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Immune checkpoint inhibitors (ICIs) represent one of the most promising therapeutic
approaches in metastatic non-small cell lung cancer (M-NSCLC). Unfortunately,
approximately 50–75% of patients do not respond to this treatment modality.
Intratumor heterogeneity (ITH) at the genetic and phenotypic level is considered as a
major cause of anticancer therapy failure, including resistance to ICIs. Recent
observations suggest that spatial heterogeneity in the composition and spatial
organization of the tumor microenvironment plays a major role in the response of M-
NSCLC patients to ICIs. In this mini review, we first present a brief overview of the use of
ICIs in M-NSCLC. We then discuss the role of genetic and non-genetic ITH on the efficacy
of ICIs in patients with M-NSCLC.
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IMMUNE CHECKPOINT INHIBITORS IN METASTATIC
NON-SMALL CELL LUNG CANCER: AN OVERVIEW

Understanding the interactions between the immune system and cancer cells has greatly advanced
our knowledge of the mechanisms of tumor growth and progression (1). By now, it is clear that the
immune system plays a pivotal role not only in eradicating the disease in cancer patients, but also in
promoting a long-lasting immunity (2). This key observation has paved the way to the development
of immunomodulating agents and opened the era of cancer immunotherapy (3), which culminated
with the assignment of the Nobel Price to James P. Allison and Tasuku Honjo in 2018 (4).
Modulation of interactions between T-cells, antigen-presenting cells, and tumor cells has helped
unleash suppressed immune responses and increase the effective elimination of cancer cells (1, 2).

The availability of immune checkpoint inhibitors (ICIs) has radically changed the management
of patients affected by M-NSCLC (3). Commonly used ICIs in these patients include the monoclonal
antibodies: nivolumab (5–8), pembrolizumab (9–12), durvalumab (13), atezolizumab (14–16), and
avelumab (17), which act by targeting immune checkpoints expressed by tumor infiltrating
lymphocytes (TILs)— programmed-death 1 (PD-1)—or expressed by cancer and tumor
infiltrating immune cells— programmed-death ligand 1 (PD-L1) (18, 19). The selection of which
ICI to use depends on the expression of PD-L1, which can be evaluated using various assays, whose
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clinical validity has been assessed in numerous clinical trials (5, 6,
8–10, 12–16). ICIs have proven to be better tolerated than
standard chemotherapy (2, 6, 10). However, the response to
single-agent ICI therapy is not durable, and only a minority of
patients have a prolonged benefit (2, 9, 14). Moreover, there is
now evidence that dual blockade of CTLA-4 and PD-1 receptors
is sufficient to induce unique cellular responses compared with
agents blocking these receptors given alone to M-NSCLC
patients (20).

Most studies conducted so far have shown that the response
to ICIs in M-NSCLC patients is independent of the histological
subtype (squamous or non-squamous histology) (1, 3). However,
many factors contribute to the extent of the response as well as
the risk of developing resistance to ICIs in these patients (1, 3). In
this review, we discuss how both genetic and non-genetic
intratumor heterogeneity (ITH) influences the immunogenicity
of M-NSCLC, and highlight the importance of integrated
genomic, pathologic and immunologic analyses to refine the
selection of M-NSCLC patients who may be candidates to
treatment with ICIs.
DETERMINANTS OF RESPONSE TO
IMMUNE CHECKPOINT INHIBITORS

The Tumor Microenvironment
A key determinant of the response of M-NSCLC patients to ICI
therapy is the tumor microenvironment (TME) (21–23). The
TME is the ensemble of tumor cells, non-tumor cells including
carcinoma-associated fibroblasts and immune cells, extra-
cellular matrix as well as blood and lymphatic vessels
composing a neoplastic lesion (24–27). Among malignant cells,
the TME contains tumor cell subclones expressing phenotypic
traits that protect them from the hosts immune system and
support their ability to invade the extracellular matrix and
extravasate (22, 28). On the other hand, the TME also contains
a rich repertoire of tumor-infiltrating immune cells including T-
and B-cells, neutrophils, dendritic cells, myeloid-derived
suppressor cells, or tumor-associated macrophages, that
normally constitute a natural barrier to carcinogenesis (22, 24).
Inside the TME, the activity of these immune cells is strongly
suppressed by cytokines, growth factors and matrix re-modelling
enzymes secreted from cancer cells (22, 24, 29). These
immunosuppressive effects are further intensified by the
intensive aerobic glycolysis metabolism, which is observed in
many tumors (22, 24–26). The TME is able to control the
accumulation of T-cells inside the tumor by multiple
regulatory mechanisms (30, 31). Notably, the type, density and
location of immune cells within the TME play an important role
in the progression of the disease and have both predictive and
prognostic values in patients with M-NSCLC (31, 32). Based on
the density and location of CD4 and CD8-positive TILs in the
tumor center and infiltration margins of TME, tumors have been
classified as “hot” when they have a high number/density of TILs
or as “cold” when they contain a low number of TILs (30, 33, 34).
M-NSCLCs generally fall into the “hot” category and,
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accordingly, patients with M-NSCLC respond relatively well to
ICIs (21). However, the response is generally limited to a small
subset of patients (21, 35), which is likely due to differences in the
cellular composition and spatial organization of the TME, as we
discuss further.

Programmed-Death 1 and Programmed-
Death Ligand 1
A key feature ofM-NSCLCs that respond to ICIs is the expression
of PD-1 and its ligand PD-L1 in the TILs and tumor cells of the
TME (22, 29, 33). PD-L1 is expressed on the surface of tumor cells
and binds to its cognate PD-1 receptor on the surface of B- and
T-cells, regulatory T-cells, and NK cells (18, 19). In NSCLCs, the
expression of PD-L1 protein was shown to be predictive of the
response to ICIs (5, 6, 8–15). However, the expression of this
protein can vary substantially between primary and metastatic
lesions, as well as depending on the TME composition (2, 18). In
general, M-NSCLCs are thought to be immunogenic and anti-
PD-1 or anti-PD-L1 antibodies are most effective when the TME
is characterized by high levels of PD-L1 expression and a high
density of TILs (22, 23, 36). In the absence of TILs and positive
PD-L1 expression on tumor cells, treatment with anti-PD-1 or
anti-PD-L1 antibodies is expected to be less effective (23, 24, 36).
One possibility is also that TILs are present in the TME, but do
not express PD-1, leading to an alternative immunosuppressive
mechanism (24, 36). In addition to the PD-1/PD-L1 axis, other
immune regulators such as myeloid-derived suppressor cells,
tumor-associated macrophages, NK cells, dendritic cells,
B-cells, and various chemokine/cytokine networks operate in
the TME, which likely play important roles in defining the
sensitivity of M-NSCLCs to ICIs (2, 22, 24, 26).

Some challenges of the prediction of the response to ICI in
M-NSCLC come from methodological variabilities, as well as,
various clinically approved cut-off scores for PD-L1 expression
assessment (37, 38). First of all, there is no uniformity in PD-L1
assessment among numerous clinical trials that evaluated
immune checkpoint inhibitors in M-NSCLC (18, 39).
Moreover, these trials used different cut-offs for considering a
sample as PD-L1 positive, as summarized in Table 1. Notably,
some studies were based on a single biopsy assessment, making
the results more susceptible to intratumor heterogeneity,
whereas others relied on archival tissue in which the
expression might change over the time (18, 40–42).
Furthermore, data on PD-L1 testing in cytological specimens,
which are the predominant sample type at some institutions, are
limited (43). Moreover, IHC antibodies typically bind PD-L1 at
only two small hydrophilic regions that make them structurally
unique and might be differentially accessible in fresh frozen
versus Formalin-fixed paraffin-embedded (FFPE) samples (18,
39, 41). Likewise, also glycosylation of PD-L1 could cause its
polypeptide antigens inaccessible to PD-L1 antibodies, which
could lead to inaccurate IHC staining (44). Therefore, removal of
the glycan moieties from PD-L1 to expose its polypeptide
antigens has the potential to improve its detectability and to
increase its utilization as a diagnostic biomarker to predict
response to ICIs therapy (45).
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Tumor Mutation Burden
In addition to the TME and PD1/PD-L1, the amount of
mutations expressed by a tumor—known as tumor mutation
burden (TMB)—is another major determinant of the response of
M-NSCLC patients to ICIs (37, 38, 46). A summary of trials that
have evaluated the association between the TMB and ICI efficacy
is presented in Table 2. Several studies reported that TMB ≥10
mutations per megabase (mut/Mb) is predictive of longer
progression-free survival (PFS) and overall survival (OS)
during ICI (37, 47). In addition, the B-F1RST trial reported
that TMB ≥16 mut/Mb in cell-free DNA is associated with
significantly longer PFS (16). A higher TMB (>10 mut/Mb)
was found in M-NSCLCs harboring driver mutations in KRAS
or BRAF genes, but not in tumors with EGFR, ALK, ROS1, or
MET gene mutations (3.1–6.2 mut/Mb) (48). Furthermore,
adenocarcinomas were found to carry a lower TMB compared
to squamous cell carcinomas (9.1 vs. 11.3 mut/Mb on average,
respectively) (49). This observation might be explained by the
fact that the etiology of adenocarcinomas is independent of
tobacco exposure, making these tumors endowed with a lower
neoantigen burden and therefore less immunogenic (25, 50).
Frontiers in Oncology | www.frontiersin.org 3
The TMB is typically estimated based on either whole
exome sequencing (WES) or targeted sequencing (TS) of
the DNA extracted from a tumor (46, 51). However, these
methodologies have different sequencing coverage and depth,
and therefore provide a different sensitivity and specificity in
estimating the TMB (38, 46, 52). TS, which covers pre-specified
small exonic or genomic regions, makes the assessment of the
TMB easier, cheaper, and more practical in a clinical setting (37,
38, 46, 52). However, TS panels cover a substantially smaller
fraction of the genome compare to WES probes, carrying the risk
of actual TMB underestimation (53, 54). It was suggested that TS
panels covering less than 300 genes or 1 Mb cause unreliable
TMB results and should be avoided (54). Importantly, a crucial
step in correctly estimating the TMB is the bioinformatic
selection of tumor-specific single-nucleotide variants (SNVs)
by filtering out germline or synonymous SNVs, which
represent false positives and are unlikely involved in
neoantigen generation, respectively (55, 56). Likewise to
tumor-specific SNVs, also frameshift indels (small insertions
and deletions) are considered a highly immunogenic
mutational class that trigger an increased quantity of
TABLE 1 | Characterization of IHC assays used for PD-L1 assessment in different clinical trials.

PD-L1 clone
(species)

Company
(platform)

Tested ICI
(target)

Trial(no. of
patients)

Cell type for PD-L1
scoring

Percentage of PD-L1 positive
cells(cut-offs)

Indication

22C3
(Mouse)

Dako
(Autostainer
Link 48)

Pembrolizumab
(PD-1)

KEYNOTE-001
(12)
(495)
KEYNOTE-010
(9)
(1,034)
KEYNOTE-024
(10)
(305)
KEYNOTE-021
(11)
(123)

Tumor cells TC < 1%
TC ⩾ 1%,
TC ⩾ 50%
(min. of 100 TC)

Second-line
(⩾1% of TC)
First-line
(⩾ 50% of TC)

28-8
(Rabbit)

Dako
(Autostainer
Link 48)

Nivolumab
(PD-1)

Checkmate-
017 (5)
(272)
Checkmate-
057 (8)
(582)
Checkmate-
026 (6)
(541)

Tumor cells TC < 1%
TC ⩾ 1%
TC ⩾ 5%
TC ⩾ 10%
(min. of 100 TC)

Second-line regardless of PD-L1
expression

SP142
(Rabbit)

Ventana
(BenchMark
ULTRA)

Atezolizumab
(PD-L1)

OAK (14)
(850)
POPLAR (15)
(287)

Tumor cells,
Immune cells

TC < 1% and IC < 1%
TC ⩾ 1% or IC ⩾ 1%
TC ⩾ 5% or IC ⩾ 5%
TC ⩾ 50% or IC ⩾ 10%
(min. of 50 TC with associated
stroma)

Second-line regardless of PD-L1
expression

SP263
(Rabbit)

Ventana
(BenchMark
ULTRA)

Durvalumab
(PD-L1)

PACIFIC (13)
(149)

Tumor cells TC < 1%
TC ⩾ 1%
TC ⩾ 25%
(min. of 100 TC)

Maintenance therapy after
chemoradiotherapy (≧̸1% of TC)

73-10
(Rabbit)

Dako
(Autostainer
Link 48)

Avelumab
(PD-L1)

JAVELIN (17)
(184)

Tumor cells,
Immune cells

TC < 1%
TC ⩾ 1%
(min. no of cells not defined)

Not approved
Decem
ICI, immunological checkpoint inhibitor; TC, tumor cells; IC, immune cells.
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neoantigen, moreover, it was reported that both the SNPs and
frameshift burdens are significantly associated with ICIs
response (57). In addition, pre-analytical and analytical factors
such as the use of FFPE samples as a source of genomic DNA, a
low tumor purity or a dense TME reduce the sensitivity of TMB
determination, both for TS and WES (38, 46, 47, 51).

Neoantigens
Neoantigens are proteins with modified epitopes because of
somatic mutations in their coding genes. These epitopes are
loaded onto HLA molecules and displayed on the surface of
tumor cells (25, 58). Neoantigens can be recognized as foreign by
the host’s immune system, ultimately triggering a T-cell
mediated antitumor response (50, 58). A higher TMB is
expected to increase the likelihood of recognition of the tumor
by neoantigen-reactive T-cells (59). In M-NSCLC patients, the
co-existence of a high TMB and neoantigen expression has a
positive predictive value of the response to anti-PD1, anti-PD-L1
and anti-CTLA-4 therapy (13, 60). Some studies have suggested
that neoantigen heterogeneity may influence immune
surveillance, however, clonal and subclonal neoantigens do not
drive equally immunogenicity (13, 50, 59). Mutations induced by
cytotoxic therapy enhance the subclonal neoantigens burden and
might not elicit an effective antitumor response (50, 61). On the
other hand, the extensive clonal mutational repertoire present in
smoking-associated M-NSCLC (5) could render this disease
sensitive to T-cell therapies targeting multiple clonal
neoantigens, in combination with appropriate modulation of
immune checkpoints (50). Likewise, the observation that the
expression of neoantigens is subjected to the genetic control may
have important implications for predicting the response and
resistance to ICIs, and might be harnessed to develop vaccines or
adoptive cell therapies (25, 58, 62). Activity of T-cells by the
amount of neoantigens expressed within the tumor is regulated
Frontiers in Oncology | www.frontiersin.org 4
by the inflammatory microenvironment that controls the
availability of immune-regulatory checkpoints for T-cell (22,
28, 63, 64). Tumor subclones expressing neoantigens may be
preferentially eliminated by the immune system resulting in
neoantigen loss (25). However, it is unclear which neoantigens
are depleted as the result of the response to the therapy or tumor
dissemination, and whether such phenomena only lead to tumor
escape or may be harnessed to improve the response (25, 50,
58, 62).
THE ROLE OF INTRATUMOR
HETEROGENEITY

In M-NSCLC, both spatial and temporal heterogeneity are
considered as a main indicators of tumor diversity (65–67).
The spatial type of ITH is related to discrepancies between
different regions within the same tumor and may be detected at
genetic and immunological level leading to a heterogeneous
immune response in distinct populations of cancer cells (65,
66, 68–70). The expression of PD-1 or PD-L1 might vary
considerably from region to region within the same tumor,
as a result of somatically acquired genetic differences. Up to
40% of M-NSCLC patients have substantially different anti-
PD-1 resistance scores in different regions of the same tumor,
which often leads to discordant predictions of the extent of
response to anti-PD-1 or anti-PD-L1 inhibitors (41, 70).
Depending on the study, 2–46% of small biopsy samples
were found to give false-negative PD-L1 expression results in
comparison to surgically resected specimens (40–42, 71, 72).
Moreover, in M-NSCLC, the heterogeneity of PD-L1
expression is also observed not only within the primary
tumor, but also within and between coexisting metastases
TABLE 2 | Summary of clinical trials that have evaluated different TMB cut-offs for predicting the response to immunotherapy.

Trial Treatment arms Cut-off (mutation per megabase) No. of patients OS PFS

Median HR Median HR

CheckMate 026 (6) NIVO vs CTH High TMB 107 18.3 1.1 9.7 0.62
Low or medium 195 12.7 0.99 4.1 1.82

CheckMate 227 (7) NIVO + IPI vs CTH TMB ≥ 10 199 7.2 0.58
TMB < 10 380 3.2 1.07

OAK (14) ATEZO vs. CTH TMB ≥ 10 251 0.69 0.73
TMB ≥ 16 158 0.64 0.65
TMB ≥ 20 105 0.65 0.61

POPLAR (13) ATEZO vs. CTH TMB ≥ 10 96 0.59 0.67
TMB ≥ 16 63 0.56 0.57
TMB ≥ 20 42 0.51 0.58

B-F1RST (16) ATEZO bTMB ≥ 12 22 3 0.95
bTMB < 12 36 3.2
bTMB ≥ 14 14 3.4 0.73
bTMB < 14 44 3.2
bTMB ≥ 16 14 9.5 0.49
bTMB < 16 47 2.8
bTMB ≥ 20 8 9.5 0.23
bTMB < 20 50 2.7
December 2020 | Volume
 10 | Article 56
ATEZO, atezolizumab; CTH, chemotherapy; HR, hazard ratio; IPI, ipilimumab; NIVO, nivolumab; OS, overall survival; PFS, progression-free survival; TMB, tumor mutational burden; bTMB,
blood based TMB.
9202

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Nicoś et al. Impact of M-NSCLC ITH on the Response to ICIs
(40, 70–72). The metastatic sites may affect the value of PD-L1
as a predictive biomarker for ICIs treatment in NSCLC.
Namely, specimens from lymph node metastases have low
PD-L1 expression and are not preferred to guide ICIs
treatment in clinical practice or in clinical trials (65). Among
distant metastases of NSCLC, liver and adrenal sites have high
PD-L1 expression, whereas it is low in brain and bones
metastases (65, 73). Low PD-L1 expression in brain
metastases may be related to the immune sanctuary features
of this site (65, 67), whereas, bone tissues have a small pool of
effective cytotoxic immune cells and a relatively large
accumulation of suppressor immune cells (65, 74). This
immune imbalance may favor the development of bone
metastases with less selective pressure from the immune
system, making PD-L1 expression in bone metastases less
important for immune escape (65, 69, 74). On the other
hand, liver and adrenal glands are immunologically equipped
for effective tumor surveillance with potent cytotoxic T-cells
and, therefore, they require inhibitory mechanisms, like up-
regulation of PD-L1 expression, for cancer cells to survive (65,
69, 73).

In contrast to the spatial ITH, the temporal heterogeneity is
created in between different time points during the disease
course (67). The anticancer therapies may increase genetic ITH
by shaping a new subclones with different somatic mutations,
moreover, tumors with a highly heterogeneous subclonal
structure might not produce enough neoantigens for T-cells
to mount an effective anti-tumor response upon treatment with
ICIs (46, 47, 50, 75). It was reported that the first line of M-
NSCLC treatment may potentially affect immune response
during cancer evolution leading to the response to ICIs in
various ways (75, 76). In overall, chemotherapy, radiotherapy,
and EGFR or ALK tyrosine kinase inhibitors increase PD-L1
expression, suggesting that up-regulation of PD-L1 is one
approach that cancer cells may use to evade immune-
mediated cell destruction (65, 77–79). It is worth to add that
increase of PD-L1 expression after administration of the
cytotoxic agents is insignificant, whereas ICIs significantly
decrease the PD-L1 expression within M-NSCLC (65, 79).
Today, the decision whether to administer ICIs to M-NSCLC
patients is based on PD-L1 staining in primary lesions (80).
However, considering the above mentioned facts that the PD-
L1 status might change during treatment, all M-NSCLC
patients should be re-biopsied and tested for PD-L1
expression upon therapy failure or at the time of disease
progression (81).

In addition to genetic ITH, also non-genetic heterogeneity
might influence the response of M-NSCLC patients to ICIs. As
mentioned above, the heterogeneity of the TME can affect
pathological stage, treatment efficacy and prognosis (29), and is
an important predictor of antitumor response (22, 24). For
example, the amount of desmoplastic stroma and the balance
between promoting and inhibiting angiogenic factors (e.g. the
vascular endothelial growth factor, VEGF) may influence the
penetration of ICIs in the TME (82, 83). Additional spatial
heterogeneities in the TME might cause an uneven penetration
Frontiers in Oncology | www.frontiersin.org 5
of these agents and contribute to the emergence of resistant cell
populations or to the development of hypoxic niches that
might support cancer stem cell phenotypes and immune
evasion (21, 29, 84). Furthermore, in M-NSCLC, the tumor
immune evasion capacity may be modulated at different stages
of the disease either by factors stimulating the tumor immune
escape or through the loss of neoantigens expression (25, 50,
62). Also spatial heterogeneity of intratumoral T-cells may be
driven by the intratumoral neoantigen load and sculpted by a
mutational background (25, 85).
CONCLUSIONS AND FUTURE
PERSPECTIVES

Immunotherapy based on ICIs has drastically changed the
natural history of many patients with M-NSCLC. However,
the path towards ensuring long-term survival to most M-
NSCLC patients remains steep. Inter-patient differences in
the composition and spatial structure of the TME and in the
TMB influence the type and duration of response to ICIs and
ultimately explain why certain patients, unlike others, have only
a limited benefit from these agents. Genetic and phenotypic
ITH is an important barrier limiting the effects of single-agent
immune therapies. On the other hand, ITH might represent a
vulnerable “Achilles’ heel” that might be targeted by
combinatorial therapies and/or adaptative strategies (29, 86).
More studies on ITH are needed to understand the complex
interplay between tumor and immune cells and the role of
spatio-temporal tumor heterogeneity in the response of M-
NSCLC patients to immunotherapies. Single-cell approaches
based on single-cell-sequencing or spatial transcriptomic may
bring us an important step closer to understanding the role of
ITH on response to ICI (87–89). Ultimately, this should lead to
the development of novel therapeutic agents and/or treatment
modalities, improving the prognosis of this still largely
prevalent and deadly cancer.
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