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Abstract: Selenide-containing amphiphilic copolymers have shown significant potential for
application in drug release systems. Herein, we present a methodology for the design of a reactive
oxygen species-responsive amphiphilic diblock selenide-labeled copolymer. This copolymer with
controlled molecular weight and narrow molecular weight distribution was prepared by sequential
organoselenium-mediated reversible addition fragmentation chain transfer (Se-RAFT) polymerization
and selenol-based nucleophilic reaction. Nuclear magnetic resonance (NMR) and matrix-assisted laser
desorption/ionization time-to-flight (MALDI-TOF) techniques were used to characterize its structure.
Its corresponding nanomicelles successfully formed through self-assembly from the copolymer itself.
Such nanomicelles could rapidly disassemble under oxidative conditions due to the fragmentation of
the Se–C bond. Therefore, this type of nanomicelle based on selenide-labeled amphiphilic copolymers
potentially provides a new platform for drug delivery.

Keywords: RAFT; selenol; amphiphilic polymer; drug delivery

1. Introduction

Compared with sulfur, selenium shows versatile properties owing to its larger atomic radius
and relatively lower electronegativity [1]. Selenium-containing polymers have attracted a great
deal of attention in recent years and have been widely used as photoelectric materials, adaptive
materials, and biomedical materials [2,3]. Selenophene polymers have been considered to be effective
photoelectric materials which may be widely used in solar cells, molecular switches, thin film transistors,
etc. [4–12]. Diselenide-containing adaptive materials were successfully incorporated in the fabrication
process under very mild conditions to achieve self-healing properties [13–16]. Selenium-containing
polymers show versatile responsive behaviors to multiple stimuli, such as oxidation, reduction,
and irradiation [17–23], which makes them potentially useful bio-building blocks. Traditional
methods for preparing selenium-containing polymers used step growth polymerization [24–28],
radical polymerization [29–34], and ring-opening polymerization [35–37], and our group successfully
developed organoselenium-mediated controlled radical polymerization (Se-RAFT) to prepare
selenium-containing polymers with both controlled molecular weight and narrow molecular weight
distribution [38]. Subsequently, the application of selenol-based nucleophilic substitution and
Se-Michael addition reactions for polymer chain end modification was presented [39], so that many
functional groups could be introduced to the selenium-containing polymers. Herein, we reported a new
application of selenol-based nucleophilic reaction for the design of a reactive oxygen species-responsive

Polymers 2019, 11, 827; doi:10.3390/polym11050827 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0002-2704-7656
https://orcid.org/0000-0003-4865-9763
http://www.mdpi.com/2073-4360/11/5/827?type=check_update&version=1
http://dx.doi.org/10.3390/polym11050827
http://www.mdpi.com/journal/polymers


Polymers 2019, 11, 827 2 of 12

amphiphilic diblock copolymer. Firstly, the diselenocarbonate-end capped polystyrenes with different
molecular weights (MWs) were prepared through the organoselenium-mediated radical polymerization
of styrene (St). After aminolysis of diselenocarbonate with hexylamine, nucleophilic attack of the
exposed selenol to poly(ethylene glycol) methyl ether methacrylate (PEGMA) gave a selenide-labeled
diblock copolymer (denoted as PS-Se-b-PEGMA; see Scheme 1). PS-Se-b-PEGMA is able to form
micellar aggregates in water which are disassembled in oxidation conditions.
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2. Experimental Section

2.1. Materials

Styrene was purchased from Shanghai Chemical Reagents Co. Ltd., Shanghai, China, and
purified before use. PEGMA (Mn = 300, 500, and 1000 g mol−1; Aldrich) was passed through
an alumina column to remove the inhibitor. After that, it was dried with calcium hydride, then
distilled under reduced pressure and kept in a refrigerator below 0 ◦C. 2,2’-Azoisobutyronitrile
(AIBN, 98%) was recrystallized from ethanol and then stored in a refrigerator at 4 ◦C. Se-benzyl
O-(4-methoxyphenyl) carbonodiselenoate (Se-CTA) was synthesized according to a previously reported
method [33]. Tributylphosphane (Bu3P, 98%) was purchased from Adamas Reagent Ltd, Shanghai,
China. Dialysis bags (molecular weight cutoff: 1000 Da) were purchased from Sinopharm Chemical
Reagent Co. Ltd., Shanghai, China. Tetrahydrofuran (THF), N,N-dimethylformamide (DMF), methanol
(MeOH), and other chemicals were purchased from Shanghai Chemical Reagents Co. Ltd. Shanghai,
China and used without further treatment. Doxorubicin hydrochloride (DOX·HCl, 99%) was purchased
from Sigma, Shanghai, China.

2.2. Characterization

The number-average molecular weight (Mn) and molecular weight distribution (Ð) of the resulting
polymers were determined by a TOSOH HLC-8320 size exclusion chromatograph (SEC) equipped
with a TSKgel SuperMultiporeHZ-N column (3) (4.6 × 150 mm) at 40 ◦C. Tetrahydrofuran served as
the eluent with a flow rate of 0.35 mL min−1. SEC samples were injected using a TOSOH HLC-8320
SEC plus autosampler. The molecular weights were calibrated with polystyrene (PS) standards. 1H
(300 MHz) NMR spectra were recorded on a Bruker Avance 300 spectrometer. Chemical shifts are
presented in parts per million (δ) relative to CHCl3 (7.26 ppm in 1H NMR). Transmission electron
microscopy (TEM) was performed with a HITACHI HT7700 microscope operating at a 120-kV
accelerating voltage. The fluorescence emission spectra (FL) were obtained on a HITACHI F-4600
fluorescence spectrophotometer at room temperature. Hydrodynamic diameter (Dh) was determined
by dynamic light scattering (DLS) using a Brookhaven NanoBrook 90Plus PALS instrument at 25 ◦C
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with a scattering angle of 90◦. Fourier transform infrared spectroscopy (FT-IR) was recorded with
the Bruker TENSOR 27 FT-IR instrument using the conventional KBr pellet method. The elemental
composition of the surfaces was measured with X-ray photoelectron spectroscopy (XPS) (Thermo
Fisher Scientific ESCALAB 250 XI, Al KR source).

2.3. Typical Procedure of Organoselenium-Mediated Controlled Radical Polymerization

A dry 10-mL ampule was filled with styrene (8.0 mL, 80 mmol), Se-benzyl O-(4-methoxyphenyl)
carbonodiselenoate (Se-CTA) (0.6147 g, 1.6 mmol), and AIBN (0.0788 g, 0.48 mmol). The solution
was degassed using the standard freeze–pump–thaw method (at least 3 cycles). The ampule was
flame-sealed and placed into an oil bath, which was thermoset at the desired temperature. At timed
intervals, the ampule was immersed into iced water and then opened. The contents were dissolved in
3 mL of tetrahydrofuran (THF) and precipitated into 400 mL of methanol. Carbonodiselenoate-labeled
polystyrene (PS-Se) was obtained by filtration and then dried to constant weight at room temperature
under vacuum. The conversion of styrene was gravimetrically determined.

2.4. Typical Procedure of Selenol-Based Nucleophilic Addition of PS-Se to PEGMA

Without additional notes, a typical procedure for optimization of reaction time is given below as
an example. A dry 5-mL ampule was filled with PS-Se-1 (Mn,SEC = 1900 g mol−1, 95 mg, 0.059 mmol),
PEGMA950 (Mn = 950 g mol−1, 0.59 g, 0.59 mmol), and DMF (2.0 mL) with a stir bar. After being
thoroughly bubbled with argon for 15 min to eliminate the dissolved oxygen, n-hexylamine (30 µL)
was added. Then, the ampule was flame-sealed immediately. After stirring for 1 d at 60 ◦C, the solution
was precipitated into 100 mL of methanol. The polymer was obtained by filtration and then dried to
constant weight at room temperature under vacuum.

2.5. Fabrication of PS-Se-b-PEGMA Micelles

PS-Se-b-PEGMA (2 mg) was dissolved in DMF (2 mL), and then deionized water (0.3 mL) was
added to the solution using a syringe pump at the rate of 0.2 mL h−1 at room temperature. After
addition of the water, the suspension was stocked for 1 day to stabilize the aggregates. Then, the
suspension was dialyzed in a dialysis bag (molecular weight cutoff: 1000 Da) against deionized water
for at least 24 h to remove DMF. After dialysis, the suspension was added to deionized water until the
volume increased to 2 mL with a concentration of 1 mg mL−1 for further tests.

2.6. Chemical Oxidation of PS-Se-b-PEGMA Micelles by H2O2

In brief, 0.5 mL of PS-Se-b-PEGMA micelle suspension was kept in a 1-mL ampule and then
placed into H2O2 solution (33 mM). After stirring for 5 h, the micelle suspension was freeze-dried for
TEM studies.

2.7. In Vitro Cytotoxicity Study of the Micelles

The samples were disinfected under ultraviolet light, and then five groups of extracts (2, 4, 6, 8,
and 10 mg mL−1) were prepared. The blank group (culture medium) and the control group (culture
medium and cells) were set up to compare with the experimental group. NIH-3T3 cells were inoculated
on 96-well plates at a density of 8 × 104 mL−1 (8 × 103 well−1). Cells were cultured in incubators (at
37 ◦C and 5% carbon dioxide) to become adhered to the 96-well plates. After 24 h, the medium was
removed and the extract was added to culture. Then, 24 h later, the extract was removed and 10 µL
CCK-8 solution and 90 µL culture medium were added to each pore. Then, cells were incubated at
37 ◦C for 1 h. A microplate reader was used to measure the absorbance of the sample at 450 nm.
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2.8. Drug Loading

The following process was carried out in the dark. A mixture of 5.0 mg DOX·HCl and 3.6 µL of
triethylamine (TEA) in 1.0 mL of dimethyl sulfoxide (DMSO) was added to a 2-mL ampule. After
stirring overnight, excess TEA was removed by rotary evaporation to give the hydrophobic DOX
solution. Then, 4 mL of PBS solution (50 mM, pH 7.4) was added dropwise to the mixture of copolymer
in DMF (1.0 mL, 1 mg mL−1) and DOX base solution (50 µL, 5.0 mg mL−1) with stirring at room
temperature. Afterwards, in order to remove both unencapsulated DOX and the organic solvent, the
mixture was dialyzed against PBS solution (50 mM, pH 7.4) for 24 h.

The amount of DOX was determined by fluorescence (FL4600) measurement (excitation at
480 nm). First, a calibration curve was obtained by measuring the fluorescence intensity of different
concentration DOX/DMSO solutions. Second, the fluorescence intensity of DOX-loaded micelles
dissolved in DMSO was analyzed. The amount of DOX loaded in the micelles could be determined
using the calibration curve.

The drug loading content (DLC) and drug loading efficiency (DLE) were calculated using the
following formulas:

DLC (wt.%) = (weight of loaded drug / weight of (polymer + loaded drug)) × 100%
DLE (wt.%) = (weight of loaded drug / weight of drug in feed) × 100%

2.9. Oxidation-Responsive Drug Release

In brief, 33 mM H2O2 was added into freshly prepared self-assembled solution (1.0 mL) of
PS-Se-1-b-PEGMA950 in PBS. The reaction mixture was stirred at 25 ◦C for 3 h.

Fluorescence spectrophotometry was then used to monitor the change in fluorescence intensity of
the micelle solution.

3. Results and Discussion

3.1. Organoselenium-Mediated Controlled Radical Polymerization

The diselenocarbonate-end capped polymers were prepared through the organoselenium-mediated
polymerization of styrene (St) according to our previous reports [33]. Two polymers, PS-Se-1 and
PS-Se-2, with different molecular weights and narrow molecular weight distribution (<1.20) were
prepared, as detailed in Table 1. The structure of PS-Se-1 was characterized by 1H NMR. As shown in
Figure 1, the signals at δ 3.78 ppm (3H, I3.78 = 3.00) were ascribed to the protons of the methoxy group
(–OMe), and the signals around δ 4.50 ppm (1H, I4.43-4.68 = 1.06) were ascribed to the protons of CH-Se.
The signals at around δ 7.00 ppm (5H, I6.60-7.11 = 92.1) were ascribed to the protons of the phenyl group.
Thus, the molecular weight (Mn, NMR) can be calculated to be 2100 g mol−1 by the equation Mn, NMR

= 104 × [(92.1 − 9) / 5] + 91 + 295. The polymers were also measured by using SEC with coupled
refractive index (RI) and UV detectors (Figure 2). The two curves almost coincide, and the molecular
weight (Mn,GPC = 1900 g mol−1) was close to the value obtained by 1H NMR. All evidence proved the
high chain end functionality of the diselenocarbonate-ended polystyrene (PS), which ensured further
chain end modification.
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Table 1. Polymerization of St with the molar ratio [St]0:[Se-CTA]0:[AIBN]0 = 50:1:0.3 in bulk at 70 ◦C.

Entry Time (h) Conv. (%) Mn,SEC
a

(g mol−1)
Mn,th

b

(g mol−1)
Mn,NMR

c

(g mol−1)
Ð a

1 (PS-Se-1) 2 27.6 1900 1800 2100 1.20
2 (PS-Se-2) 4 37.5 4200 4200 4400 1.17

a Mn,SEC and Ð were determined by size exclusion chromatography (SEC; using THF as eluent, 1 mL min−1, 40 ◦C)
using polystyrene calibration. b Theoretical molecular weight. c Molecular weight determined by 1H NMR.

3.2. Reaction Condition Optimization of Selenol-Based Nucleophilic Reaction

As in our previous reports, diselenocarbonate was expected to be converted to selenol by amine
compounds [39]. In the present work, after the rapid aminolysis of PS-Se-1 (Mn, SEC = 1900 g mol−1)
by n-hexyl amine, the corresponding selenol reacted with PEGMA950 (Mn = 950 g mol−1) to make the
block copolymers (Scheme 2). We initiated our studies by examining the effect of time on selenol-based
nucleophilic reaction. The results are presented in Table 2. Screening experiments indicated that
moderate conversion of PS-Se-1 could be obtained after four days (entries 1, 2, 3, and 4). An increase
in temperature from 25 ◦C to 60 ◦C resulted in the increase of the conversion of PS-Se-1 from 22.4%
to 50% (Table 2, entry 5). It was already found that Bu3P could act as a reducing agent to prevent
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oxidative coupling of selenol. Without Bu3P, the conversion of PS-Se-1 dropped to 14.6% (Table 2, entry
6). Bu3P also acts as a catalyst for the subsequent selenol-Michael addition reaction. Consequently,
no more catalyst, such as DBU and Et3N, was needed to be added to this system (entries 7 and 8) [1].
Lastly, the effect of molar ratio on selenol-based nucleophilic reaction was examined. The reaction
became more smooth as the amount of PEGMA (entries 9 and 10) increased. When the molar ratio of
PS-Se-1:PEGMA = 1:10, the reaction reached the highest conversion rate of about 85% after separation.
In contrast, the higher molar ratio of PS-Se-1:PEGMA (1:50) resulted in an extremely viscose solution,
which may prevent further reaction. Moreover, purification loss also decreases the product yield.
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Scheme 2. Reaction route of aminolysis of diselenocarbonate organic compound with hexylamine and
then selenol-based nucleophilic reaction with PEGMA950.

Table 2. Optimization studies for selenol-based nucleophilic reaction of PS-Se-1 with PEGMA950
a.

Entry Time (d) Catalyst R b Conv. c (%) Mn,SEC
d (g mol−1) Ð d

1 1 - 1:1 24.8 3100 1.14
2 2 - 1:1 23.0 3400 1.11
3 4 - 1:1 50.0 3500 1.12
4 6 - 1:1 31.7 3400 1.11

5 e 4 - 1:1 22.4 3700 1.10
6 f 4 - 1:1 14.6 3700 1.11
7 4 10% DBU 1:1 25.9 3500 1.10
8 4 10% Et3N 1:1 22.8 3400 1.11
9 4 - 1:2 64.0 3500 1.11

10 4 - 1:10 85.0 3700 1.11
11 4 - 1:50 46.0 3500 1.12

a The reaction was carried out at 60 ◦C with Bu3P. b The ratio of PS-Se-1 with PEGMA950.
c Conversion of PS-Se-1

determined after separation by NMR analysis with tetramethylsilane (TMS) as the internal standard for chemical
shifts. d Ð was determined by SEC (THF as eluent, 1 mL min−1, 40 ◦C) using polystyrene calibration. e The reaction
was carried out at 25 ◦C with Bu3P. f The reaction was carried out at 60 ◦C without Bu3P.

3.3. Selenol-Based Nucleophilic Reaction of PS-Se-1 and PEGMAs with Different Molecular Weights

After studying reaction condition optimization for selenol-based nucleophilic reaction of PS-Se-1
with PEGMA950, PEGMAs with different molecular weights were examined. The results are listed in
Table 3. PS-Se-1 reacted efficiently with PEGMA and the conversion rate of PS-Se-1 with PEGMA320

peaked at 95.4%, and the conversion rate of PS-Se-1 decreased with the increase of molecular weight of
PEGMA. The Mn of copolymers was determined by SEC. As shown in Figure 3, the curves shifted
significantly after the nucleophilic reaction, which evidenced the successful modification of PEGMA
at the end of PS-Se-1. In the 1H NMR spectra, the proton signals of the corresponding vinyl shifted
from 6.10 and 5.54 ppm to 2.57 and 2.49 ppm, and the proton signals of CH groups close to Se shifted
from 4.70 and 4.47 ppm to 2.84 ppm, indicating a complete conversion of PEGMA (Figure 4). Also,
MALDI-TOF mass spectrometry was used to further characterize the structure of the copolymer.
As shown in Figure 5, the main population at the isotropic peak at 2340.428 m/z matched the theoretical
calculation well (2340.152 m/z). Furthermore, two main sequence peaks are very close to the styrene
(104.15 g mol−1) and CH2CH2O (44.03 g mol−1) units. All the evidence indicated the efficiency of
this reaction.
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Table 3. Selenol-based nucleophilic reaction of PS-Se with different molecular weight PEGMAs.

Entry PEGMA (g mol−1) Conv. (%) a Mn,SEC (g mol−1) b Ð b

1 (PS-Se-1-b-PEGMA320) 320 95.4 2700 1.09
2 (PS-Se-1-b-PEGMA500) 500 90.2 3200 1.09
3 (PS-Se-1-b-PEGMA950) 950 85.0 3700 1.11

a Conversion of PS-Se-1 determined after separation by NMR analysis with reference to TMS as an internal standard.
b Ð was determined by SEC (THF as eluent, 1 mL min−1, 40 ◦C) using polystyrene calibration.

3.4. Self-Assembly of PS-Se-1-b-PEGMA950 Before and After Oxidation

Selenium-containing copolymers have shown redox responsiveness in many systems. Some
selenide-containing aggregates can respond rapidly to external redox stimuli and subsequently release
the incorporated species under mild conditions [26,28]. Here, self-assembly behavior of the three
copolymers were investigated. It was found that PS-Se-1-b-PEGMA950 could self-assemble spontaneously
in aqueous solution through hydrophobic/hydrophilic interaction. As shown in Figure 6, the TEM
measurement of PS-Se-1-b-PEGMA950 micelles showed spherical aggregates with an average diameter
of 30 nm. The DLS results are in accordance with the TEM results with an average diameter of 56 nm
(Figure 7a). It is noteworthy that the micelles were quite stable in an ambient environment and could
maintain their structures for at least one month. Then, H2O2 solution was used as the oxidant to study
the oxidation responsiveness of the selenide block copolymer aggregates. From the TEM images shown
in Figure 6c,d, the micellar structure was converted to irregular aggregates after two hours of oxidation
process, and these irregular aggregates were further decomposed for another three hours. The DLS
results also proved that the morphology change of the aggregates occurred after adding H2O2 solution.
Furthermore, XPS was also used to analyze these micelles before and after oxidation treatment. As
shown in Figure 7b, the binding energy of Se 3d5 shifts from 56.22 eV to 60.81 eV, suggesting a higher
valency of selenium which is close to the seleninic acid group [21]. All the results proved that oxidative
cleavage of the selenide linkage leads to the morphology change of the micelle.
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mol−1, Ð = 1.11, 1 × 10−4 M) at (a) × 10.0 k and (b) × 70.0 k magnification. TEM images of nanoparticles
5 h after adding H2O2 solution at (c) × 10.0 k and (d) × 25.0 k magnification.
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3.5. Cytotoxicity Test

The nanomicelles based on selenide-labeled amphiphilic copolymers potentially provide a new
platform for targeted drug delivery. We examined the cytotoxicity of PS-Se-1-b-PEGMA (Mn,SEC =

3700 g mol−1, Ð = 1.11, 1 × 10−4 M). As shown in Figure 8, it can be seen that the PS-Se-b-PEGMA
showed low cytotoxicity when compared with other selenide-containing polymers [40]. The obvious
inhibitory effect on the NIH-3T3 cells was shown when the concentration of the micelles was high, at
up to 1.6 mg mL−1.
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3.6. Drug Loading and Oxidation-Responsive Drug Release

The anticancer drug doxorubicin (DOX) was chosen as a model molecule for encapsulation.
The self-assembly of PS-Se-1-b-PEGMA950 (1 mg mL−1) was conducted in DMF solution in the presence
of DOX (0.1 mg mL−1), which has a characteristic maximum emission at 590 nm. The DOX-loading
micelles were purified with dialysis membrane, and the DOX concentration was calculated by the
fluorescence emission spectra. The drug loading content (DLC) was evaluated to be about 1.5%, and
drug loading efficiency (DLE) was evaluated to be about 13.3%. Oxidation-triggered drug release
studies in vitro were investigated at pH 7.4 and 25 ◦C by using H2O2. After oxidation for a specific
time, the fluorescence emission of DOX was monitored, as shown in Figure 9a. The fluorescence
intensity of DOX at 590 nm increased gradually, owing to the release of hydrophobic DOX from the
drug carriers. The percentage release was calculated based on the fluorescence changes at 590 nm.
The percentage release profile was plotted as a function of time, as shown in Figure 9b.
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4. Conclusions

In conclusion, a straightforward protocol for the synthesis of an oxidation-sensitive selenide-containing
block copolymer has been developed on the basis of Se-RAFT. The diselenocarbonate termini of the
polymers were readily converted to the selenide-containing block copolymer via aminolysis and
selenol-based nucleophilic reaction. The present controlled radical polymerization (CRP)-based
protocol offers a facile and straightforward fabrication of selenide-containing block copolymers that
feature many monomer accessibilities, predictable MWs, and programmable polymeric architectures.
These copolymers formed micelle-like nanoparticles of ~56 nm in diameter that show insignificant
cytotoxicity of the micelles at high concentration and could be disrupted by H2O2. The biocompatibility
and targeted cytotoxicity results suggest that these oxidation-sensitive selenide-containing block
copolymers could be developed for controllable drug release.
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