(FS > 360 N) comparable to those of TATB (Table 10), which could be promising insensitive HEDMs for
practical application.
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Table 10. Physical and computational properties of 59–60i. The data of compounds 59–59m are from
reference [101], the data of compounds 60–60i and HMX are from reference [88].

Entry ρ/g·cm−3 D/km·s−1 P/GPa N/% Td/
◦C HOF/kJ·mol−1 IS/J FS/N

59 1.84 9.17 37.8 44.2 270 833.4 9 240
59a 1.73 8.62 31.6 46.4 285 622.8 >40 >360
59b 1.76 8.83 34.4 44.0 215 709.9 33 252
59c 1.74 8.80 32.9 48.6 241 811.4 >40 >360
59d 1.78 8.66 31.1 48.8 340 624.1 >40 >360
59e 1.65 8.24 26.5 50.7 281 728.9 >40 >360
59f 1.70 8.54 28.9 52.4 262 831.7 27 240
59g 1.71 8.69 30.0 54.0 242 941.4 20 216
59h 1.72 8.36 28.8 51.0 279 828.3 >40 252
59i 1.74 8.56 29.5 52.6 292 944.8 >40 >360
59j 1.80 9.03 35.2 54.5 222 1211.7 12 252
59k 1.77 8.65 30.5 54.2 303 1166.1 20 >360
59l 1.75 - - 41.0 261 - 7.5 252

59m 1.91 - - 37.7 281 - 5 216
60 1.86 9.29 38.6 52.3 279 856.4 35 240

60a 1.79 8.95 33.3 54.3 299 672.6 >40 168
60b 1.84 9.23 37.4 51.1 296 719.7 >40 216
60c 1.84 9.36 37.0 56.4 290 819.8 >40 360
60d 1.67 8.26 25.9 56.0 256 648.8 >40 360
60e 1.72 8.76 28.6 61.2 216 808.7 >40 32
60f 1.79 9.07 32.5 59.4 285 844.9 >40 288
60g 1.81 9.29 34.2 60.9 287 954.9 >40 84
60h 1.84 8.95 32.2 57.6 286 840.2 >40 360
60i 1.82 9.00 32.3 59.1 261 960.0 >40 360

HMX 1.91 9.19 39.7 37.8 287 104.8 7.4 120
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In summary, some dinitropyrazoles and derivatives exhibit low melting points and high
decomposition temperatures as well as good detonation, which can make them competitive candidates
for a castable explosive. To further improve the performance of dinitropyrazole-based energetic
materials, a combination of several functional groups should be better, for example, the combination of
nitramine and polynitrogen heterocyclic which can endow them with high thermal stability and good
detonation performance.

2.3. Trinitropyrazole and Its Derivatives

TNP is the unique pyrazole compound by total carbon nitrification [102]. This compound owns
good thermal stability (260–350 ◦C of Td) and chemical stability, and shows high detonation velocity
(9.0 km·s−1) and detonation pressure (37.09 GPa). Wu et al. reviewed the synthesis of TNP in recent
years in detail [102], including direct nitration methods, amino oxidation method, amino diazotization
method, iodo nitrification method and microwave rearrangement method. The typical synthesis of
TNP is the oxidation of LLM-116 rather than 5-amino-3,4-dinitropyrazole, and this is partly because
the amino group in LLM-116 has higher electron cloud density and steric hindrance than amino group
in 5-amino-3,4-dinitropyrazole, which can promote the intermolecular oxidation reaction and avoid
the occurrence of intermolecular side reaction effectively, and partly because the “NO2-NH2-NO2”
framework in LLM-116 makes it more stable and easier to synthesize. In addition, the nitrification of
3,5-DNP is another typical synthesis route of TNP. Traditional oxidation methods have the following
defects: harsh reaction conditions, poor selectivity, by-products, high risk factor, expensive metal
catalyst and toxic organic solvent. Although the synthesis of TNP with LLM-116 and 3,5-DNP as
starting materials are mature, the synthesis of LLM-116 and 3,5-DNP are complicated. It is necessary
to explore novel synthesis method. Zhao et al. [44] used LLM-116 as starting material, water as solvent,
and KHSO5 as oxidant to synthesize TNP. Ravi et al. [103] put forward the nitration system of metal
nitrate and studied the process of nitration to TNP. These two methods are promising to prepare TNP.

Moreover, 1-methyl-3,4,5-trinitropyrazole (MTNP), a derivative of TNP, is an insensitive energetic
material with 91.5 ◦C of melting point, 248–280 ◦C of decomposition temperature, 8.65 km·s−1 of
detonation velocity, and 33.7 GPa of detonation pressure [104]. Ravi et al. [103] added K-10 and TNP to
bismuth impregnated in THF to obtain MTNP (Figure 22, Scheme A). There were also many routes to
synthesize MTNP. Dalinger et al. [105,106] dissolved TNP in NaHCO3 aqueous solution with Me2SO4 as
methylation reagent to acquire MTNP (Figure 22, Scheme B). Guo et al. [107] synthesized MTNP from
1-methyl-pyrazole by one-step method with nitric acid and fuming sulfuric acid (Figure 22, Scheme C).
Among these methods, selection of highly efficient catalytic synthesis process and low toxicity
methylation reagent are the trend in MTNP synthesis. In addition, 1-amino-3,4,5-trinitropyrazole
(ATNP) is also a derivative of TNP with excellent detonation properties (D = 9.17 km·s−1

and P = 40.9 GPa) and thermal stability [108]. This was reported by Herve et al. [93], and the
synthesis route is shown in Scheme D of Figure 22 (Pic-O-NH2 = 2,4,6-trinitrophenyl-O-hydroxylamine)
with a yield of 26%.

The N-H bond in TNP is easy to neutralize with alkali or react with metal salts forming energetic
salts due to the stereoscopic structure and spatial effect of pryazole ring. These energetic salts
further broaden the application of TNP. Zhang et al. [109] prepared a series of energetic salts of
TNP based on nitrogen-rich cations (61a–m) (Figure 23, Scheme A), all the salts showed poorer
densities and detonation properties than TNP (Table 11), but they owned good thermal stability
and excellent insensitivity. Drukenmuller et al. [110] reported the synthesis of alkali and earth
alkali trinitropyrazolate (62a–d) (Figure 23, Scheme B), compound 62d exhibited predominantly
decomposition temperatures (Table 11). They also prepared pyrotechnic formulations using 62c and
62d, which showed good color properties and low sensitivity as well as high Td. In addition, Shreeve’s
group [111] synthesized 3,4,5-trinitropyrazole-1-ol (63) and its nitrogen-rich salts (63a–g) (Figure 24)
the corresponding properties are shown in Table 11. Compound 63 with its high oxygen content
(51.13%) could be the green replacement of the currently used oxidizer (NH4ClO4), while the high IS
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(1 J) restricted its application. Compound 63a–g with acceptable impact sensitivities and detonation
performance could be useful energetic materials.
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Table 11. Property parameters of salts of TNP. The data of compounds 61a–61m are from reference [109],
the data of compounds 62a–62d are from reference [110], the data of compounds 63–63g are from
reference [111].

Entry ρ/g·cm−3 D/km·s−1 P/GPa Td/
◦C HOF/kJ·mol−1 IS/J FS/N

61a 1.73 8.46 29.9 224 60.5 40 -
61b 1.69 7.87 25.6 167 299.0 >40 -
61c 1.71 7.97 26.0 171 273.5 >40 -
61d 1.77 8.54 31.9 168 401.2 >40 -
61e 1.76 8.22 27.7 196 235.6 >40 -
61f 1.66 7.87 24.7 235 28.3 >40 -
61g 1.69 8.13 26.9 222 133.6 >40 -
61h 1.68 7.82 24.3 243 452.3 >40 -
61i 1.76 8.36 28.8 206 355.0 >40 -
61j 1.61 7.59 23.7 219 375.0 >40 -
61k 1.64 7.92 25.2 167 459.8 35 -
61l 1.62 7.98 25.3 197 246.5 >40 -

61m 1.65 8.24 27.2 184 352.7 >40 -
62a - - - 274 - 40 96
62b - - - 254 - 25 80
62c - - - 193 - 40 80
62d - - - 302 - 5 144
63 1.90 8.67 36.4 146 118.5 1 -

63a 1.82 8.68 35.1 176 35.1 6 -
63b 1.72 8.18 28.8 171 3.1 >40 -
63c 1.73 8.18 29.5 140 274.9 >40 -
63d 1.73 8.18 29.2 132 250.5 >40 -
63e 1.74 8.15 30.8 118 381.6 >40 -
63f 1.76 8.26 29.7 186 213.7 >40 -
63g 1.77 8.44 31.1 185 331.9 >40 -
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Polynitrogen heterocycle linking to TNP is a promising method to reach a balance between
the energetic and physical properties of TNP, while there are a few references about it.
Shreeve et al. [112] reported the synthesis of asymmetric N,N′-ethylene bridged 5-aminotetrazole
and TNP moieties. They prepared 1-(2-(3,4,5-trinitro-1H-pyrazol-1-yl)ethyl)-1H-tetrazol-5-amine
and 1-(3-(3,4,5-Trinitro-1H-pyrazol-1-yl)propyl)-1H-tetrazol-5-amine, and the two compounds were
excellent insensitive and moderate powerful. In addition, they synthesized 5-((3,4,5-trinitro-1H-pyrazol-
1-yl)methyl)-1H-tetrazole by N-methylene-C bridging TNP and tetrazole, which showed outstanding
detonation properties and moderate insensitivity [113].
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3. Nitrated-Bispyrazoles Based Compounds

Nitropyrazoles can be connected with nitrogen-rich heterocycles to obtain amazing energetic
materials. In the previous section, nitropyrazoles bearing some polynitrogen heterocycles have been
shown. Generally, these compounds exhibit some special properties, such as high detonation properties,
good thermal stability, excellent safety, high density, and heat of formation, etc. Nitrated bispyrazoles
also have attracted more and more attention, we will review the nitrated bispyrazole-based energetic
materials in this section.

3.1. Directly Bridged Bis(Nitropyrazole)s

In 2014, Li et al. [27] synthesized several polynitro-substituted 1,4′-bridged-bispyrazoles energetic
salts (64–67) as shown in Figure 25. They found that these compounds showed remarkable
and unprecedented comprehensive properties (Table 12), and most of them with low toxicity were not
hygroscopic. These compounds exhibited excellent impact sensitivities close to TATB, and the melting
points and thermal decomposition temperatures were high, which could be applied as heat-resistant
explosive. Compound 64 showed high Td approximating that of hexanitrostilbene (HNS, 316 ◦C).
The energetic properties of compounds 64, 65, 65a, 66, and 67 were comparable with or superior to RDX,
especially compound 66. In 2017, Tang et al. [114] prepared 4,4′,5,5′-tetranitro-2H,2′H-3,3′-bipyrazole
(69) and its di-N-amino product (70), and the detailed route is described in Figure 26. Compound 70
showed good thermal stability and insensitivities as well as high detonation properties (Table 12).
In addition, they synthesized 4,4′-dinitro-5,5′-diamino-2H,2′H-(3,3′-bipyrazole) (consisting of two
3-amino-4-nitropyrazole rings), this compound also show outstanding balance between thermal
stability and safety (Table 12) [115]. Afterwards his team reported a variety of energetic materials
based on compound 69 shown in Figure 27. Compounds 71, 73b, and 73h had high densities and
good detonation velocities (Table 12), which were superior to RDX suggesting their use in secondary
explosives. The dipotassium salt 73b had a high density of 2.029 g·cm−3 and excellent thermal stability
of 323 ◦C, and could be applied as primary explosives [116]. However, the poor impact sensitivity
might restrict their further application. In 2019, Domasevitch and co-authors [117] found an efficient
approach towards facile accumulation of nitro functionalities at the pyrazole platform. Compounds 74,
75, and 76 were synthesized according to Figure 28. From Table 12, the three compounds owned high
decomposition temperatures above 290 ◦C, especially for 75 and 76. The introduction of three and
four -NO2 into the 4,4-bipyrazole scaffold could produce insensitive and thermally stable energetic
materials with ideal densities and good detonation properties.
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Table 12. Physicochemical and energetic properties of compounds 64–76. The data of compounds 64–67
are from reference [27], the data of compounds 70 are from reference [114], the data of compounds 71–73i
are from reference [116], the data of compounds 74–76 are from reference [117].

Entry ρ/g·cm−3 D/km·s−1 P/GPa Tm/
◦C Td/

◦C HOF/kJ·mol−1 IS/J FS/N

64 1.96 8.72 36.0 269 308 185.4 >40 -
65 1.89 8.60 35.0 dec 242 388.1 >40 -

65a 1.88 8.62 34.6 dec 262 274.7 >40 -
65b 1.73 8.04 27.3 dec 228 246.5 >40 -
65c 1.67 8.09 27.1 249 272 506.4 >40 -
65d 1.71 8.20 27.9 210 272 448.8 >40 -
65e 1.72 8.34 29.0 212 266 558.0 >40 -
65f 1.75 8.33 31.1 dec 259 331.2 >40 -
65g 1.82 8.45 31.0 247 297 557.0 >40 -
65h 1.72 8.23 28.9 166 261 700.4 >40 -
65i 1.80 8.54 32.8 dec 260 428.1 >40 -
66 1.82 8.81 37.0 158 297 824.2 28 -
67 1.87 8.65 35.1 260 284 477.9 >40 -
70 1.76 8.50 31.0 - 252 475.7 30 360
71 1.88 8.99 36.0 - 150 347.4 5 240
72 1.92 8.04 28.9 150 228 -50.7 6 120

73a 2.03 7.77 27.3 - 323 -125.2 4 40
73b 1.85 8.85 35.8 - 137 220.6 8 240
73c 1.77 8.67 31.5 94 155 220.9 10 240
73d 1.76 8.34 29.4 - 193 116.2 10 240
73e 1.69 8.14 25.2 - 196 353.3 15 360
73f 1.75 8.31 27.3 185 186 791.9 16 360
73g 1.76 8.22 26.5 - 206 565.4 12 360
73h 1.81 8.95 34.2 187 193 1359.4 10 360
73i 1.80 8.54 28.9 - 250 1269.7 18 360
74 1.79 7.53 22.1 377 382 203.5 30 >360
75 1.81 8.36 28.6 306 314 224.9 20 >360
76 1.86 8.52 31.1 292 298 227.8 4.5 192
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3.2. Alkyl-Bridged Bis(Nitropyrazoles)

Alkyl is also a good linkage to construct nitrogen-rich moieties, and many N,N′-alkyl-bridged
energetic materials have been developed [112,118–121]. Yin et al. [122] developed a novel
class of N,N′-ethylene-bridged bis(nitropyrazoles) with the synthetic route shown in Figure 29.
Compounds 77–85 displayed various properties (Table 13) owing to the diversified functionalizations.
Diaminobis(pyrazoles) showed good thermal stability, highly insensitivity, and favorable energetic
performance; for example, the thermal decomposition temperature (311 ◦C) and detonation properties
(27.9 GPa and 8.19 km·s−1) of 77 were higher than those of TNT, and were comparable to those of
TATB. By contrast, N,N′-ethylene bridged dinitraminobis(pyrazoles) and diazidobis(pyrazoles) owned
better detonation performances, while having higher impact and friction sensitivity. Compound 80
was the most promising energetic material with high density, favorable thermal stability, and good
detonation properties, which were comparable to RDX. In addition, the relatively low impact and
friction sensitivities of 80 showed good integrated properties, highlighting its potential application as
a replacement of RDX. In 2016, Fischer et al. [123] synthesized three different bisnitropyrazole-based
energetic materials by N,N′-methylene bridge (86–88), the detailed synthetic route is displayed
in Scheme A of Figure 30. These energetic compounds could be used for different applications
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according to their properties (Table 13), compound 86 was a secondary explosive with a high
Td (310 ◦C), enhanced detonation parameters by contrast with HNS, and high sensitivity to
external stimuli. Compound 87 exhibited excellent detonation velocity (approximately to CL-20).
The higher performance and better thermal stability of 88 was relative to DDNP making it
a potential candidate as a green primary explosive. In addition, the synthetic routes are economical.
Afterwards, their group used a similar route to prepare bis(3,4-dinitro-1H-pyrazol-1-yl)methane (89)
and bis(3,5-dinitro-1H-pyrazol-1-yl)methane (90) with high decomposition temperature and low
sensitivities having capability as future energetic materials (Table 13) [94]. Gozin et al. [124] explored
the possible influence factor of the thermostable property of explosives, and under the guidelines they
proposed, they synthesized the compounds 91 and 92 with excellent thermal stability and moderate
sensitivities shown in Figure 31 and Table 13.Molecules 2020, 25, x FOR PEER REVIEW 26 of 42 
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Table 13. Physicochemical and energetic properties of 74–87. The data of compounds 77–85 are from
reference [122], the data of compounds 86–88, CL-20 and DDNP are from reference [123], the data of
compounds 89–90 are from reference [94], the data of compounds 91–92 are from reference [124].

Entry ρ/g·cm−3 D/km·s−1 P/GPa OB/% Td/
◦C HOF/kJ·mol−1 IS/J FS/N

77 1.77 8.19 27.9 −17.2 311 218.9 >40 >360
78 1.84 8.75 34.3 3.5 80 380.6 7 80
79 1.72 7.80 24.2 −19.0 247 441.9 20 80
80 1.84 8.76 34.1 7.4 250 306.9 25 160
81 1.78 8.80 33.4 −7.5 112 1233.9 4 60
82 1.88 7.88 27.0 −7.8 319 230.0 >40 >360
83 1.76 8.56 31.0 −7.5 135 1013.9 3 60
84 1.75 8.13 27.3 −17.2 256 237.9 >40 >360
85 1.83 8.71 33.7 3.5 81 368.1 6 60
86 1.80 8.33 29.6 −40.2 310 205 11 >360
87 1.93 9.30 39.1 −11.5 205 379 4 144
88 1.73 8.02 26.0 −44.7 226 497 1.5 40
89 1.76 8.14 28.0 −39.0 319 302 25 360
90 1.72 7.97 26.3 −39.0 330 266 35 360
91 1.81 8.23 28.6 −39.0 262 224.2 14 352
92 1.81 8.36 29.7 −51.4 351 184.3 10 352

CL-20 2.04 9.67 44.9 −11.0 195 365 3 96
DDNP 1.72 76.5 23.8 −60.9 157 139 1 5
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Figure 31. Synthesis of compounds 91 and 92.

3.3. Ring-Bridged Bis(Nitropyrazoles)

Ring-bridge is an important connector linking bis(nitropyrazoles) to obtain high performance
energetic materials. Pagoria et al. [125] reported the trimerization of LLM-116. 4-Diazo-3,5-bis(4-amino-
3,5-dinitropyrazol-1-yl) pyrazole (93) containing a stable diazo group was synthesized, and the detailed
route is shown in Figure 32. Compound 93 was more thermally stable (278 ◦C of Td) than LLM-116,
attributing to the considerable hydrogen bonding between -NH2 and -NO2, and the short contact
between the =N2 and -NO2 through the intermolecular interactions. Moreover, it was insensitive
to impact, friction, and spark. Yan et al. [126] designed mono and bi(1,2,4-oxadiazole) rings to
bridge polynitropyrazoles (Figure 33). Among compounds 94–99, 98, and 99 owned the highest
detonation velocity of 8.90 and 8.87 km·s−1, detonation pressure of 35.1 and 34.5 GPa, respectively.
94 and 95 processed good stability (272–274 ◦C) and good insensitivity (IS > 30 J and FS > 360 N)
as well as high detonation properties (8.69–8.74 km·s−1 of D and 33.4–34.0 GPa of P). 96 and 97
had the high thermal stability over 310 ◦C and good sensitivity (IS > 40 J, FS > 360 N). Comparing
with the conventional heat resistant explosive HNS, 96 and 97 owned better detonation properties
(7.99–8.03 km·s−1 of D, 25.2–26.4 GPa of P). Also, their team used the similar routes to synthesize
the bis(nitropyrazoles) with 1,3,4-oxadiazole (100–105) [127]. The properties of these compounds
are showed in Table 14. Moreover, Li et al. [124] synthesized the compound 106 with the procedure
shown in Figure 34. This compound exhibited an excellent decomposition temperature (341 ◦C), high
calculated detonation velocity of 8.52 km·s−1, and detonation pressure of 30.6 GPa. It also showed
impressive insensitivities (IS = 22 J, FS = 352, and ESD = 1.05 J). These showed building ring bridged
bis(nitropyrazoles) can be an effective approach to enhance the properties of energetic materials.
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Table 14. Physical and energetic properties of energetic compounds 100–105. The data of compounds
100–105 are from reference [127].

Entry ρ/g·cm−3 D/km·s−1 P/GPa Td/
◦C HOF/kJ·mol−1 IS/J FS/N

100 1.80 8.10 27.1 338 521.6 >40 >360
101 1.81 8.05 26.5 368 639.8 >40 >360
102 1.83 8.86 34.2 159 762.1 8 150
103 1.84 8.77 33.3 186 882.4 13 220
104 1.87 8.71 32.8 265 602.7 30 360
105 1.84 8.54 31.7 254 519.4 35 >360

In addition, there are some other fused ring-bridged bis(nitropyrazoles). In 2017, Yin and
co-authors [128] synthesized compound 109 and its derivatives according to the procedure shown in
Figure 35, and their physicochemical and energetic properties are shown in Table 15. Among these
compounds, 107a had a high density and decomposition temperature as well as the good safety
parameters. The introduction of nitramino group gave 110 and 111 highest detonation velocities and
pressures, while they also exhibited sensitive properties to mechanical stimuli. Considering the whole
aspect, 108a was featured with promising integrated energetic performance exceeding those of the
benchmark explosive RDX. Shreeve’s group prepared (112) obtained from compound 69 by N-azo
coupling reactions shown in Scheme A of Figure 36 [114]. Compound 112 had a high density of
1.955 g·cm−3 and a good thermal stability (233 ◦C). Its detonation properties (9.63 km·s−1 and 44.0 GPa)
were comparable to CL-20, much better than those of RDX and HMX. In addition, the IS of 10 J and
FS of 240 N showed it was more stable than CL-20. These indicated compound 112 was a superior
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energetic explosive. In 2018, her team developed an efficient synthetic method of ring closure of
polynitropyrazoles with N,N′-ethylene/propylene bridges (Figure 36, Scheme B). Compounds 113 and
114 showed excellent thermal stability (261 ◦C for 113, 280 ◦C for 114), good detonation properties
and moderate insensitivities, making them potential candidates as HEDMs. This ring closure strategy
could provide new ideas of designing thermally stable explosives.
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Figure 35. Synthesis of compounds 107a–111.

Table 15. Physicochemical and energetic properties of compounds 107a–111. The data of compounds
107a–111 are from reference [128].

Entry ρ/g·cm−3 D/km·s−1 P/GPa Td/
◦C HOF/kJ· g−1 IS/J FS/N

107a 1.90 8.79 34.3 261 1.10 15 240
107b 1.82 8.52 31.7 220 0.97 40 360
108a 1.86 8.89 35.9 221 1.05 35 360
108b 1.83 8.69 33.2 207 1.33 25 360
109 1.79 8.36 29.6 242 0.96 15 160
110 1.94 9.23 38.8 117 1.30 3 20
111 1.87 9.03 37.1 138 1.32 10 80
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3.4. DCNP-Bridged Bis(Nitropyrazoles)

It is known that 1,3-Dichloro-2-nitro-2-azapropane (DCNP) is an useful precursor connecting
nitropyrazoles via nucleophile substitution [129]. In 2013, Zhang et al. [130] reported a family of
functionalized dipyrazolyl N-nitromethanamines (compounds 115–122 in Figure 37) using DCNP as
the bridge. These compounds exhibited densities between 1.69–1.90 g·cm−3 and thermal stabilities
range from 166–354 ◦C. From Table 16, it was easy to see the introduction of the azidodinitropyrazolate
group led to the most competitive detonation properties (35.1 GPa and 8.72 km·s−1 for 121, 35.2 GPa and
8.72 km·s−1 for 122). However, they showed high sensitivity (IS = 2 J). Compound 119 exhibited good
physical and detonation properties, such as high thermal stability, density, HOF, detonation pressure
and velocity, and great impact stability, which could be used a promising HEDM. Klapötke et al. [131]
also reported these compounds. They applied a different synthesis method of DNCP by the nitration
of hexamethylenetetramine, and the NaBr/acetone system was used to substitution reaction.

Table 16. Properties of nitrated bispyrazoles from 1,3-dichloro-2-nitro-2-azapropane. The data of
compounds 115–122 are from reference [130].

Entry ρ/g·cm−3 D/km·s−1 P/GPa Td/
◦C HOF/kJ·mol−1 IS/J OB/%

115 1.69 7.87 25.1 262 377.2 >40 −30.8
116 1.78 8.26 30.9 250 388.0 10 −4.0
117 1.78 8.27 31.0 261 398.0 >40 −4.0
118 1.90 8.06 30.6 252 371.8 11 0
119 1.86 8.64 34.7 232 486.4 >40 −7.4
120 1.89 8.04 30.4 354 381.3 >40 0
121 1.83 8.72 35.1 166 1108.2 2 0
122 1.83 8.72 35.2 169 1118.7 2 0

In general, the physical and energetic properties of bridged bis(nitropyrazole)s can be adjusted
by the bridged groups. The design of novel bridged group would be a key factor to synthesize
new HEDMs, and forming polycyclic derivatives even cage compounds could be more attractive.
In addition, the salts of bridged bis(nitropyrazole)s should be explored in-depth.
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4. Nitrated Pyrazolo[4,3-c]Pyrazoles and Their Derivatives

Application of molecular design and explosive performance prediction has explored many
novel energetic materials based on pyrazolopyrazole ring system [2,132,133]. Heterocycles like
pyrazolo-pyrazole always own high density and oxygen balance, good thermal stability, and enhanced
energetic performance of an energetic material.

3,6-Dinitropyrazolo[4,3-c]pyrazole (DNPP) is a new type of energetic material with attractive
properties (1.865 g·cm−1 of ρ, 42.42% of nitrogen content, 273 kJ·mol−1, 330.8 ◦C of Td and 68 cm of
D50). This compound synthesized from 3,5-dimethylpyrazole was firstly reported by Dalinger and
co-workers [134]. Pagoria et al. [135] improved the synthetic route to DNPP as shown in Scheme
A of Figure 38. In this procedure, 4-diazo-3,5-dimethylpyrazole salt is an important intermediate.
Li et al. [136] improved the process of 4-diazo-3,5-dimethylpyrazole salt using freezing crystallization
instead of extraction which avoided large use of organic solvents and improved its yield. This procedure
has several advantages, such as ease of synthesis scale-up and better product yield. In addition,
Luo et al. [137] proposed that DNPP could be obtained by dehydration condensation, primary nitration,
reduction, diazotization, cyclization, secondary nitration, oxidation, and decarboxylation nitration
with acetylacetone and hydrazine hydrate as raw materials (Figure 38, Scheme B).

Due to the active N-H bond in molecule of DNPP, it is easy to obtain its energetic salts. In
2014, Zhang et al. [138] reported a series of nitrogen-rich energetic salts based on the anion of DNPP
(123a–m) shown in Figure 39. Salts 123a–e could be obtained by reacting DNPP with ammonia,
hydrazine, hydroxylamine, 3,5-diamino-1,2,4-triazole, and 3,4,5-triamino-1,2,4-triazole. Salts 123f–j
could be synthesized by reacting Na2DNPP with guanidine nitrate, aminoguanidine, diaminoguanidine,
triaminoguanidinium, and 2-iminium-5-nitriminooctahydroimidazo [4,5-d]imidazole hydrochlorides.
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Salts 123k–m were acquired by the reaction of DNPP with NaOH, KOH and AgNO3 respectively.
Table 17 displays the properties of these energetic salts. It was notable that the ammonium salt (123a),
hydroxylammonium salt (123b) and guanidinium salt (123f) exhibited outstanding decomposition
temperatures of >300 ◦C. Furthermore, the sodium salt (123k) and potassium (123l) salt of DNPP were
thermally stable up to 395 ◦C and 365 ◦C, respectively. In addition, most of the salts showed high
calculated detonation properties, especially 123b owned the highest detonation velocity and pressure.
Considering the balance of safety and energetic properties as well as physical properties, 123b could
be a competitive candidate in insensitive HEDMs. Luo and co-authors synthesized the basic lead salt
of DNPP (Pb-DNPP) and the 3,6-dihydrazine-1,2,4,5-tetrazine salt of DNPP (DHT-DNPP), and studied
their thermal decomposition behaviors. Like 123k–m, the introduction of heavy cations made the salts
higher densities and Td. Combining other organic amines salts of DNPP [139], these salts showed
good thermal stabilities.
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Table 17. Properties of energetic compounds 123a–m. The data of compounds 123a–123m are from
reference [138].

Entry ρ/g·cm−3 D/km·s−1 P/GPa Td/
◦C HOF/kJ·mol−1 IS/J FS/N OB/%

123a 1.69 8.21 25.4 328 158.5 >40 360 −27
123b 1.82 9.01 35.4 327 274.2 29 360 −12
123c 1.72 8.86 30.3 247 501.0 16 160 −30
123d 1.71 8.04 24.5 287 481.9 >40 360 −30
123e 1.67 8.23 24.6 289 963.8 >40 360 −41
123f 1.68 7.95 22.5 324 173.3 >40 360 −40
123g 1.69 8.40 25.6 222 477.0 >40 360 −41
123h 1.71 8.73 28.0 209 679.6 >40 360 −42
123i 1.76 8.81 29.9 215 605.5 12 80 −31
123j 1.79 8.36 27.9 238 505.6 23 160 −27
123k 2.14 - - 395 - 0
123l 2.20 - - 365 - 0

123m 3.27 - - 327 - 0

In addition, 1,4-Diamino-3,6-dinitropyrazolo[4,3-c]pyrazole (LLM-119) is a derivative of DNPP
with a predicted energy of 104% HMX and good insensitivity to friction and electric spark stimulation [2].
It is also a very important intermediate of synthesizing novel high-performance energetic materials.
Li et al. [140] used NaOH and H2NOSO3H to realize the N-amination of DNPP, while the yield
was low (10.4%). Yin reported a modified procedure using 1,8-diazabicycloundec-7-ene (DBU) and
O-tosylhydroxylamine (TsONH2) as organic solvents with a good yield [141]. He also developed a series
of DNPP derivatives based on N-functionalization strategy including several ionic salts of DNPP, the
synthesis route is displayed in Figure 40 (Scheme A). As shown in Table 18, compounds 125, 126 and
126c exhibited high densities and excellent detonation velocities and pressures, which were superior
to the current secondary explosive benchmark HMX. These compounds except 126d and 126e were
sensitive to stimulation, especially for 126i also showed excellent density and good thermal stability.
These could make compound the potassium salt as a green primary explosive. Compounds 126a,
126b, 126c and 126g showed good possibilities for application in bipropellants owing to the high
values of (N + O) content and specific impulse. Li and co-author [142] synthesized another four
kinds of neutral explosives based on N-functionalization of DNPP shown in Scheme B of Figure 40.
Comparing with LLM-119, compound 127 showed slightly lower energetic and physical properties
due to the only one -NH2. Compounds 130 owned the relatively high density, good thermal stability,
outstanding detonation properties, and reasonable sensitivities, which could be a useful energetic
material. Li et al. [143,144] also synthesized several salts of N-nitramino DNPP, which exhibited good
energetic properties.

In addition, Zhang et al. [145] introduced the dinitromethyl group and fluorodinitromethyl group
into DNPP molecule and synthesized five fused-ring energetic derivatives (131–132) shown in Figure 41.
Among these compounds, the dipotassium salt (131a) was formed as an interesting three-dimensional
metal-organic framework (MOF) and exhibited outstanding detonation performances (9.02 km·s−1

of D and 33.6 GPa of P), which were comparable to that of Pd(N3)2. The compound 132 had a high
density of 1.939 g·cm−3, high decomposition temperature of 213 ◦C and desired mechanical sensitivities
(IS: 12 J; FS: 240 N), which could be a competitive candidate of RDX. These energetic compounds
containing dinitromethyl or fluorodinitromethyl group enrich the energetic compound library of
pyrazolo[4,3-c]pyrazoles. Furthermore, their group incorporated two tetrazole groups into DNPP
molecule, and synthesized 3,6-dinitro-1,4-di(1H-tetrazol-5-yl)-pyrazolo[4,3-c]pyrazole (133) and its
ionic derivatives (133a–f) shown in Figure 42 [146]. The physicochemical and energetic properties of
these compounds are shown in Table 19. These compounds were thermally stable and insensitive to
mechanical stimulation. The potassium salt (133a) possessed a high thermal decomposition temperature
(329 ◦C of Td) and low sensitivities (IS: 25 J; FS: 252 N). In contrast with other derivatives from DNPP,
compound 133f owned the best mechanical sensitivities (IS: >60 J; FS: >360 N). Compounds 133, 133a,
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and 133d possessed good comprehensive properties, including remarkable thermal decomposition
temperatures, excellent insensitivity, and favorable detonation performance.
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Table 18. Physical and detonation properties of energetic compounds LLM-119 and 124–130. The data
of compounds LLM-119 and 124–126i are from reference [141], the data of compounds 127–130 are
from reference [142].

Entry ρ/g·cm−3 D/km·s−1 P/GPa Td/
◦C HOF/kJ·mol−1 IS/J FS/N OB/% N + O/% Isp/s

LLM-119 1.84 8.86 33.9 230 467.0 15 160 −14.0 77.2 246
124 1.82 8.67 33.1 206 133.7 10 120 9.2 78.2 245
125 1.96 9.46 40.9 145 550.9 3 20 22.2 83.3 269
126 1.93 9.51 41.8 128 595.2 2 20 15.1 84.3 274
126a 1.81 8.98 35.9 181 423.1 10 120 0 84.1 270
126b 1.85 9.40 39.5 174 738.9 5 60 −4.2 84.8 280
126c 1.88 9.50 41.3 170 531.2 7 120 8.3 85.4 282
126d 1.68 8.30 26.9 190 454.7 35 360 −14.7 80.7 239
126e 1.71 8.61 29.3 153 692.9 30 360 −17.2 81.5 247
126f 1.70 8.88 30.8 141 1144.8 10 80 −21.3 82.8 258
126g 1.78 9.17 36.0 163 1683.3 5 60 −9.3 84.2 280
126h 1.83 9.00 33.1 203 1599.5 10 120 −23.0 78.6 244
126i 2.11 8.31 31.2 208 152.9 2 20 16.2 68.0 226
127 1.74 7.93 27.9 178 356.0 14 280 −41.3 76.0 -
128 1.83 8.48 32.8 208 18.8 12 160 −18.4 78.2 -
129 1.74 7.82 27.1 198 863.0 10 240 −51.9 75.3 -
130 1.90 8.84 36.5 296 269.0 16 300 −20.9 78.2 -
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Table 19. Physicochemical and energetic properties of 133 and its ionic salts. The data of compounds
133–133f are from reference [146].

Entry ρ/g·cm−3 D/km·s−1 P/GPa Td/
◦C HOF/kJ·mol−1 IS/J FS/N

133 1.79 8.72 30.9 281 1111.5 15 192
133a 2.00 8.81 28.5 329 638.9 25 252
133b 1.69 8.40 26.2 280 916.8 19 >360
133c 1.61 8.24 26.0 178 1062.2 27.5 324
133d 1.75 9.08 31.3 221 1223.0 12 144
133e 1.62 8.02 22.4 299 926.9 >60 >360
133f 1.64 8.40 24.9 255 1143.3 35 >360

Nitrated pyrazolo[4,3-c]pyrazoles own acceptable performances both the energetic and physical
properties, further functionalization of these compounds could be interesting. However, the synthesis
of DNPP are still multistep reactions with unsatisfactory yield. The more efficient and facile synthesis
technology should be investigated.

5. Conclusions

In recent years, a lot of scholars over the world have paid much attention to the development of
nitrogen-rich heterocyclic energetic materials, due to their high positive heat of formation, low sensitivity,
tailored thermal stability, and attractive detonation performance. According to the reference [37], a new
energetic compound should be environmentally friendly, easy and economical to synthesize, thermal
stable (Td > 200 ◦C), insensitive to mechanical stimulation (IS > 7 J; FS > 120 N), good detonation
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properties (D > 8.5 km·s−1), and not insoluble in water. For the nitropyrazoles-based energetic
materials, most of them can meet these requirements. Some nitropyrazole-based compounds show
good performance as castable explosives, such as compounds 1, 2, 3, 5, 3,4-DNP, 46, 48, 53, 54,
and MTNP, which are competitive candidates of TNT. Some exhibited excellent thermal stability such
as compounds 17, 28, 37, 64, 75, 86, 90, 92, 101, 120, DNPP, etc. Further, many showed a balance
between good safety and high detonation performance. The introduction of high-nitrogen groups
(including fused-ring, polynitramino group, polynitromethyl group, etc) to nitropyrazoles can be
useful approach for the further development of new-generation HEDMs. In addition, the concept of
forming ionic salts, bridged structures and pyrazolo-pyrazoles provides novel insights to synthesize
high performance energetic materials. It is better to synthesize new energetic compounds under the
direction of theoretical calculation, so it is important to understand the relationship between structures
and properties for the design and synthesis of new nitropyrazoles-based energetic materials.

Furthermore, there are some areas requiring improvement for the further synthesis of
novel nitropyrazoles-based EMs. First, traditional nitration is generally used in the synthesis of
nitropyrazoles-based EMs, which does not meet the requirements of modern green chemistry. It is
vital to find out the suitable green nitrating agents and catalysts in the future synthesis process.
Second, many syntheses of nitropyrazoles-based EMs entail several steps, leading to a low yield and
high cost. Therefore, it is necessary to search for an efficient route when preparing new HEDMs.
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