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Abstract: Background and objects: In systemic lupus erythematosus, circulating immune complexes
activate complement and, when trapped in renal capillaries, cause glomerulonephritis. Mouse models
have been used in the preclinical assessment of targeting complement activation pathways to manage
chronic inflammation in lupus. Properdin is the only known positive regulator of complement
activation, but its role in the severity of lupus nephritis has not been studied yet. Materials and
Methods: Fully characterized properdin-deficient mice were crossed with lupus prone MRL/lpr
mice on C57Bl/6 background. Results: Compared to MRL/lpr properdin wildtype mice, MRL/lpr
properdin-deficient mice had significantly lower anti-DNA antibody titres, TNFα and BAFF levels in
serum. The qualitative glomerulonephritic score was less severe and there was significantly less serum
creatinine in MRL/lpr properdin-deficient mice compared to MRL/lpr properdin wildtype littermate
mice. Conclusion: Properdin plays a significant role in the severity of lupus overall and specifically in
the extent of glomerulonephritis observed in MRL/lpr mice. Because MRL/lpr properdin-deficient mice
had lower levels of anti-DNA antibodies, inflammatory mediators and markers of renal impairment,
the study implies that properdin could constitute a novel therapy target in lupus disease.
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1. Introduction

The complement system, a cascade of carefully regulated enzymatic reactions, bridges innate and
adaptive immunity. Three main pathways have been described, whose activity can be specifically
interrogated in vitro: the classical pathway is activated when antigen–antibody complexes have
formed; the lectin pathway is initiated upon the recognition of pathogen associated molecular patterns;
the alternative pathway amplifies the activities of both the classical and lectin pathways, while it may
become a dominant pathway itself when the host relies on the binding of properdin to, for example,
certain serotypes of Neisseria meningitidis. Normally, complement activation is well controlled through
the presence of regulators on the surface of host cells or in circulation [1]. Complement receptors
mediate cellular effects, such as inflammatory cell recruitment, phagocytosis, and B cell activation.
The non-enzymatic formation of the membrane attack complex leads to pore formation, causing the
rapid lytic destruction of damaged cells (or some Gram-negative microorganisms) but is also detectable
in a soluble form in systemic lupus erythematosus (SLE) [2].
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In humans, the loss of self-tolerance leads to this disease, which varies in its manifestation and
severity. It is a B-lymphocyte hyper-reactive disease leading to the production of autoantibodies [3].
SLE is a type-III hypersensitivity response with type-II involvement [4], meaning that the disease is
characterized by circulating antigen–antibody complexes and the presence of cells tagged by bound
antibodies. Both type II and type III responses entail the involvement of complement activation via
the recognition of immune complexes using C1 of the classical pathway [5]. Elevated serum levels of
activation products of complement are seen in patients with SLE [6].

SLE affects 1 in 2000 Europeans [7] but the prevalence is much higher in populations of other
extractions [8], in whom severity is much worse [9]. Deposited immune complexes are pathogenic
in developing vasculitis, arthritis, encephalitis, foetal loss, and nephritis. The impairment of kidney
function is generally life limiting, requiring dialysis or renal transplant. Renally deposited immune
complexes contribute to the development of glomerulonephritis, because of the local activation of
complement that leads to the formation of the chemoattractants C3a and C5a, and membrane attack
complexes. The excretion of C3d, an activation product of complement C3, in urine, may be a marker
of severity for lupus nephritis [10].

Properdin is composed of thrombospondin-like repeats of which some have been identified to
bind to C3b, which are present in the C3 convertase complex of the alternative pathway of complement
activation (C3bBb) and in the C5 convertase complexes of the alternative pathway and classical/lectin
pathways (C3bBbC3b, C4b2b3b). The binding of properdin to C3b in these complexes leads to a
stabilisation of these inherently labile convertases. A binding independent of C3b to membranes via
phosphatidylserine is described for properdin [11,12] and is relevant to SLE where increased apoptosis
occurs. Properdin has been measured in patients with SLE and was found to be decreased [13],
which was most likely due to consumption, a phenomenon routinely observed during the chronic
activation of complement in SLE, when the capacity to remove immune complexes becomes exhausted.

The significance of alternative pathway amplification to complement activation initiated
by immune complexes has been quantified in vitro [14] and demonstrated in vivo during
antipneumococcal antibody response [15]. Deficiencies in humans predisposed to septicaemia with
Neisseria meningitidis serotypes, W-135 and Y, but more recently, properdin synthesized by cells of the
myeloid lineage, are valued as a modulators in the outcome of tissue injury [16].

The disease mechanisms of SLE can be modelled in mice. This study was particularly interested
in the development and progression of glomerulonephritis. A strain of MRL/MpJ-Faslpr (MRL/lpr)
mice was chosen that, spontaneously, as part of a lymphoproliferative disorder, develops systemic
autoimmune disease affecting the kidney. MRL/lpr mice produce anti-DNA autoantibodies and renal
immune deposits which contain IgG, IgM, IgA and C3. In the genetic absence of Factors B or D
(proteases of the alternative pathway that aid in C3 activation), the lupus-like phenotype in MRL/lpr
mice was significantly improved [17,18].

Therefore, the aim of this study was to determine whether, in the genetic absence of properdin, the
systemic and organ specific inflammation was less severe, by using a novel mouse model generated
by crossing the repository archived lupus-prone MRL/MpJ-Faslpr/J mice with our line of properdin
knock-out mice to produce a strain of lupus-prone properdin-deficient (MRL/lpr PKO) mice, and
lupus-prone properdin-sufficient littermates (MRL/lpr PWT) as controls. A gene dose effect was
studied in lupus-prone properdin-heterozygous mice (MRL/lpr Phet). The results reported herein
demonstrate that pathologic and functional renal disease were significantly reduced in MRL/lpr PKO

mice confirming that the alternative pathway amplification plays a significant role in the proliferative
glomerulonephritis that develops in MRL/lpr mice.
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2. Materials and Methods

2.1. Generation of Properdin Deficient Fas Mutant Mice

Since their generation, properdin deficient mice, in comparison with their congenic controls,
were analysed across their systems [19]. In a functional test of serum obtained from properdin
deficient mice, we showed that properdin was the dominant factor in rabbit red blood cell lysis
in buffers favouring alternative pathway activation (without calcium ions) [20]. MRL/lpr mice
(B6.MRL-Faslpr/Orl) were obtained from the European Mouse Mutant Archive (EMMA) mouse
repository (INFRAFRONTIER GmbH), rederived, then crossed with properdin deficient mice for three
generations at the University of Leicester’s designated establishment. Mice were genotyped for the Cfp
and Fas loci by PCR of genomic DNA, as described in [20,21]. The approval of the programme of work
(Complement properdin in immunity and inflammation) was granted by the institutional Animal
Welfare and Ethics Subcommittee (item AWERB/15/24) and by the Secretary of State of the UK Home
Office (license P43308E3B). The severity of the protocol used in this paper was classed as moderate.

Mice were group housed (up to six mice) in a specific pathogen-free barrier facility in groups in
ventilated cages at 21 ◦C, 50% humidity, with a 12/12 h light/dark cycle, and had ad libitum access to
food and water. Mice were maintained on 5LF2 (TestDiet). The cage floor was covered with corn cob
as bedding material; nesting material (sizzle pet) was made from recycled paper.

MRL/lpr mice develop lupus-like disease spontaneously. Skin vasculitis was not a feature of
this Fas mutation but signs of lymphoproliferative disease (splenomegaly, lymphadenopathy) were
manifest as of 4 months of age. This determined our humane endpoint. For this reason, no comment
on the comparative longevity of the two genotypes can be made.

To increase the stringency of our comparisons, we decided to compare only male littermates in this
study, because these would differ only in the presence or absence of properdin, due to x-chromosomal
linkage of the properdin gene. The mice of interest to this study were produced by mating MRL/lpr
properdin wildtype males with MRL/lpr properdin heterozygous females, which yields females which
are MRL/lpr properdin wildtype or heterozygous and males which are either MRL/lpr properdin
wildtype or MRL/lpr properdin hemizygous—i.e., deficient.

2.2. Histopathology

Microscopic analysis was performed blinded to the genotypes using Periodic Acid-Schiff (PAS)
stained 5 micron sections. Immunoreaction with anti-mouse immunoglobulin HRP was detected using
the chromogen 3,3′-diaminobenzidine.

2.3. Anti-DNA ELISA

Enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of anti-DNA
IgG autoantibodies in the serum samples. Deoxyribonucleic acid sodium salt from calf thymus
(Sigma D1501) was added to poly-L-lysine coated plates [22].

2.4. C9 Functional Complements ELISAs

ELISA quantitatively measured the activity of three complement pathways at the level of C9
formation [23]. Activities were expressed as % of the activity of a commercial normal mouse serum
(Thermo Fisher Scientific, Loughborough, UK). Experimental controls were serum heat inactivated at
56 ◦C for 30 min, or serum chelated by the addition of 5 mM EDTA.

2.5. BAFF and TNF-α ELISAs

Serum samples were diluted 1:100 and used for these analyses according to the manufacturer’s
protocols: BAFF (Mouse BAFF/BLyS/TNFSF13B Quantikine ELISA Kit; R&D Systems, Abingdon, UK)
and TNF-α (Murine TNF-α Mini TMB ELISA Development Kit; Peprotech EC Ltd., London, UK).
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2.6. Serum Creatinine

This colorimetric assay was performed according to the manufacturer’s protocol (QuantiChromTM

Creatinine Assay Kit; BioAssay Systems, Hayward, CA).

2.7. Caspase-3 Western Blot

Kidney lysates were prepared from experimental mice, separated by 12% SDS PAGE and
electroblotted to nitrocellulose and probed with mouse Anti-Mouse Caspase-3 Antibody (Santa Cruz
Biotechnology Inc, Heidelberg, Germany, Sc-56053; 1:400). After detection with Goat Anti-Mouse IgG
H&L (HRP) (Abcam plc, Cambridge, UK, ab6789), blots were reacted with the HRP Chemiluminescent
Substrate Reagent Kit (Novex® ECL). The signal was captured using the ChemiDoc Imaging system
(BIORAD). β-actin reactivity was used as a loading reference (Sigma Aldrich Co, Gillingham, UK, AC-74).

2.8. Statistical Analysis

Experimenters were blinded to the genotypes in all assays. Statistical values were determined by
unpaired t-test. A p value < 0.05 was considered significant.

3. Results

3.1. Assessment of Renal Histopathology

Mice were analysed from 4 months of age prior to developing significant lymphadenopathy,
splenomegaly and interstitial nephritis, which constituted our humane endpoint. It was hypothesised
that a genotype specific contribution towards the progression of disease would be manifest. Histological
analysis showed the epithelialization of Bowman’s capsules, possibly indicative of a need for greater
protein absorption in both, MRL/lpr PWT and MRL/lpr PKO (Figure 1a). The degree of matrix expansion
and cell infiltration was variable. IgG was localized to glomerular capillary endothelium when the
sections were reacted with HRP-conjugated anti mouse immunoglobulins (Figure 1b).
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Figure 1. Representative images of glomeruli after staining with PAS (a) and after reaction with
anti-mouse immunoglobulin G-HRP (b) n = 2 each genotype, MRL/lpr PWT and MRL/lpr PKO. * indicates
epithelialization of Bowman’s capsule. scale bar, 20 micron.

To compare the extent and progression of glomerulonephritis, genotype matched pairs of one
litter were humanely killed at three timepoints (68, 104, and 126 days), and 100 glomeruli for each
genotype and timepoint were scored as focally, segmentally, or globally affected (Figure 2a). At 68 days,
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MRL/lpr PWT and MRL/lpr PKO showed a comparable distribution of glomerulonephritic changes.
At 104 days, however, 56% of glomeruli in MRL/lpr PWT were scored as global glomerulonephritis
vs. 40% in MRL/lpr PKO (Figure 2b). A clear distinction of histopathological phenotypes was seen at
126 days—MRL/lpr PWT had even markedly more glomeruli with global inflammatory involvement
than MRL/lpr PKO (80% vs. 54%). In fact, the MRL/lpr PKO mice exhibited a distribution of histological
patterns at 126 days than compared to that of MRL/lpr PWT at 104 days. This implies that MRL/lpr PKO

expressed a delayed disease phenotype.
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Figure 2. Examples of scored glomerular changes; scale bar, 20 micron (a). Histological evaluation
of the extent of glomerulonephritis in 100 glomeruli of paired male littermates humanely killed at
different times, as indicated (68, 104, and 126 days) (b).

3.2. Assessment of Disease Activity

Disease activity was assessed cumulatively at a humane endpoint of 4 months. MRL/lpr PWT

compared to MRL/lpr PKO showed significantly increased levels of the metabolite creatinine (Table 1).
Because creatinine elevation is an insensitive measure of renal impairment in mice [24], the doubling
of levels in MRL/lpr PWT compared to MRL/lpr PKO and of MRL/lpr PKO compared to the C57Bl/6
wildtype controls are pathologically important. The B cell activating factor belonging to the TNF
family, BAFF, and cytokine TNFα were significantly increased in the sera of MRL/lpr PWT compared to
MRL/lpr PKO mice (Table 1).
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Table 1. Measurements of creatinine, BAFF, and TNFα in serum.

MRL/lpr PWT

n = 8
MRL/lpr PKO

n = 7

Unpaired t-Test
(MRL/lpr PWT cp

MRL/lpr PKO)

Creatinine (mg/dL)
(baseline (4 WT)):

0.29 ± 0.05
0.82 ± 0.08 0.49 ± 0.03 p < 0.0001

BAFF (pg/mL)
(baseline (4 WT)):

31.17 ± 2.32)
70.5 ± 3.42 55.71 ±3.73 p < 0.0001

TNFα (pg/mL)
(baseline (4 WT)):

7.1 ± 1.8
43.05 ± 3.21 18.46 ± 2.77 p < 0.0001

BAFF aids in the survival of B cells and has become a therapeutic target in clinics [25] and TNFα
has a role in disease progression in MRl/lpr [26]. MRL/lpr PWT also showed more renal pro-caspase-3
activation compared to MRL/lpr PKO mice (Figure 3a,b). Caspase 3 is likely in this context to direct the
activation of cytokines [27]. The anti-DNA antibody titre was significantly increased in MRL/lpr PWT

compared to MRL/lpr PKO mice (Figure 3c).
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Figure 3. Western blot of kidney lysates prepared from MRL/lpr PWT/KO and wildtype mice, probed for
caspase-3 reactivity (a) and β-actin (b). (c) Anti-DNA Immunoglobulin G in sera of MRL/lpr PWT and
MRL/lpr PKO (n = 3 each genotype).

In SLE, there is the constant systemic activation of complement in vivo. Ex vivo activity tests
therefore quantify a decline relative to the functional consumption in vivo of components that are
necessary in the assays. Therefore, the consumption of immune complex mediated complement
activation was assessed by pathway specific activity assays (Table 2). Note that residual activities
are measured, except for the test of alternative pathway activity in MRL/lpr PKO. This is because the
alternative pathway test is absolutely reliant on the presence of properdin, so no activity is detected in
the absence of properdin.

Table 2. Pathway specific complement activity pooled samples (n = 3) expressed as % activity of
commercial normal mouse serum (set at 100%).

MRL/lpr PWT MRL/lpr PKO

Classical Pathway (Purified IgM) 48% 66%
Lectin Pathway (Mannan from Saccharomyces cerevisiae) 37% 48%

Alternative Pathway (Salmonella enteritidis LPS) 25% 1%

LPS, lipopolysaccharide.
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While there is a clear consumption of classical pathway activity in MRL/lpr PWT, MRL/lpr PKO

retained more activity to activate the classical pathway on the plate coated with IgM. The absence of
properdin removes a significant amplifying activity of the alternative pathway to ongoing classical
pathway of complement activation. Therefore, this assay quantifies the contribution afforded by
the intact alternative pathway loop to ongoing classical pathway activation. The fact that the lectin
pathway was consumed may point to the fact that convertase formation via the classical pathway draws
away from lectin pathway progression. A secondary lectin pathway deficiency ensues, not necessarily
consumption, and this secondary deficiency was less, as expected, in alternative pathway deficient
MRL/lpr PKO. The consumption of complement factors in MRL/lpr PWT extended to the alternative
pathway, which does not require C4 or C2, components which are usually depressed in human SLE.
An interpretation might be that there is the sequestration of activity to local, glomerular deposits.

4. Discussion

We have shown previously that complement system activation, and, in particular, properdin
amplified classical pathway activation, is pathogenically involved in immune complex diseases [28].
The present studies demonstrate a key role for properdin in the pathogenesis of autoimmune renal
disease in MRL/lpr mice.

The disease mechanisms of SLE can be studied in mice using models of lymphoproliferation.
So far, crosses of the lupus prone mouse line MRL/lpr with either complement factor B, factor D or
MASP-1/3 knockout mice demonstrated a significant benefit in targeting the alternative pathway of
complement activation to reduce the severity of the renal pathology initiated by inflammation caused
by immune complexes trapped in glomerular capillaries [17,18,29]. Properdin is the only positive
regulator of the alternative pathway and its blockade is of clinical interest [30]. We showed that, in the
absence of properdin, glomerulonephritis was less severe and progressed more slowly—disease activity
markers were lower at the 4 month endpoint, which included autoantibody levels, inflammatory
cytokines, complement activation, and tissue damage (Figure 4).
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Figure 4. Summation of findings achieved in this study of MRL/lpr PWT and MRL/lpr PKO.

The two key observations comparing MRL/lpr PWT and MRL/lpr PKO were: (i) worse or quicker
kidney inflammation, due to greater immune complex-mediated complement activation in MRL/lpr
PWT, and (ii) more autoantibodies due to greater B cell activation in MRL/lpr PWT. The observed,
ameliorated, phenotype in MRL/lpr PKO compared with congenic MRL/lpr PWT cannot be explained by
just the absence of alternative pathway amplification caused by immune complex mediated complement
activation. The reason for lower autoantibody production in MRL/lpr PKO is not clear, but, based on
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current developments in the field [31,32], likely involves relative changes in signalling strengths via
CR2/C3d, which may be exploitable for clinical application [33]. CR2 is of interest because CR2 is part
of the B cell receptor complex and C3d binding leads to augmented BCR signalling.

Properdin deficiency causes a reduction in—not absence of—complement activation products,
so the C3d/CR2 axis—and also the C5a/C5aR axis (relevant for B cell activity and egress [34])—is likely to
be differentially engaged in MRL/lpr PKO vs. MRL/lpr PWT. A measurable effect of properdin deficiency
on B cell expression or activity of CD21 would strengthen the rationale for targeting properdin—or
indeed of the ligand C3d [31,35]—in the treatment of lupus (while C5aR blockade has been shown to
alleviate blood–brain barrier leakage in lupus prone mice [36]).

In addition, a report on the production of BAFF by renal tubular epithelial cells [37] raised
the possibility that the kidney itself contributes to the progression of SLE via BAFF production and
the retention of lymphocytes. This contribution could be less when properdin is targeted because
glomerulonephritis is of delayed severity in MRL/lpr PKO. BAFF is a biomarker measured in patients
with lupus. Anti-BAFF treatment (belimumab), however, has had variable success.

Recapitulating the beneficial effect of properdin deficiency for lupus glomerulonephritis using a
validated anti mouse properdin antibody [38] would provide proof-of-principle that serum properdin
is the dominant factor in determining disease activity and lupus phenotype. This seems likely as our
work using MRL/lpr Phet mice (not shown) revealed a gene dose effect in alternative pathway activity
but not in anti-dsDNA levels, IL-6 or TNFα levels—MRL/lpr Phet coincided in these measurements with
MRL/lpr PKO, meaning that one of two copies of the properdin gene, although it reduced alternative
pathway activity, was insufficient at driving a worse phenotype, as observed in MRL/lpr PWT. Our
study supports previous work by others who targeted Factor B or D of the alternative pathway in their
analyses of MRL/lpr mice and found that disease parameters, such as proteinuria or serum creatinine,
significantly lessened at more prolonged endpoints [17,18]. While the absence of Factors B or D
abrogates the assembly of the convertase complexes C3bBb and C3bnBb (Factor D cleaves Factor B to
produce Bb), the absence of properdin leaves the enzyme complexes labile to decay. The therapeutic
targeting of properdin in lupus nephritis would likely require vaccinations against meningococcal
disease [39]. Previously, the therapeutic application of a soluble form of a complement receptor of
the Immunoglobulin superfamily, which functions as an inhibitor of the alternative pathway, led to a
reduction in lupus nephritis at a comparable endpoint (4 months) in MRL/lpr mice, but, in contrast to
our study, showed no effect on the levels of autoantibodies [40].

5. Conclusions

Our in vivo study shows the significant role of complement properdin in the disease activity of
systemic lupus-like disease and in the severity of lupus nephritis.

There are significantly fewer anti DNA antibodies in serum from MRL/lpr mice in the absence
of properdin. The difference in disease progression was deduced from histopathologic analysis of
littermates, which crudely assesses severity. Relevant markers derange much earlier and their analyses
in situ would help in determining which properdin supported inflammatory axis would benefit from
other clinical blockers. Additional proteomic analyses could identify other ultimately targetable disease
descriptors that associate with delayed disease progression in the absence of properdin.
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