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Abstract: The NF-B pathway is intimately linked to the survival of mammalian cells, and 

its activation by Tax has consequently been considered important for human T-cell 

leukemia/lymphoma virus type 1 (HTLV-1)-infected cell resistance to death. Very little 

emphasis has been given to other mechanisms, although Tax regulates the expression and 

activity of several cellular genes. The finding that CREB protein is activated in HTLV-1 

infected cells underlines the possibility that other mechanisms of survival may be implicated 

in HTLV-1 infection. Indeed, CREB activation or overexpression plays a role in normal 

hematopoiesis, as well as in leukemia development, and CREB is considered as a survival 

factor in various cell systems. A better understanding of the different molecular mechanisms 

used by Tax to counteract cell death will also help in the development of new therapeutic 

strategies for HTLV-1 associated diseases.  
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1. Introduction  

The human T-cell leukemia/lymphoma virus type 1 (HTLV-1) is the etiological agent of a highly 

aggressive and fatal disease called adult T-cell leukemia/lymphoma (ATLL) [1,2]. The virus is also the 

causative agent of tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM), a 

degenerative neurological illness [3], and other diseases, including polymyositis, uveitis, infectious 

dermatitis, immunodeficiency and arthropathy [4]. The onset of these pathologies is believed to be 

mainly a consequence of the expression of the viral protein Tax, which is also considered the major 

oncogenic protein of HTLV-1. Indeed, Tax has been shown to induce leukemia in transgenic mice [5], 
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and to immortalize human T lymphocytes when expressed in either a herpes- or a retroviral  

vector [6,7]. 

Tax is a 40 kDa phosphoprotein originally described as a nuclear protein [8,9], and subsequently 

found to shuttle from the nucleus to the cytoplasm [10–14]. In the nucleus, Tax is in part associated 

with speckled structures coincident with a subset of nuclear transcriptional hot spots [10], while in the 

cytoplasm Tax has been reported to be closely associated with Golgi compartments and localized in 

cell-cell contact regions [15]. The mechanisms regulating nucleus-cytoplasmic shuttling and targeting 

of Tax to distinct subcellular regions have yet to be determined, but it is conceivable that the 

pleiotropic nature of Tax activities might in part be determined by its subcellular localization.  

The primary and most studied role of Tax is that of a transcriptional transactivator. Tax was 

identified as a trans-acting transcriptional activator for viral gene expression via the viral long terminal 

repeats (LTR) [16,17]. Successive studies have demonstrated that, by interacting with members of 

various transcription factor families that include cAMP-responsive element-binding protein/activating 

transcription factor (CREB/ATF), nuclear factor-B (NF-B), and serum responsive factor (SRF), Tax 

regulates not only the expression of HTLV-1, but also that of several cellular genes [17,18]. 

Furthermore, Tax has been found to modulate the function of numerous cellular proteins, including 

those involved in cell cycle regulation or belonging to signal transduction pathways and cytoskeleton, 

by directly interacting with them [19–23]. Tax expression has also been shown to reduce cellular 

genomic stability [24–27] and to interfere with most DNA repair mechanisms [28,29].  

Although ATLL generally presents prolonged incubation periods and ultimately only a minor subset 

(2–5%) of infected individuals develop neoplasia, once the disease is diagnosed the prognosis is 

dismal. The poor outcome of patients with ATLL is mainly linked to intrinsic resistance of leukemic 

cells to conventional anticancer therapies that can be ascribed to decreased susceptibility to apoptosis 

shown by leukemic cells. Resistance to apoptosis is one of the hallmarks of malignant cell 

transformation [30] but also plays an important role in the pathogenesis of neurodegenerative and 

immunological disorders, all linked to HTLV-1 infection. 

Apoptosis can occur via two principal routes: the extrinsic (receptor-mediated) pathway and the 

intrinsic (mitochondrial) pathway. In the receptor-mediated pathway, interaction of the receptor with 

its ligand results in the oligomerization of the receptor’s intracellular death domains, and activation of 

the initiator caspase-8. The intrinsic apoptotic pathway requires pro-apoptotic proteins of the Bcl-2 

family which act principally at the mitochondrial level. Activation of these proteins by apoptotic 

signals leads to changes in mitochondrial outer membrane permeability, release of cytochrome c, and 

activation of the initiator caspase 9 through the formation of the apoptosome. Both pathways induce 

activation of executioner caspases, and subsequent controlled destruction of cells. The link between the 

receptor-mediated signaling cascade and the mitochondria is provided by the Bcl-2 family member 

Bid. Bid is cleaved by caspase-8 and, in its truncated form (tBID), translocates to the mitochondria 

where it acts in concert with the proapoptotic Bcl-2 family members Bax and Bak to induce the release 

of cytochrome c and other mitochondrial pro-apoptotic factors into the cytosol [31,32]. 

While unbalanced activation of signal transduction pathways, inhibition of cell cycle checkpoint, 

and accumulation of genetic defects are generally associated with cell transformation and escape from 

apoptosis, the contribution of Tax to apoptosis has been a matter of discussion. Tax has been found to 

either induce [33–42] or inhibit [43–51] apoptotic cell death triggered by stimuli that activate either the 
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extrinsic or the intrinsic pathway. However, genome expression profiling of Tax-positive cells showed 

that the viral protein down modulates a wide range of pro-apoptotic factors and stimulates expression 

of factors acting as anti-apoptotic proteins [52,53]. At present, it is generally recognized that the  

anti-apoptotic activity of Tax overcomes its potential apoptotic role.  

Although the mechanism involved in the anti-apoptotic effect of Tax remains to be defined, it is 

believed that Tax prevents apoptosis by interfering with cell survival signaling cascades. So far, much 

attention has been given to the NF-B pathway, however, in the last years, at least two other cellular 

survival pathways have come to the forefront. 

In this review we will briefly discuss new findings and our current understanding of how the 

NK-B, PI3K/Akt, Ras/Raf/ERK pathways, and finally CREB activation, are engaged by Tax to 

overcome cell death.  

2. NF-B Pathway 

NF-B family proteins are expressed in the cytoplasm of virtually all cell types, where their activity 

is controlled by a family of regulatory proteins called inhibitors of NF-B (IB). NF-B activation is 

tightly regulated by signals that degrade IB. In the canonical NF-B signaling pathway, IB proteins 

are phosphorylated by an activated IB kinase (IKK) complex. Phosphorylation leads to ubiquitination 

and degradation of IB, thus leaving the p50-RelA/p65 complex free to migrate to the nucleus. The 

IKK complex is composed of the catalytic subunits IKK and IKK and the regulatory subunit IKK, 

also known as NEMO (NF-B essential modulator). The IKK component is essential for signaling 

via the canonical NF-B pathway, while in the so-called non-canonical pathway IKK and IKK are 

dispensable and processing of NF-B2/p100 to p52/RelB dimers involves IKK homodimers. The 

canonical and non-canonical NF-B pathways regulate different B elements and, therefore, a distinct 

subset of NF-B target genes are controlled by the two pathways [54]. 

In contrast to its transient mode of action during a physiological T-cell response, NF-B is 

chronically activated in HTLV-1-transformed cell lines and freshly isolated ATLL cells [55], and this 

characteristic has been ascribed to Tax [56]. Tax interferes with the NF-B pathway via direct 

Tax/IKK subunit interaction which leads to chronic IKK complex activation, continuous IB 

degradation, and allows the translocation of NF-B to the nucleus [57–61] (Figure 1). Another 

mechanism by which Tax contributes to NF-B activation is the induction of the non-canonical 

pathway, leading to processing of p100 and the formation of p52/RelB complex. This process, that 

usually operates in B cells and lymphoid stromal cells [62], is very active in HTLV-1-transformed 

cells [63]. In contrast to the cellular pathway, Tax stimulated processing of p100 does not need NIK 

(NF-B inducing kinase), but seems to require IKK [64,65] (Figure 1). Thus, whereas different 

physiological inducers of NF-B activate either the canonical or non-canonical pathway, Tax can 

regulate both. Tax/NF-B pathway interaction is not confined to the cytoplasm. Indeed, it has been 

reported that Tax can activate transcription by directly binding NF-B subunits in the nucleus [66,67], 

and more recently, it has been shown that Tax sumoylation is critical for the recruitment f RelA to 

Tax nuclear bodies and transcriptional activation [68,69]. 

Activation of the NF-B pathway is considered important for transformation, proliferation and 

survival of HTLV-1-infected cells. In accordance with this, treatment with specific NF-B pathway 
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inhibitors leads to suppression of growth and impaired tumorigenesis in mice of Tax-transformed 

fibroblasts [70], and induces apoptosis of HTLV-1-transformed T-cell lines and ATLL cells in vitro 

and in vivo [71–73]. 

Figure 1. Survival pathways controlled by Tax. A growing body of evidence suggests that 

the anti-apoptotic effect of Tax is mediated by the activation of distinct signaling cascades, 

including NF-B, PI3K/Akt and MEK/ERK1/2. Both canonical and non-canonical NF-B 

pathways are activated by Tax, and control the expression of numerous survival genes;  

the PI3K/Akt pathway, also activated by Tax, acts by inhibiting the pro-apoptotic protein 

Bad, by activating the NF-B pathway and inducing CREB phosphorylation; the 

Raf/MEK/ERK1/2 pathway is engaged by Tax through Ras activation. RasGTP can also 

induce PI3K activation; down modulation of PTEN expression by Tax leads to both Akt 

activation and increased levels of phosphorylated CREB in the nucleus. 
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3. PI3K/Akt Pathway 

The PI3K/Akt signaling pathway is a key regulator of numerous physiological cellular processes, 

including proliferation and survival. Unrestrained activation of the PI3K/Akt pathway has been 

associated with malignant transformation and anti-apoptotic signaling. 

The phosphatidylinositol 3-kinase (PI3K) is a heterodimer, composed of a catalytic subunit (p110) 

and a regulatory subunit (p85), which is activated through the interaction with tyrosine kinase 

receptors [74,75]. Akt, also known as protein kinase B (PKB), is a serine/threonine kinase and its 

activation is mediated by PI3K. Once activated, PI3K converts the plasma membrane lipid PI(4,5)P2 to 
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PI(3,4,5)P3, and Akt is recruited by the latter to the plasma membrane. Translocation of Akt to the 

membrane and its interaction with PI(3,4,5)P3 is thought to provoke the exposure of two 

phosphorylation sites (Thr308 and Ser473); phosphorylation of Thr308 is mandatory for Akt activation 

while phosphorylation of Ser473 is required for full activation of the kinase [76]. Once activated Akt 

moves from the plasma membrane to both the cytoplasm and nucleus, where many of its substrates are 

located [76]. 

Akt regulates cellular survival by phosphorylation of substrates that directly or indirectly control the 

apoptotic machinery. For example, Akt induces the phosphorylation of Bad, a pro-apoptotic member 

of the Bcl-2 protein family; as a consequence, Bad dissociates from Bcl-XL and associates with 

cytoplasmic 14-3-3 proteins with consequent loss of apoptotic activity [77]. Akt also appears to both 

negatively regulate factors that promote the expression of apoptotic genes and positively regulate 

factors that induce survival genes. An example is Akt’s ability to activate the canonical and the  

non-canonical NF-B pathway by triggering IB phosphorylation and degradation, and by promoting 

the processing of p100 to p52, respectively [78,79]. Besides the NF-B pathway, Akt phosphorylates 

and activates CREB mediated transcription, thus controlling expression of numerous “survival”  

genes [80,81] (Figure 1).  

Negative regulation of the PI3K/Akt pathway is mainly accomplished by the tumor suppressor 

PTEN (phosphatase and tensin homologue deleted on chromosome 10), through its dual function as 

lipid and protein phosphatase, and by SHIP (src homology 2 domain containing inositol polyphosphate 

phosphatase-1). They regulate intracellular levels of activated Akt by dephosphorylating PI(3,4,5)P3; 

thus, loss of PTEN or SHIP expression leads to permanent activation of the PI3K/Akt signaling 

pathway [82,83]. 

Akt has been found to be activated in HTLV-1-transformed cells [84–86], and its activation has 

been linked to apoptotic resistance. Peloponese et al. [87] suggested that Tax promotes Akt 

phosphorylation by directly binding the p85 subunit of PI3K, and that, in the absence of NF-B 

activation, Akt can promote survival through activation of AP-1 (activator protein-1). Ikezoe et al. [82] 

reported that downstream of Akt, mTor (mammalian target of rapamycin) was activated in  

HTLV-1-infected cells and that treatment with rapamycin (the inhibitor of mTor) surprisingly led to 

phosphorylation of Akt at Ser473. More recently, it has been suggested that Tax activates the PI3K 

signaling cascade by down regulating the PI(3,4,5)P3 phosphatases PTEN and SHIP-1 [88].  

Consistent with the premise that Akt is one of the survival mechanism of Tax, treatment of  

Tax-positive cells with PI3K/Akt pathway inhibitors induces cell death [85,89]. 

4. CREB Activation 

CREB is a ubiquitously expressed, phosphorylation-dependent, transcriptional factor which acts by 

binding to cAMP response element (CRE) consensus sequence, as a homodimer or by forming a 

heterodimer with other members of the CREB family. Numerous stimuli and, by consequence, several 

kinases including Akt, p90rsk, protein kinase A and calcium/calmodulin-dependent kinases can 

phosphorylate CREB [90]. Although different residues may control CREB-dependent transcription, 

phosphorylation at Ser133 is essential for its activation by favoring CREB association with the histone 

acetyl-transferase paralogs CBP (CREB-binding protein)/p300, and subsequent regulation of a 
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multitude of genes. Indeed, consensus CRE sequences, or slight variants of this sequence, have been 

identified in hundreds of cellular genes. More recently, a phosphorylation-independent transcriptional 

activity of CREB, via its interaction with the transducers of regulated CREB activity (TORCs), has 

been reported. TORC recruitment does not seem to improve CREB/DNA binding, but rather it 

enhances the interaction of CREB with a component of the transcriptional factor TFIID [91]. 

The vast number of functionally different genes regulated by CREB point out its critical relevance 

for many physiological cellular processes, including cell growth, and immune response [90,92–95], or 

aberrant processes as escape from apoptosis and cell transformation [96–101]. Indeed, microarray 

analysis of cells treated with CRE decoy oligodeoxynucleotide revealed that many genes related to 

tumor growth are regulated by the CREB family of transcription factors [102,103].  

The role of CREB in HTLV-1-infected cells has thus far been considered only in terms of viral LTR 

activation. Transcription driven by cellular CREs, which lack the required GC-rich flanking sequences 

present in the viral CRE, have been considered less affected by Tax. However, the recent discovery 

that Tax might directly interact with the CREB co-activator TORC family of proteins, has uncovered 

the possibility that transcription of a significant number of cellular genes containing CRE sequences 

may be deregulated by Tax [104–107]. 

Our studies on the anti-apoptotic effects of Tax have indicated that CREB activation, rather than its  

NF-B transcriptional activity, is important in preventing cell death [47,49,108]. Indeed, we have shown 

that induction of a specific block in CREB transactivation using dominant negative CREB mutants 

increased apoptosis, whilst triggering CREB phosphorylation with forskolin reduced apoptosis [108].  

We have also observed that HeLa cells expressing Tax exhibit higher levels of Ser133-phosphorylated 

CREB compared to control cells, suggesting that Tax might influence the phosphorylation state  

of CREB [49]. 

In agreement with our results, Kim et al. [109] observed higher levels of intracellular p-CREB in a 

panel of HTLV-1-infected versus uninfected T cell lines. They also demonstrated that Tax expression 

was directly involved in the enhanced CREB phosphorylation. These findings suggest that the virus 

has evolved a mechanism to elevate pCREB levels in the HTLV-1-infected cells, likely as a way to 

promote strong Tax-mediated transactivation of CREB-responsive genes. It also seems that in  

HTLV-1-infected cells [109] or in HeLa cells transfected with Tax [108], the intracellular CREB is 

maximally phosphorylated, when compared to forskolin treatment. 

Interestingly, Wu et al. [23], using a proteomic approach, reported that Tax can bind to several 

small GTPase-cytoskeleton proteins, including RhoA, Rac, Cdc42, and the RasGTPase activating 

protein GAP
1m

. In addition, using HeLa cells, we showed that while Tax physically interacts with 

GAP
1m

, its CREB-deficient mutant M47 (unable to protect cells from apoptosis [108]), binds to it with 

lower affinity [110]. Based on these findings, we proposed a model of Tax-mediated RasGTP (active 

form) accumulation, Raf/MEK/ERK pathway activation and CREB phosphorylation. In line with this, 

it has been shown that the inhibition of protein geranylgeranylation or farnesylation has  

anti-proliferative and apoptotic effects in HTLV-1-infected cells [111].  

CREB is also a target of Akt and, as mentioned above, Tax can activate the PI3K/Akt pathway both 

by interacting with PI3K or down regulating the expression of PTEN [88]; it is also interesting to point 

out that PI3K is a downstream effector of Ras. In addition, more recently, Gu et al. [112] reported that 

PTEN phosphatase activity is required for CREB dephosphorylation at Ser133 in the nucleus, 
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suggesting that PTEN deficiency (or down regulation) can increase the levels of CREB 

phosphorylation independently of PI3K/Akt or Raf/MEK/ERK activity (Figure 1). 

5. Conclusions  

The Tax protein is considered the main oncogenic product of HTLV-1; most likely one of the 

mechanisms involved in Tax-mediated transformation is its capability to alter the delicate balance 

between cell death and survival. Much evidence has led to consider the activation of the NF-B 

pathway as the principal survival mechanism of Tax, and has restricted Tax-induced CREB activity to 

viral gene expression. However, the information gathered so far suggests that Tax, besides activation 

of the NF-B pathway, can exert its anti-apoptotic activity by affecting CREB phosphorylation 

through activation of the PI3K/Akt and, possibly, of the Raf/MEK/ERK pathways, both of which list 

CREB as a downstream effector.  

Thus, in order to be more effective, therapeutic approaches to ATLL must take into account the 

many interconnections between the survival pathways engaged by Tax, and develop strategies that 

simultaneously block different targets.  
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