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Shenzhen, China, 5 James D. Watson Institute of Genome Sciences, Hangzhou, China, 6 Division of Obstetrics，Zhuzhou
Central Hospital, Hunan, China, 7 Genetic Eugenics Division, The Maternal and Child Health Hospital of Changde City,
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The present study describes the first prenatally diagnosed 46,XX testicular disorders of
sex development (46,XX testicular DSD) case with DMD gene mutation by integrated
analyses in a Chinese pedigree. Chromosome karyotype G-banding analysis of the
proband showed a 46,XX karyotype, but B-ultrasound analysis demonstrated the
existence of scrotum, testis and penis which inferred a male sexual differentiation.
Aneuploidy and copy number variation (CNV) detection by low-coverage single-end
whole genome sequencing (WGS) revealed a de novo SRY (sex-determining region Y)
gene positive fragment of 224.34 kb length (chrY:2,649,472-2,873,810) which explained
the gonadal/genital-chromosomal inconsistency in the proband. Additionally, targeted-
region-capture-based DMD gene sequencing and Sanger verification confirmed a widely
reported pathogenic heterozygous nonsense mutation (NM_004006, c.9100C>T,
p.Arg3034Ter) in the dystrophin-coding gene named DMD. This study emphasizes that
integrated analyses of the imaging results, cytogenetics, and molecular features can play
an important role in prenatal diagnosis. It requires the combination of more detection
techniques with higher resolution than karyotyping to determine the genetic and biological
sex of fetuses in prenatal diagnosis. To conclusively determine both the biological and
genetic sex of the fetus at the time of prenatal diagnosis particularly in cases that involve X-
linked conditions is of vital importance, which would crucially influence the decision-
making regarding abortions. This study will help in prenatal diagnosis of DMD in future,
also providing a new perspective that enables the genetic diagnosis of sex reversal in
pregnancy. Moreover, genetic counseling/analysis for early diagnosis and pre-symptom
interventions are warranted.
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BACKGROUND

Abnormalities in chromosomes or genetic materials can lead to
birth defects. The term 46,XX testicular disorders of sex
development (46,XX testicular DSD), previously termed as
male sex reversal, was introduced by the “Chicago Consensus”
in 2006, for individuals who manifest inconsistency of
chromosomal, gonadal, or anatomical sex with a male
phenotype and a female karyotype (Hughes et al., 2006) and
was firstly described by de la Chapelle et al. in 1964 (De la
Chapelle et al., 1964). The occurrence rate of 46,XX testicular
DSD ranges from 1/20,000 to 1/100,000 (de la Chapelle, 1981; SS,
1994; Berglund et al., 2017; Wang et al., 2017), with considerable
geographic variations. Approximately 80% of individuals affected
by 46,XX testicular DSD show typical male phenotype at birth,
and present with infertility or delayed puberty. Most are
diagnosed during adolescent stage (Ergun-Longmire B et al.,
2005). In the Y chromosome, the SRY gene is heavily involved in
encoding a testis determining factor (TDF) that initiates male sex
determination and controls testis differentiation. Abnormal
expression of SRY gene may influence the testicular
differentiation, leading to ambiguous male phenotype (Sinclair
AH et al., 1990). Deletions of regions termed as azoospermia
factors in long arm of Y chromosome (i.e, AZFa, AZFb, AZFc,
and AZFd) were determined to be associated with
spermatogenesis and leads to testiculopathy. Severe
testiculopathy, in turn, results in azoospermia or severe
oligozoospermia (Raicu et al., 2003). About 90% of 46,XX
testicular DSD patients with a male phenotype are SRY
positive (Rizvi, 2008; Ahmet Anık, 2013; Gunes et al., 2013;
Wang et al., 2009), although published SRY-negative studies
mostly supported the role of SOX family proteins in male sexual
development with a proportion of 10 to 15% (Huang et al., 1999;
Lim et al., 2000; Seeherunvong et al., 2004; Grinspon and Rey,
2016). Recently, duplications of testicular SOX9 enhancers have
been reported to result in SOX9 overexpression and act as a
significant cause of 46,XX DSDs (Croft et al., 2018). Detection of
SRY gene and azoospermia factors is essential for the diagnosis of
46,XX testicular DSD.

Duchenne muscular dystrophy (DMD, OMIM #310200)
which transmits in an X-linked recessive pattern is the most
severe and rapidly progressive type of dystrophinopathies. There
is significantly massive increase of creatine kinase levels in the
blood, electromyography usually shows myopathic changes.
Individuals affected by DMD experience motor defects resulting
from progressive loss of muscle function. DMD is caused by
mutations in the dystrophin-coding gene named DMD and
primarily affects boys while occasionally affects girls. Symptom
onset is usually between ages 3 and 5, with an incidence of 1/3,500
in newborn males (Matsuo, 1995; Prior and Bridgeman, 2005;
Abbreviations: ACMG, American College of Medical Genetics and Genomics;
AZF, azoospermia factor; array CGH, array comparative genomic hybridization;
CNV, copy number variation; DGV, Database of Genomic Variants; DMD,
Duchenne muscular dystrophy; FISH, fluorescence in situ hybridization; NGS,
next-generation sequencing; PCR, polymerase chain reaction; SRY, sex-
determining region Y; STSs, sequence-tagged sites; TDF, testis determining
factor; VUS, variant of unknown significance; WGS, whole genome sequencing.
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Centers for Disease, C. and Prevention, 2009). In clinical genetic
counseling of DMD, prenatal diagnosis is recommended for
pregnant female carriers with a DMD-positive childbearing
history to make an informed decision and to understand their
chances of bearing a child with detectable abnormality to prevent
recurrence in at-risk families (Than and Papp, 2017).

There have been rarely reported cases who are affected
simultaneously by both 46,XX testicular DSD and DMD; and
specifically, 46,XX testicular DSD cases are rarely prenatally
identified in individuals owing to its mostly normal male
appearance before puberty, despite that there has been a 46,XY
DSD case report by prenatal diagnosis who showed positive
family history (Mazza et al., 2003).

Recent implementation of genetic or chromosomal diagnostic
techniques for birth defects include: karyotype analysis,
fluorescence in situ hybridization (FISH), array comparative
genomic hybridization (array CGH), and next generation
sequencing (NGS) for detection of genetic abnormalities. It is
difficult to detect chromosomal abnormalities below 5 Mb in
conventional karyotyping, FISH technology with higher
sensitivity and specificity can only be used for a specifically
targeted diagnosis to exclude certain diseases, while array CGH
can only detect unbalanced chromosomal abnormalities and the
result could be largely affected by the probe density. However,
complete gene sequencing by target-captured NGS has been
focusing on small point mutations, as well as mechanisms
related to the etiology of diseases. Research studies show that
NGS-based low-coverage whole genome sequencing (WGS)
could rapidly detect fetal aneuploidies and microdeletions/
microduplications, being an alternative noninvasive option to
current detection methods for disease diagnosis (Dan et al., 2012;
Baxter and Vilain, 2013; Chen et al., 2013; Xie et al., 2013).

The present study aimed to prenatally identify a Chinese
patient with 46,XX testicular DSD and DMD gene mutation by
integrated analyses.
CASE PRESENTATION

The study was carried out in accordance with the tenets of the
Declaration of Helsinki and approved by the institutional review
boards of BGI and Chenzhou No.1 People’s Hospital. Written
consent was obtained from each participant (or legal guardian
if incapacitated).

Four members of a Han Chinese nonconsanguineous family
were recruited (Figure 1A). The proband was an unborn baby
(27th week of gestation) who was the junior of two siblings from
the family which showed no family history of 46,XX testicular
DSD. The 6-year-old brother of the proband was clinically and
genetically diagnosed with DMD: he was found to be walking
wrestling in his third year, physical examination showed
gastrocnemius muscle hypertrophy, while limb muscle tension
and strength were both tolerable; test results of Kernig/
Brudzinski/Babinski sign were negative and Gowers sign was
positive; electromyography (EMG) results suggested myogenic
damage; the concentrations of creatine kinase and creatine kinase
February 2020 | Volume 10 | Article 1350
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isoenzyme were 16347 u/l and 373 u/l, respectively, while the
concentration of myoglobin was 544.7 ng/ml, which were strong
evidences forDMDdiagnosis. The brother was identified carrying
a widely known pathogenic mutation (NM_004006, c.9100C>T,
p.Arg3034Ter) in DMD gene by targeted gene sequencing.
Parents of the proband were both phenotypically normal.

Due to the positive family history of DMD and the existence
of scrotum in ultrasound result indicating male gonadal
differentiation of the proband (Figure 1B), genetic counseling
and prenatal diagnosis were recommended to the proband.
MATERIALS AND METHODS

The clinical manifestations, molecular features, and genotype-
phenotype correlations of the proband were studied.

DNA Samples Preparation
Cord blood and labor-induced tissue samples of the proband,
peripheral blood samples of the older brother and mother of the
proband were taken at Chenzhou No.1 People’s Hospital in 2016.
Genomic DNA was isolated using QIAamp DNA BloodMiNi kit
(Qiagen, Hilden, Germany) for blood samples and QIAamp
DNA FFPE Tissue Kit (QIAGEN, Frankfurt, Germany) for
tissue, respectively.

Cytogenetics Analysis by G-Banding
Karyotyping
Standard G-banding cytogenetics analysis was performed with
chromosomes isolated from leukocytes in 5 ml umbilical cord
blood obtained from ultrasound-guided umbilical vein puncture
for prenatal diagnosis. The G-banding steps are listed below: cell
culture was performed with medium produced by Bosheng
Company (Hangzhou,China) according to the specific
protocols; the cultured cells were treated in the following
orders: (1) Colcemid treated (0.05 mol.L-1 Colcemid, 40 ml, 4 h,
37°C) and centrifuged (978 xg, 10 min); (2) hypo-osmotically
Frontiers in Genetics | www.frontiersin.org 3
treated (0.075 mol.L-1 KCL hypotonic solution, 8 ml, 35 min,
37°C); (3) prefixed (1.5 ml fixative by 3:1 ratio of methanol:glacial
acetic acid, 10 min, 37°C) and centrifuged (978 xg, 10 min); (4)
fixed twice (6 ml fixative by 3:1 ratio of methanol:glacial acetic
acid, 10 min 37°C). After these, cells were prepared for
cytogenetics analysis. Slides for G-Banding were prepared after
the cell suspension was dried upon an ice slide in a 75°C oven for
3 h. The slides were digested with 1.5 ml 0.025% trypsin, then
stained with 6% Giemsa for 10 min (37°C, pH 6.2). Karyotype
analysis was performed and the chromosomal anomalies were
reported according to the International Human Cytogenetics
Nomenclature System (ISCN2016) standard. All the operations
were carried out by two trained technicians independently.

Prenatal Diagnosis by Targeted-Region-
Capture-Based DMD Gene Sequencing
and Sanger Verification
Total DNA from cord blood was extracted using QIAamp DNA
BloodMiNi kit (Qiagen, Hilden, Germany) and sonicated into
200–250 bp fragments by an ultrasonoscope (Covaris S2;
Covaris,Inc., Woburn, MA, USA). The fragmented products
were progressed with adaptor ligation, which was followed by
amplification with a gradient PCR program, containing a Pfx
DNA polymerase (Invitrogen Life Technologies, Calsbad, CA,
USA) with high-fidelity. PCR reactions were conducted in the
Veriti PCR system (Applied Biosystems Life Technologies, Foster
City, CA, USA) with reference to the Tm during primer
designation with Primer 6. The first phase was 5 min at 95˚C,
the second phase was 30 s at 95˚C, 30 s at 68˚C, and 30 s at 72˚C
for 10 cycles, the third phase was 30 s at 94˚C, 30 s at 58˚C, and
30 s at 72˚C for 35 cycles, followed by the fourth phase with
5 min at 72˚C, and last by 4˚C. The custom-designed capture
array targeted all exons and the flanking 20 bp noncoding
sequence of DMD gene, 100-bp pair-end sequencing was
performed on Illumina HiSeq2500 Analyzers after which image
analysis and base calling were performed with Illumina Pipeline
software (version 1.3.4) with the human reference genome (hg19,
FIGURE 1 | (A) Pedigree of the Chinese family. The fully filled symbol in black indicates those affected by Duchenne muscular dystrophy (DMD), and the open
symbol indicates those unaffected; the filled semicircle represents asymptomatic carriers. Squares represent male, circles represent female, specifically, triangle
represents the labor-inducted fetus—the proband with 46,XX testicular DSD (filled in grey) and DMD gene mutation (filled in black). (B) Ultrasound result of the fetus
(27th week of gestation) showed the existence of scrotum, indicating male gonadal differentiation.
February 2020 | Volume 10 | Article 1350
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NCBI build 37). Candidate SNPs were filtered with the following
criterions: SNP supporting reads ≥20, SNP frequency ≤5% in any
of the following three databases (dbSNP, Hapmap, 1000
Genomes Project). Sanger sequencing was applied to validate
the candidate mutations on ABI PRISM 3730 sequencer
(Applied Biosystems, Foster City, CA, USA) and analyzed by
DNASTAR SeqMan (DNASTAR, Madison, Wisconsin, USA).

Genetic Abnormalities Detection by NGS-
Based Low-Coverage Single-End WGS
Genomic DNA from the proband’s labor-aborted tissue and cord
blood were detected for subsequent genetic abnormalities using
NGS-based low-coverage single-end WGS on BGISEQ-500
platform and CNVs were analyzed as we previously reported
(Dan et al., 2012; Dong et al., 2014; Li et al., 2014).

Cellular Histopathological Analysis
Postmortem study after labor abortion was carried out for
cellular histological examination. Fresh specimens were
processed to formalin fixed, paraffin embedded (FFPE) tissue
samples and stained with hematoxylin and eosin (i.e., H and E
staining) with reference to the widely used method

1

.

AZF Deletion Analysis by Multiple PCR
200~500 bp DNA sequence fragments termed sequence-tagged
sites (STSs) could be considered as markers for genetically
physical mapping and used in genetic screening (Olson et al.,
1989). We performed multiple PCR of 15 STSs to detect
microdeletions in the spermatogenesis and testiculopathy-
associated regions (i.e., AZFa, AZFb, AZFc, and AZFd in the
AZF region of proband’s SRY gene) to characterize the future
fertility status and possible genotype-phenotype correlations of
the proband. Totally, three sites in AZFa, six sites in AZFb, four
sites in AZFc, and two sites in AZFd were studied.
RESULTS

Prenatal Diagnosis and Pedigree
Verification of DMD
Targeted DMD gene testing of the fetus for prenatal diagnosis
revealed that the proband also carried the widely reported
pathogenic heterozygous truncated mutation (c.9100C>T,
p.Arg3034Ter) as his older brother did. Sanger sequencing for
pedigree analysis confirmed that their asymptomatic mother also
carried this mutation (Figure 2A). The proband and his DMD-
affected brother both inherited this mutation from their
asymptomatic mother.

Integrating Analysis Results Confirmed a
Diagnosis of 46,XX Testicular DSD
Standard G-banding karyotype analysis of the proband’s
lymphocytes showed a 46,XX karyotype (Figure 2B),
unexpectedly, in inconsistency with the clinical indications by
ultrasound which displayed the existence of scrotum (Figure
1https://webpath.med.utah.edu/HISTHTML/HISTOTCH/HISTOTCH.html.

Frontiers in Genetics | www.frontiersin.org 4
1B), raising a suspect diagnosis of 46,XX testicular DSD. To
confirm this, aneuploidy and CNV detection was carried out by
NGS-based low coverage single-end WGS, which identified a de
novo SRY positive gain fragment of 224.34 kb length
(chrY:2,649,472-2,873,810) in the proband. The variations
identified in this research were all shown in Table 1. We then
evaluated the clinical features of the proband after labor-
abortion, which depicted a male histopathological phenotype
(Figures 2C–F). Deletion analysis of regions termed as
azoospermia factors (i.e, AZFa, AZFb, AZFc, and AZFd) in
long arm of Y chromosome by analyses of 15 sequence-tagged
sites in the AZF region by multiple PCR showed deletions in
several AZF subregions (Figure 3).
DISCUSSION

This is the first 46,XX testicular DSD case with DMD gene
mutation who is prenatally diagnosed by integrated analysis. In
clinical genetic counseling, prenatal diagnosis is recommended
for pregnant female carriers with a family history of DMD to
prevent recurrence in at-risk families. Some researchers even
believed that prenatal diagnosis was also suggested for the
proband’s mother without the causative mutation in their
blood considering maternal germline mosaicism (Wang et al.,
2017). In this study, the mother (I-2) had raised a DMD-affected
boy, so we carried out targeted DMD gene testing and Sanger
sequencing in present family for prenatal diagnosis, which
identified that the fetus (II-2) also carried the widely reported
pathogenic mutation (c.9100C>T, p.Arg3034Ter) (Dent et al.,
2005; Flanigan et al., 2009; Magri et al., 2011) in a heterozygous
state. At the same time, we also identified in the proband a
de novo sex-determining region Y gene (SRY) positive gain
fragment of 224.34 kb length (chrY:2,649,472-2,873,810) by
NGS. The presence of a Y DNA fragment containing SRY
gene, primarily due to abnormal Y/X chromosomal exchange
during paternal meiosis, was reported as the major cause of 46,
XX testicular DSD (Rizvi, 2008; Wang et al., 2009; Ahmet Anık,
2013; Gunes et al., 2013; Wu, Li et al., 2014). These studies
showed that those patients commonly had normal male external
genitalia, small testis was frequently present and they always had
azoospermia. The SRY gene in this fragment could initiate the
testicular differentiation and the CNV was thus defined as
pathogenic according to ACMG (American College of Medical
Genetics and Genomics) guidelines (Kearney et al., 2011; South
et al., 2013; Richards et al., 2015) which explained the gonadal/
genital-chromosomal inconsistency. We mapped the other three
microduplications identified in this research (Table 1) to the
DGV database (Database of Genomic Variants

2

), which is a
curated catalogue of human genomic structural variations
(MacDonald et al., 2014). The results showed that all these
three microduplications seemed probably to be nonpathogenic:
the 210.52 kb duplication in 6q27 (169,990,779-170,201,296)
involves the periventricular nodular heterotopia 6 (OMIM
#615544)-associated ERMARD gene, but this region is all
2http://dgv.tcag.ca/dgv/app/home8:33 PM 1/7/2020
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included by DGV; the 101 kb duplication in 9p21.1 (28,566,974-
28,667,973) and 652.5 kb duplication (27,799,966-28,452,468) in
14q12 both do not contain any known disease-causing genes and
there has been no publication for their pathogenicity.
Frontiers in Genetics | www.frontiersin.org 5
Most heterozygous female carriers of DMD pathogenic
mutations are asymptomatic. Considering the confirmed 46,XX
karyotype by cytogenetic karyotyping, the proband here was
most likely to be just a asymptomatic carrier as his mother. But it
FIGURE 2 | (A) Pedigree verification results of the c.9100C>T mutation in Duchenne muscular dystrophy (DMD) gene of the older brother (hemizygous), the
asymptomatic mother (heterozygous), and the proband (heterozygous) by Sanger sequencing. (B) Standard cytogenetics by G-banding karyotyping of the fetus’s
lymphocytes revealed a 46,XX karyotype. The arrow referred to the proband’s XX chromosomes. (C) Morphological examination showed the appearance of scrotum
and penis, and the penis was with a length of about 19 mm, indicating a gonadal male sexual differentiation. (D) Autopsy operation revealed the presence of testis,
epididymis, and left spermatic cord. (E) The ureter and bladder of the fetus were shown. (F) Histopathological result of testis biopsies showed the appearance of an
embryonic testis with no fibrosis and hyaline degeneration of the tissue (Light microscopy stained with HE. Original magnification x 40).
TABLE 1 | Variations identified by next-generation sequencing (NGS)-based low-coverage whole-genome sequencing in the proband, including a pathogenic and three
VUS (variant of unknown significance) or likely nonpathogenic ones.

Variations Fragment size Genes enrolled in the regions Clinical significance

46, XX, +Yp11.31. seq[GRCh37/hg19](2,649,472-2,873,810)×1 224.34 kb SRY pathogenic
46,XX,dup(6q27).seq[GRCh37/hg19] (169,990,779-170,201,296)×3 210.52 kb WDR27;PHF10;TCTE3;

LINC00574;C6orf70; C6orf120;
LINC00242.

VUS/likely nonpathogenic

46,XX,dup(9p21.1).seq[GRCh37/hg19] (28,566,974-28,667,973)×3 101.00 kb LINGO2 VUS/likely nonpathogenic
46,XX,dup(14q12).seq[GRCh37/hg19] (27,799,966-28,452,468)×3 652.50 kb LOC100505967 VUS/likely nonpathogenic
February 2020 |
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has also been reported that about 2.5% to 7.8% of these carriers
are manifesting carriers who develop symptoms ranging from
mild muscle weakness to a rapidly progressive DMD-like
muscular dystrophy with an onset age varying from 2 to 47
years old (Soltanzadeh et al., 2010). The symptoms of a
manifesting female carrier may due to X-inactivation of the
normal dystrophin (DMD) gene (Boyd et al., 1986). In females,
the random X inactivation process that happens in somatic cells
early during embryonic development regardless of the parental
origin, arouses cellular mosaicism in females with either
paternally or maternally derived X-chromosome being
inactivated (Brown and Robinson, 2000; BR, 2007). Payam
Soltanzadeh (Soltanzadeh et al., 2010) reported a female
manifesting carrier of the p.Arg3034Ter mutation who
presented mild Becker’s muscular dystrophy (BMD)-like
syndromes including weakness, myalgia/cramping with an
onset age at 40; she was walking unaided until 47 years old. In
another study by Forbes, a female manifesting carrier of the same
mutation with an onset age of 37 showed substantial muscle
deterioration and lipid infiltration heterogeneously detected by
magnetic resonance imaging (MRI) and spectroscopy (MRS)
(Forbes et al., 2012). It has been reported that symptomatic BMD
carriers show a skewed XCI pattern with a preferential
inactivation of the wild-type X chromosome (Viggiano et al.,
2017). According to Viggiano’s theory, these two symptomatic
female carriers would have larger proportion of cells that have
wild-type chromosome inactivated than those have Arg3034Ter-
mutated chromosome inactivated.

Furthermore, structural abnormalities including deletions
and duplications of the X chromosome could cause occurrence
of marked skewing of XCI (MF, 2002; Sharp, Kusz et al., 2004).
In light of 46,XX testicular DSD, about 90% patients are SRY
positive, usually translocated to the short arm of the X or
autosomal chromosome, leading to a male phenotype
Frontiers in Genetics | www.frontiersin.org 6
(McElreavey and Cortes, 2001). However, variation of the
phenotypic features of the SRY positive 46,XX males were
observed owing to other factors including the length of the Y
chromosomal material translocated on the X chromosome and
the pattern of X inactivation (Bouayed Abdelmoula et al., 2003;
Gunes et al., 2013). It has been reported that when a patient
shows a normal male phenotype that is most probably attributed
to a larger SRY-positive fragment being translocated to the X
chromosome, during which the SRY gene may be protected from
silencing by the spread of XCI and thus accounts for the gonadal
ambiguity (Wu et al., 2014). It is possible that the SRY-positive
fragment identified in this case might also have been translocated
to the X chromosome and gave rise to a possibility of skewed
inactivation during which the SRY gene exempted from
inactivation and fully represented, which thus drove the male
sexuality differentiation, but we failed to verify the SRY-positive
fragment loci by FISH due to lack of sufficient samples. Even so,
it is quite likely that the proband would show azoospermia or
oligozoospermia in his puberty and ensuing infertility due to
deletions in several AZF subregions. Because of the literature-
supported risk of DMD caused by the identical p.Arg3034Ter
mutation and the SRY-positive fragment detected in both the
cord blood and labor-induced tissue samples, the mother decided
to have an abortion. However, what needs to be emphasized is
that the probability of development of DMD manifestations and
the final phenotype of the fetus would depend on the pattern of
X inactivation.

In conclusion, we evaluated the clinical manifestations and
molecular features of a fetus proband who was the first 46,XX
testicular DSD case diagnosed during pregnancy and carrying a
mutation in dystrophin (DMD) gene simultaneously by
integrated analysis. This research emphasized that integrating
the imaging results, cytogenetics, and molecular features could
play an important role in prenatal diagnosis, especially in cases
FIGURE 3 | Azoospermia factor (AZF) deletions detected by multiple polymerase chain reaction (PCR) of sequence-tagged sites (STSs) in the proband. The green
line represents the existence of the sex-determining region Y (SRY)-positive fragment of Y chromosome. Boxes represent AZF regions: grey-filled indicates the
existence while red-filled indicates deletion.
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when imaging examination and cytogenetic results are
inconsistent. Additionally, NGS could facilitate genetic
diagnosis, being a supplement of traditional clinical detection
methods, which could be used in routine clinical applications.
This study also suggested that genetic counseling/analysis for
early diagnosis, pre-symptom interventions and disease
management were warranted. In this case, we made a
diagnosis of 46,XX testicular DSD by ultrasound for
morphological abnormality, cytogenetics, and NGS for
molecular feature details. Then, genetic counselors explained
the genetic testing results and the pros and cons of each optional
strategy to the proband’s mother and she made a decision of
induced abortion. However, there are still many ethical issues
during the counselling processes. Genetic counselors should
always keep in mind whether the information they provide is
comprehensive and whether the patient would be able to make
an informed decision or not. Then again, despite that
pathogenic mutations and CNVs were identified in the
proband, other factors such as diseases’ clinical heterogeneity,
variable expressivity and environmental elements can also affect
the proband’s final phenotype. Genetic counseling has always
had the uncomfortable shadow of eugenics looming over the
field and it is important to note that abortion was not the
only option.
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