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The gut microbiome plays an important role in immune function and has been implicated

in multiple sclerosis (MS). However, how and if the modulation of microbiota can prevent

or treat MS remain largely unknown. In this study, we showed that probiotic Lactobacillus

reuteri DSM 17938 (L. reuteri) ameliorated the development of murine experimental

autoimmune encephalomyelitis (EAE), a widely used animal model of MS, a model which

is primarily mediated by TH17 and TH1 cells. We discovered that L. reuteri treatment

reduced TH1/TH17 cells and their associated cytokines IFN-γ/IL-17 in EAE mice. We

also showed that the loss of diversity of gut microbiota induced by EAE was largely

restored by L. reuteri treatment. Taxonomy-based analysis of gut microbiota showed that

three “beneficial” genera Bifidobacterium, Prevotella, and Lactobacillus were negatively

correlated with EAE clinical severity, whereas the genera Anaeroplasma, Rikenellaceae,

and Clostridium were positively correlated with disease severity. Notably, L. reuteri

treatment coordinately altered the relative abundance of these EAE-associated taxa. In

conclusion, probiotic L. reuteri changed gut microbiota to modulate immune responses

in EAE, making it a novel candidate in future studies to modify the severity of MS.

Keywords: experimental autoimmune encephalomyelitis, Lactobacillus reuteri, TH1/TH17 cells, IFN-γ/IL-17,

gut microbiota

INTRODUCTION

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) which causes
neurological disability in up to two million young adults worldwide (1, 2). The key pathological
features of MS include axonal loss, demyelination, gliosis, and a progressive inflammatory reaction
involving both the adaptive and the innate immune system (3, 4). During the course of MS,
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activated autoreactive T cells have been proposed to differentiate
into CD4+ T cells characterized by the production of interferon-
γ (IFN-γ) by [T helper 1 (TH1) cells] and/or interleukin (IL)-
17 by IL-17-producing (TH17) cells. These T cells successively
induce inflammatory lesions distributed throughout the CNS (2).
Infiltration of TH1 and TH17 CD4+ T cells into the CNS is
considered an important contributor to the immunopathogenesis
of MS (5).

Interestingly, growing evidence from both rodent and human
studies suggests that the gut microbiota contributes to the
pathogenesis of MS (6–9). In human with MS, an abnormal
profile of gut microbiota (dysbiosis) may be one of the several
factors involved in the pathogenesis and progression of MS
(7–9). In a rodent model of MS, experimental autoimmune
encephalomyelitis (EAE), investigative groups have shown that
an alteration of the gut microbiota plays a critical role in the
pathogenesis of the disease. Supporting this postulate, two studies
showed that oral antibiotic administration reduced the severity
of EAE (10, 11). Moreover, two studies revealed that germ-
free mice were resistant to the development of EAE (6, 12).
However, whether remodeling intestinal microbiota can improve
EAE symptoms and markers of brain and systemic inflammation
remains unknown.

Our previous studies showed that Lactobacillus reuteri
DSM 17938 (L. reuteri) can modulate microbiota and inhibit
autoimmunity in an autoimmune disease caused by regulatory T
cell (Treg) deficiency (13). In this study, we investigated the effect
of L. reuteri on EAE and EAE-associated gut microbiota.

MATERIALS AND METHODS

Animals
Female wild-type (WT) C57BL/6 (10 weeks-old) mice were
purchased from Jackson Laboratories and allowed to acclimatize
for 2–3 weeks before experimentation. The mice were housed in
groups in polycarbonate cages with free access to a standard diet
and water in the specific pathogen free (SPF) animal facility at
The University of Texas Health Science Center at Houston. This
study was carried out in accordance with the recommendations
of the Guide for the Care and Use of Laboratory Animals (NIH)
and The Institutional Animal Care andUse Committee (IACUC).
The protocol was approved by the IACUC (protocol numbers:
AWC-15-0051 and AWC-18-0051).

Induction and Assessment of EAE
EAE was induced in female mice by using the Hooke
KitTM MOG35−55/CFA Emulsion PTX kit (Hooke Laboratories),
according to the manufacturer’s protocol. In brief, mice
were immunized with an emulsion of myelin oligodendrocyte
glycoprotein peptide (MOG35−55) in complete Freund’s adjuvant
(CFA) by subcutaneous injection into two different sites on
each hind flank, followed by intraperitoneal administration of
pertussis toxin (PTX) in phosphate-buffered saline (PBS) after
2 h MOG35−55 immunization. Then PTX was given again on
the following day (14). The mice were examined for clinical
signs of EAE in a blinded fashion daily from 7 to 20 days after
immunization. EAE was scored on scale 0 to 5 (15). Specifically,

we assigned Score 0, no obvious changes in motor function
compared to normal control mice; Score 1, limp tail; Score 2, limp
tail, and weakness of hind legs; Score 3, limp tail and complete
paralysis of hind legs; Score 4, limp tail, complete hind leg and
partial front leg paralysis, and Score 5, spontaneously rolling in
the cage. We assigned mice “in-between” scores (i.e., 0.5, 1.5, 2.5,
3.5) when the clinical picture best fit between two defined scores.

L. reuteri Treatment of EAE Mice
L. reuteri, originally isolated from human breast milk, was
provided by BioGaia AB (Stockholm, Sweden) and cultured
anaerobically in De Man, Rogosa Sharpe (MRS, Fisher Scientific,
Pittsburgh, PA) media as described previously (16). Each mouse
was assigned to either (a) MRS media as a control (EAE), or (b)
L. reuteri (EAE+LR), as well as normal control group (Ctrl). On
the day 0, mice were given by gavage MRS (100 µl) or L. reuteri
[108 colony-forming unit (CFU), 100 µl] followed immediately
by the injections of MOG35−55 in CFA, then PTX after 2 h of
MOG35−55 injections. On the day 1, EAEmice were given second
ip injection of PTX solution. Before the onset of EAE, MRS
or L. reuteri were given by gavage, daily, starting from day 0
to day 20 after immunization. We observed the mice daily to
evaluate the clinical EAE scores. At the end of the experiments
on day 20, blood, spleen, and spinal cord, and colonic contents of
each mouse were collected. All samples were analyzed at day 20
post-immunization unless specifically indicated.

Stool Microbial Community Analysis
Colonic contents from Ctrl, EAE, and EAE+LR mice were
collected, immediately frozen, and stored at −80◦C. The
Louisiana State University School of Medicine Microbial
Genomics Resource Group (http://metagenomics.lsuhsc.
edu) performed sequencing and bioinformatics analysis.
Genomic DNA extraction from colonic contents was
performed using QIAamp Fast DNA Stool Mini Kit (Qiagen,
Germantown, MD) and microbiome 16S rDNA sequencing
was performed as previously described (17). The 16S ribosomal
DNA hypervariable regions V4 were PCR-amplified using
primers V4F GTGCCAGCMGCCGCGGTAA and V4R
GGACTACHVGGGTWTCTAAT with Illumina adaptors
and molecular barcodes to produce amplicons. Samples were
sequenced on Illumina MiSeq (Illumina, San Diego, CA) using
V4 sequencing kit. The paired forward and reverse-reads—
passed quality control were merged, and then mapped to the
SLIVA database to construct OTUs at 97% identity through the
UPARSE pipeline (drive5, Tiburon, California) (18). Relative
abundance of each OTU was examined at phylum, class, order,
family, genus, and species levels. Bacterial alpha and beta
diversity metrics, as well as, taxonomic community assessments
were produced using QIIME 1.8 (open source, www.qiime.org)
(19). The composition of stool microbiota was further analyzed
as previously described (20, 21). A systematic search for the
genera that correlated with the clinical score was performed by
using Spearman’s rank correlation coefficient. Random Forest
analysis of gut microbiota was performed using the R (http://
cran.r-project.org/) package Random Forest (22).
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Histopathology
The spinal cord was fixed and stained with hematoxylin and
eosin (H&E), CD3 antibody (Agilent, Denmark) and CD68
(Abcam, Cambridge, MA) antibody for histological evaluation
by Histology Laboratory of the Department of Pathology and
Laboratory Medicine of UT Health Science Center at Houston.
Histological quantification was performed by using Image
J software (NIH). We measured the area of inflammatory
infiltration as indicated in Figure 1C (H&E staining), three areas
of lymphocyte infiltration (if presented) from one section slide,
with a total of 2–3 sections for one mouse (from one spinal
cord); we measured 10 mice in each group. Finally, we calculated
the mean of the areas of lymphocyte infiltration (Figure 1D).
For CD3 or CD68 expressing cells, we counted CD3 or CD68
staining positive cells in two fields of high power inside the areas
of lymphocyte infiltration, with a total of 2–3 sections from each
spinal cord.Wemeasured specimens from 10mice in each group,
finally calculating the mean numbers of CD3 or CD68 expressing
cells and their standard deviations.

In vitro Cell Preparation and Stimulation
for Flow Cytometry Analysis
Peripheral blood mononuclear cells (PBMCs) were isolated from
whole blood by Ficoll-Paque (GE Healthcare, Chicago, IL).
Single-cell suspensions from the spleen were prepared by gently
fragmenting and filtering the tissues through 40µm cell strainers
(BD Bioscience, San Jose, CA) into MACS buffer (1x PBS, 0.5%
bovine BSA and 2mM EDTA). For in vitro stimulation, studies
of PBMCs and splenic lymphocytes isolated from each mouse
were performed in triplicate, with a total of n = 10 mice per
group. Briefly, cells were stimulated with 50 ng/mL of phorbol
12-myristate 13-acetate (PMA) and 1µg/mL of ionomycin in
the presence of brefeldin A (5 µ/mL) for 4 h to analyze IFN-γ-
producing (TH1) and IL-17-producing (TH17) CD4

+ T cells by
flow cytometry.

In another set of experiments, splenocytes isolated from mice
at day 12 post-immunication were stimulated with 10µM of
MOG35−55 for 2 days to analyze cell proliferation.

In vitro Cell Proliferation Assay
Colorimetric measurement for cell proliferation by using the
tetrazolium dye, 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-
[(phenylamino) carbonyl]-2H-tetrazolium hydroxide (XTT) was
performed according to the manufacturers protocol (TACSTM

XTT Cell Proliferation/Viability Assay, R&D Systems, Inc.,)
(23). XTT reduction into formazan, a colored compound,
by mitochondrial dehydrogenases is considered proportional
to cell number and thus related to cell proliferation after
incubation time. After 2 days of 10µM of MOG35−55

stimulation, 100 µL of cells were incubated with 50 µL of
a mixture of XTT and XTT activator followed by incubation
of the plates at 37◦C in an atmosphere containing 5%
CO2 for 4 h. We measured the absorbance at OD450 nm.
We calculated the percentage of proliferation as follows:
[(OD+MOG-OD−MOG) /OD−MOG] × 100.

Staining Cells for Flow Cytometry Analysis
For evaluation of TH1 and TH17 cells, cells were surface-
stained by fluorescein-labeled-CD4. Intracellular staining was
performed with a fixation/permeabilization kit, according to the
manufacturer’s protocol (eBioscience/ThermoFisher, Waltham,
MA), and stained with IFN-γ (TH1) and IL-17 (TH17)
(BioLegend, San Diego, CA), respectively. The data from all
samples were acquired on Gallios flow cytometer (Beckman-
Coulter) and analyzed using FlowJo software (FlowJO, LLC) to
obtain the percentage of each T cell subsets. The total splenocytes
of whole spleen and PBMCs per volume were counted and
the absolute numbers of each T cell subsets were calculated,
expressed as # of cells per spleen or # of cells/µL in blood.

Plasma Cytokine Assays
Plasma cytokine levels of IFN-γ and IL-17 were assessed
using a mouse multi-spot proinflammatory panel kit from
Meso Scale Discovery (MSD, Rockville, MD), according to the
manufacturer’s protocol. Signals were captured and calculated by
Imager 2400 (MSD). The levels of cytokines were expressed as
picogram/milliliter (pg/mL).

Statistical Analysis
Data are presented as mean ± SEM. Statistical significance
was determined by one-way ANOVA corrected for multiple
comparisons with Tukey and Dunnett’s posttests, or two-way
ANOVA for multiple comparisons with a Bonferroni test. We
used Fisher’s Exact Test to compare the incidence of EAE
between groups. The statistical analysis was performed by Prism
(GraphPad Software, La Jolla, CA). The correlation between
the genera and EAE clinical scores was performed by using
Spearman’s rank correlation coefficient. Statistical significance
was defined as P < 0.05.

RESULTS

L. reuteri Suppresses the Development of
EAE in Mice
To determine whether L. reuteri treatment can modulate the
progression of EAE, we treated mice with 108 CFU/day of L.
reuteri from 0 to 20 days after MOG immunization (Figure 1A).
The clinical scores were significantly suppressed in EAE mice
with L. reuteri treatment, compared to EAE mice without L.
reuteri treatment, starting at day 10 post-immunization and
lasting until day 20 (Figure 1B) (Table 1). We calculated the
incidence of EAE based on the time point at which the mice
developed clinical scores of≥ 0.5. L. reuteri significantly reduced
the incidence of EAE on each day post-immunization (Table 1).
In addition, inflammatory cell infiltration was examined in the
spinal cord. H&E staining showed that EAE mice had more
inflammatory cells in the spinal cord compared with control
mice, and L. reuteri treatment consistently reduced inflammatory
cell infiltration EAEmice (Figures 1C,D). Immunohistochemical
staining indicated that T cells (CD3+) were increased in EAE
spinal cord tissues when compared to normal mice, while CD3+

cell staining was significantly decreased in L. reuteri-treated EAE
mice (Figures 1C,E). Macrophages (CD68+) were increased in
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FIGURE 1 | Lactobacillus reuteri ameliorates autoimmune disease in EAE mice. (A) Scheme of the experimental timeline for administering L. reuteri to EAE mice and

measuring clinical scores. (B) Clinical scores of C57BL/6J mice with EAE to compare with administered MRS and L. reuteri (n = 37–40 mice per group). (C) The

representative images of H&E staining, CD3 staining and CD68 staining of spinal cord slides from Ctrl, EAE, and EAE+LR mice (n = 10 mice per group). Arrows

indicate immune cell infiltration, defined as encircled areas in H&E staining of EAE and EAE+LR specimens. (D) The average areas of inflammatory infiltration among

group comparisons are shown (see Materials and Methods). (E) The average numbers of CD3+ cell count per defined area of inflammatory infiltration among group

comparisons (see Materials and Methods). (F) The average numbers of CD68+ cell count per defined area of inflammatory infiltration among group comparisons (see

Materials and Methods). Data are presented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001. EAE+LR vs. EAE. ###p < 0.001. EAE vs. Ctrl.

spinal cords of EAE mice when compared to normal mice, but
spinal cord CD68+ cells were moderately decreased by L. reuteri
treatment (Figures 1C,F). Altogether, these results demonstrate
that L. reuteri treatment ameliorates the severity of EAE in mice
by reducing inflammatory cell infiltration in the spinal cord.

L. reuteri Decreases TH1/TH17 Cells and
Their Associated Cytokines and Reduces
MOG35−55-Stimulated Cell Proliferation in
EAE Mice
The immunopathology of MS appears to be mediated mainly by
TH17 cells but also involves TH1 cells (4). We next examined
whether L. reuteri treatment can alter the composition of
lymphocytes and their associated cytokines. Flow cytometric
analysis demonstrated that the proportions of TH1 and TH17
cells among PBMCs and splenocytes were increased in EAEmice.

Both the percentage (Figures 2Aa,c,Ba,c) and absolute numbers
(Figures 2Ab,d,Bb,d) of TH1 and TH17 cells were increased in
EAE but were reduced after L. reuteri treatment (Figures 2A,B).
In addition, L. reuteri treatment significantly reduced the plasma
levels of pro-inflammatory cytokines IL-17 and IFN-γ in mice
with EAE (Figure 2C). These data indicate that L. reuteri
treatment not only decreases the proportion of circulating TH1
and TH17 cells in EAE but also reduces circulating levels of their
associated cytokines. In addition, we observed that splenocytes
isolated from the mice after 12 day post-immunization with
MOG35−55 had increased cell proliferation in vitro, which was
decreased by L. reuteri treatment (Figure 2D).

L. reuteri Remodels EAE-Associated
Intestinal Microbiota in Mice
To determine the microbial populations of colonic contents
that exhibited significant differences comparing Ctrl, EAE, and
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TABLE 1 | Clinical assessments of EAE mice affected by Lactobacillus reuteri.

Assessments* Days Post-immunization

Group d10 d11 d12 d13 d14 d15 d16 d17 d18 d19 d20

Incidence (%)** Ctrl 0 0 0 0 0 0 0 0 0 0 0

EAE 27.5 52.5 80 87.5 87.5 97.5 97.5 100 100 100 100

EAE+LR 10 20 42.5 62.5 72.5 80 80 80 85 85 85

Maximal clinical scores Ctrl 0 0 0 0 0 0 0 0 0 0 0

EAE 1.5 3 3.5 3.5 4 4 4 4 4.5 4.5 4.5

EAE+LR 0.5 2 3 3.5 3.5 4 4 4 4 4 4

Cumulative average

clinical scores***

Ctrl 0 0 0 0 0 0 0 0 0 0 0

EAE 0.2 0.6 1.1 1.9 2.1 2.5 2.9 2.9 3 3 2.8

EAE+LR 0.07 0.2 0.5 0.9 1.2 1.7 2.0 2.1 2.2 2.2 2.0

*Assessments summarized from 4 independent experiments of three groups of Ctrl, EAE, and EAE+LR. Total animal numbers N = 39 in Ctrl group, N = 40 in EAE group and N = 37

in EAE+LR group.

**Calculation of the incidence of EAE based on once the mice had clinical scores of ≥ 0.5 defined as EAE. P < 0.05 or < 0.01 between groups of EAE and EAE+LR at each day.

***p < 0.01 or p < 0.001 between groups of EAE and EAE+LR at each day (see Figure 1B).

EAE+LR groups, we surveyed fecal bacterial populations by
16s rRNA gene sequencing. The gut microbiota of EAE mice
was characterized by less alpha diversity than that of Ctrl
mice when measured with PD whole tree; however, other
alpha diversity metrics (Chao1, Observed Species, Shannon,
and Simpsons) uniformly failed to show any difference in
alpha diversity (Figure 3A). Unweighted UniFrac-based 3D
principal coordinate analysis (PCoA) revealed a strong effect
of L. reuteri on the beta diversity of the gut microbiota in
EAE mice (Figure 3B). Remarkably, EAE+LR samples clustered
distinctly from Ctrl or EAE samples (Figure 3B), indicating
robust differences in the membership of gut bacteria between
Ctrl, EAE, and EAE+LR mice.

Taxonomy-based analysis of gut microbiota indicated
that the gut microbiota in stool samples from Ctrl, EAE,
and EAE+LR mice included four major phyla, Firmicutes,
Bacteroidetes, Proteobacteria, and Tenericutes (Figure 4A). The
relative abundances of Proteobacteria and Deferribacteres were
significantly increased in the colonic contents of EAEmice, while
the relative abundance of Bacteroidetes was reduced. L. reuteri
treatment reversed the effects of EAE on the relative abundance
of these phyla in EAE mice (Figures 4A,B).

According to our analysis of predominant bacteria (>1%
of total bacteria) at the genus level, the relative abundance of
Anaeroplasma and Rikenellaceae was increased, while the relative
abundance of Prevotella and S24-7 was reduced in EAE mice.
After oral feeding of L. reuteri to EAE mice, the percentages
of these genera in gut microbiota were improved by L. reuteri
treatment (Figures 5A,C).

To explore the relationship between gut microbiota and
the severity of EAE, we used the Spearman correlation to
compare the composition of gut microbiota at the genus level
with the clinical scores (Figure 5B). Results showed that 16
genera had a positive correlation (p < 0.05) with clinical
scores, while 17 genera had a negative correlation (p < 0.05).
Interestingly, Bifidobacterium, Prevotella, Lactobacillus, and S24-
7 had a negative correlation, indicating improved clinical

scores. Conversely, the genera Clostridium, Anaeroplasma,
Ruminococcus, and Rikenellaceae positively correlated with more
severe clinical scores. L. reuteri changed the relative abundance of
certain microbial taxa relevant to the clinical scores in EAE mice
(Figures 5A,C). Altogether, these results indicated that EAE-
associated gut microbial dysbiosis could be reprogrammed by
oral administration of L. reuteri treatment.

Predictive Model Using Random Forests
We used Random Forests (RF) to build an EAE-predictive
model by using the genus-level relative abundance data. The
relative importance of each genus in the predictive model
was assessed using mean decreasing accuracy. We selected 20
significant genera as the signature gut microbiota to compare
with groups Ctrl, EAE, and EAE+LR (Figure 6A). Eight genera
came from the phylum Firmicutes and the rest came from
the phyla Bacteroidetes, Tenericutes, or Proteobacteria. To test
whether these 20 genera had sufficient EAE-predictive power
in our sample sets, we performed hierarchical clustering based
on the relative abundance of these 20 genera. Results showed
that the samples from Ctrl, EAE, or EAE+LR groups clustered
together, respectively (Figure 6B). Additionally, we also selected
30 significant genera as the signature gut microbiota to compare
with the groups of EAE and EAE+LR treatment, which
predicts importance of signature microbiota changed by the
disease or by L. reuteri (Figure 6C). Eleven genera came from
the phylum Firmicutes, and the rest came mainly from the
phyla Proteobacteria and Bacteroidetes. This predictive model
confirmed that certain genera had a significant correlation
with the clinical scores and were predictive of EAE. For
example, Sutterella, Bacteroides, Parabacteroides, Prevotella were
all decreased in EAE, whereas Rickenellaceae, Ruminococcus,
Anaeroplasma were increased in EAE (Figure 6D). This
predictive model additionally confirmed that certain genera were
predictive of L. reuteri treatment modifications in EAE, including
Prevotella, Rickenellaceae, and Anaeroplasma.
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FIGURE 2 | L. reuteri treatment decreases TH1/TH17 cells and their associated cytokines, and reduces MOG35−55-stimulated cell proliferation in EAE mice.

(A) PBMCs. (a) the frequency of IFN-γ+ CD4+ T cells (TH1), (b) the absolute number of IFN-γ+ CD4+ T cells, (c) the frequency of IL-17+ CD4+ T cells (TH17), and

(d) the absolute number of IL-17+ CD4+ T cells. (B) Spleen. (a) The frequency of IFN-γ+ CD4+ T cells, (b) the absolute number of IFN-γ+ CD4+ T cells, (c) the

frequency of IL-17+ CD4+ T cells, and (d) the absolute number of IL-17+ CD4+ T cells. (C) Plasma IL-17 and IFN-γ levels. (D) The percentage of cell proliferation of

splenocytes isolated from the mice at d12 post-immunization responded to in vitro MOG35−55 stimulation (see Materials and Methods) in Ctrl, EAE, and EAE+LR

mice (n = 10 mice per group). Data are presented as mean ± SEM. In vitro stimulation assays of PBMCs and splenocytes were performed in triplicate.

*p < 0.05, **p < 0.01,***p < 0.001. EAE+LR vs. EAE. ##p < 0.01, ###p < 0.001. EAE vs. Ctrl.

DISCUSSION

Our current study demonstrates that mice with EAE have
a distinct gut microbiota compared to normal mice. Certain
gut microbes showed positive or negative correlations with

the clinical EAE scores. Probiotic L. reuteri treatment of
EAE mice modified the relative abundance of EAE-associated
microbiota, reducing the clinical symptoms and inflammation

during the EAE development. Probiotics have beneficial effects
on the host by regulating the intestinal microbial communities
and modulating of inflammatory immune responses—both
locally in the gut and systemically. Early administration
of L. reuteri reduces pathogen colonization (24) and has
the potential to reduce the risk of necrotizing enterocolitis
(NEC) in infants (25, 26). In animal models of NEC,
we have demonstrated that L. reuteri reduces incidence

and severity of NEC via modulation of Toll-like receptor-
4 (TLR4) and nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-kB) signaling in the intestine (27).
L. reuteri coordinately modulates inflammatory effector T
cells counterbalanced by Foxp3+ Treg cells in the intestinal
mucosa during NEC, a beneficial effect which is mediated by
TLR2 (16, 28, 29).

L. reuteri prolongs the survival of mice suffering from Foxp3+

Treg-deficiency-induced autoimmune disease (called the scurfy
mouse). We have extensively studied this model of a disease
characterized by immune dysregulation, polyendocrinopathy,
and enteropathy with X-linked inheritance (IPEX syndrome)
that is seen in humans (13). We recently identified a novel
mechanism by which this probiotic and its metabolite inosine
act on an adenosine receptor expressed on inflammatory T
cell to inhibit inflammation (13, 30). Because we observed that
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FIGURE 3 | L. reuteri treatment modulates the diversity of the gut microbiota. (A) Gut microbial Phylogenetic Diversity (PD) whole tree analysis, comparing groups of

Ctrl, EAE, and EAE+LR mice (n = 7–10 mice per group). (B) Unweighted UniFrac-based 3D PCoA analysis of gut microbiota of Ctrl, EAE, and EAE+LR mice

(n = 7–10 mice per group). Data are presented as mean ± SEM. **p < 0.01. EAE+LR vs. EAE. ##p < 0.01. EAE vs. Ctrl.

FIGURE 4 | L. reuteri treatment remodels EAE-associated intestinal microbiota at the phylum level. (A) Relative abundance of bacteria at the phylum level for Ctrl, EAE,

and EAE+LR mice (n = 7–10 mice per group). (B) Relative abundance of Bacteroidetes, Proteobacteria, and Deferribacteres at the phylum level for Ctrl, EAE, and

EAE+LR mice (n = 7–10 mice per group). Data are presented as mean ± SEM. *p < 0.05, ***p< 0.001. EAE+LR vs. EAE. #p < 0.05, ###p < 0.001. EAE vs. Ctrl.

the L. reuteri strain 17938 inhibits the differentiations of naïve
CD4+ T cells into TH1, TH2 (13), and TH17 cells in vitro (data
not shown), we decided to “put this strain to the test” in the
EAE model of MS, a condition mediated primarily by TH1 and
TH17 cells (31).

We began orally feeding L. reuteri by gavage simultaneously
with the first inoculation of MOG35−55 (d0), and we gave the
probiotic until the end of the experiment at d20. Mouse EAE
symptoms were visible as early as d10. Oral administration of
L. reuteri significantly reduced the incidence of EAE and EAE
severity scores starting on d10 until d20 post-immunization.
Previous studies of probiotics given for EAE used different
regimens for prophylaxis. Various authors gave a probiotic
daily beginning 3 weeks before (32, 33), 12 days before (34),

7 days before (35–37) or 0 days before the first inoculation
of MOG35−55 (that is, on d0) (38). For other MS treatments
(medications), study groups have administered preventative
treatment on d0 (39–41) or d2-post-immunization (42). Our
protocol of simultaneous oral administration at the same time
as with MOG35−55 sensitization in this study falls into the
prophylactic window. For therapeutic regimens, compounds or
probiotics have been administered starting at d11 or d20 post-
immunization (39, 42).

Previous studies showed that the effects of probiotic
Lactobacilli on EAE autoimmunity are strain-, and EAE
model-dependent (43, 44). Lactobacillus casei strain Shirota
(LcS) has been reported to be associated with increases in
TH1-associated cytokines in a Lewis rat EAE model (35),
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FIGURE 5 | L. reuteri treatment remodels EAE-associated intestinal microbiota at the Genus level. (A) Relative abundance of predominant bacteria (> 1% of total

bacteria) at the genus level for Ctrl, EAE, and EAE+LR mice (n = 7–10 mice per group). (B) The Spearman correlation between gut microbiota (o, order; f, family; g,

genus) and the EAE clinical scores of all mice. (C) Relative abundance of Prevotella, Anaeroplasma, S24-7, and Rikenellaceae were compared among the mice of Ctrl,

EAE, and EAE+LR groups, respectively, (n = 7–10 mice per group). Data are presented as mean ± SEM. **p < 0.01, ***p <0.001. EAE+LR vs. EAE.
###p < 0.001. EAE vs. Ctrl.

which raised concerns about the safety of this strain in MS
patients. Further studies evaluated the safety of Lactobacillus
casei strain Shirota (LcS) together with Bifidobacterium breve
strain Yakult (BbY) when given to Lewis rats with EAE.
However, in this series of experiments investigators found that
neither LcS nor SbY exacerbates EAE (45). Another study
demonstrated that even though LcS upregulated peripheral IL-
17 responses; it did not exacerbate neurological symptoms in
EAE (37). Another probiotic mixture, IRT5, representing a
combination of five probiotic strains, Streptococcus thermophilus,
L. reuteri, Bifidobacterium bifidium, Lactobacillus acidophilus,
and Lactobacillus casei, was given as pretreatment 3 weeks
before disease induction. Investigators found that treatment
with IRT5 during induction of EAE delayed the disease
onset (32). Previous studies demonstrated that Bifidobacterium
animalis PTCC1631 in combination with L. plantarum A7 also
ameliorated neuroinflammation in the EAE mouse model (38).

Recently, investigators using this MS model tested different
probiotic strains and selected mixtures, including Lactobacillus
crispatus LMG P-23257, Lactobacillus rhamnosus ATCC
53103, Bifidobacterium animalis subspecies Lactis BB12 R©,
and Bifidobacterium animalis subspecies Lactis LMG S-28195.
Their results indicated that selective probiotic mixtures
effectively modulate disease symptoms in the EAE model (36).
Administration of the selected mixtures altered CD4+ T cell
subset balance, inhibiting the pro-inflammatory TH1/TH17
polarization while inducing IL10-producing Foxp3+ Treg cells
(36, 38). In our study, L. reuteri reduced the inflammatory
infiltration in the spinal cord, especially invading T cells (CD3+)

and macrophages (CD68+), reducing IFN-γ-producing TH1
and IL-17-producing TH17 cells. However, we did not observe
a difference with respect to the levels of circulating IL4-, and
IL-10-producing T cells (and their associated cytokines IL-4 and
IL-10 in plasma (data not shown). This finding indicates that
strain L. reuteri DSM 17938 specifically acts on TH1 and TH17
subsets in the EAE model.

Other studies in the EAE model which tested a single
probiotic strain, Lactobacillus helveticus SBT2171 (33) or another
combination probiotic Enterococcus faecium strain L-3 (46)
with Prevotella histicola (47) showed differential modulation of
immune cells and amelioration of EAE. Gut microbes and their
products therefore must participate as key participants in the
development of MS. Germ-free mice are fully protected from
spontaneous EAE (6), while gut microbiota from MS patients
when transferred facilitates the spontaneous development of EAE
in mice (48). As final evidence, antibiotics can alter the severity of
MS (10, 11).

In the current study, we analyzed the changes of gut
microbiota derived from colonic contents, revealing
significant differences among the groups in the beta
diversity distance matrix (PCoA). For alpha-diversity,
among five metrics (Chao1, Observed Species, PD whole
tree, Shannon, and Simpson), only the PD whole tree
analysis showed significantly differences. At the phylum
level, L. reuteri treated EAE mice had restoration toward
normal relative abundance of Bacteroidetes, but continued
to show reduced relative abundances of Proteobacteria and
Deferribacteres. We conclude that L. reuteri promotes the
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FIGURE 6 | Predictive model based on the relative abundance profile at the genus level using Random Forest analysis. (A) Predictive power of individual genera (Top

20 most important bacteria at genus level) with three group (Ctrl, EAE, and EAE+LR) comparisons assessed by Random Forest (RF) analysis (o, order; f, family; g,

genus). (B) Heatmap based on the relative abundance of bacteria from (A) top 20 most important bacteria at the genus level of Ctrl, EAE, and EAE+LR mice.

(C) Predictive power of individual genera (Top 30 most important bacteria at genus level) with two group (EAE and EAE+LR) comparisons assessed by RF analysis.

(D) Heatmap based on the relative abundance of bacteria from (C) top 30 most important bacteria at the genus level of EAE and EAE+LR mice. Hierarchical

clustering shows that Ctrl, EAE, or EAE+LR samples tend to cluster together, respectively.

growth of beneficial commensal microbes (Bacteroidetes)
and while reducing the abundance of pathobionts
(Proteobacteria) or potentially pathogenic (Deferribacteres)
gram-negative organisms.

Recent studies noted that the interaction between
Bacteroidetes and their animal host is one of mutualism
rather than commensalism (49). Mutualism refers to a situation
in which both organisms benefit, whereas commensalism
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refers to a state in which one species benefits but the other
is not harmed. Bacteroidetes are also beneficial to the normal
development of the gastrointestinal tract (GIT), enhancing the
immune system and activation of T-cell mediated responses
(50). Furthermore, Bacteroidetes limit the colonization of the
gastrointestinal tract by potential pathogenic bacteria (51). Gut
Bacteroidetes produce butyrate, facilitate bile acid metabolism,
and can transform toxic compounds (52, 53).

At the genus level, several EAE-associated bacteria
(Anaeroplasma and Rikenellaceae) were reduced by L. reuteri
treatment, at the same time as the low relative abundance of
Prevotella and S24-7 rebounded back to normal. Human studies
of MS patients have also indicated that the relative abundance
of Prevotella and Lactobacilli are decreased compared to healthy
controls (7, 8) and these 2 taxa increase after treatment with
MS-directed phamacotherapy (7). Interestingly, Prevotella in
particular has been associated with phytoestrogen metabolism
(54–56). Metabolites derived from phytoestrogens play a critical
role in producing anti-inflammatory responses (57). Treatment
with certain phytoestrogens can suppress and/or protect mice
from EAE (58–60). Future studies should investigate the role
of Prevotella-derived phytoestrogen products in the prevention
and therapy of autoimmune disease. In addition, Prevotella
and Lactobacillus can ferment carbohydrates to yield short
chain fatty acids (SCFA) which are known for their beneficial
immunoregulatory functions (61–63).

After analyzing the correlation between the significantly
changed bacteria with clinical EAE scores, we concluded
that among all the bacteria, 16 genera bacteria positively
correlated with clinical EAE scores, while 17 negatively correlated
with clinical EAE scores. Our data therefore further the
understanding EAE–associated bacteria and provide additional
information that may assist in modulating gut bacteria to
change the development of MS. Toward this end, we used
predictive models to confirm the bacterial taxa differentially
expressed and their importance in the control of the disease.
Prevotella and Rikenellaceae had priority importance to EAE
and EAE with LR treatment (Figure 6). They are members
of the phylum Bacteroidetes, but as shown in Figure 5,

L. reuteri increased the abundance of Prevotella that were
decreased in EAE while L. reuteri reduced the abundance of
Rikenellaceae. This is significant because Prevotella negatively
and Rikenellaceae positively correlated with clinical disease
severity. Our results provide clear evidence that resetting gut
microbiota should be considered as an adjunctive therapeutic
strategy for treating MS.

In summary, we have found alterations in the gut microbiota
that correlate with changes of neuroinflammation in a mouse
model of MS. A novel therapeutic strategy for MS may consist of
the use of probiotics, prebiotics, defined microbial communities,
or even fecal microbiota transplantation—aiming to remodel the
microbiome in this disease.
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