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Abstract

Residue-level coarse-grained (CG) models have become one of the most popular tools in

biomolecular simulations in the trade-off between modeling accuracy and computational

efficiency. To investigate large-scale biological phenomena in molecular dynamics (MD)

simulations with CG models, unified treatments of proteins and nucleic acids, as well as effi-

cient parallel computations, are indispensable. In the GENESIS MD software, we implement

several residue-level CG models, covering structure-based and context-based potentials for

both well-folded biomolecules and intrinsically disordered regions. An amino acid residue in

protein is represented as a single CG particle centered at the Cα atom position, while a

nucleotide in RNA or DNA is modeled with three beads. Then, a single CG particle repre-

sents around ten heavy atoms in both proteins and nucleic acids. The input data in CG MD

simulations are treated as GROMACS-style input files generated from a newly developed

toolbox, GENESIS-CG-tool. To optimize the performance in CG MD simulations, we utilize

multiple neighbor lists, each of which is attached to a different nonbonded interaction poten-

tial in the cell-linked list method. We found that random number generations for Gaussian

distributions in the Langevin thermostat are one of the bottlenecks in CG MD simulations.

Therefore, we parallelize the computations with message-passing-interface (MPI) to

improve the performance on PC clusters or supercomputers. We simulate Herpes simplex

virus (HSV) type 2 B-capsid and chromatin models containing more than 1,000 nucleo-

somes in GENESIS as examples of large-scale biomolecular simulations with residue-level

CG models. This framework extends accessible spatial and temporal scales by multi-scale

simulations to study biologically relevant phenomena, such as genome-scale chromatin

folding or phase-separated membrane-less condensations.
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Author summary

Molecular dynamics (MD) simulations have been widely used to investigate biological

phenomena that are difficult to study only with experiments. Since all-atom MD simula-

tions of large biomolecular complexes are computationally expensive, coarse-grained

(CG) models based on different approximations and interaction potentials have been

developed so far. There are two practical issues in biological MD simulations with CG

models. The first issue is the input file generations of highly heterogeneous systems. In

contrast to well-established all-atom models, specific features are introduced in each CG

model, making it difficult to generate input data for the systems containing different types

of biomolecules. The second issue is how to improve the computational performance in

CG MD simulations of heterogeneous biological systems. Here, we introduce a user-

friendly toolbox to generate input files of residue-level CG models containing folded and

disordered proteins, RNAs, and DNAs using a unified format and optimize the perfor-

mance of CG MD simulations via efficient parallelization in GENESIS software. Our

implementation will serve as a framework to develop novel CG models and investigate

various biological phenomena in the cell.

This is a PLOS Computational Biology Software paper.

Introduction

Molecular dynamics (MD) simulation of a biomolecule in solution or membrane has been suc-

cessfully applied to biophysical or biochemical problems at high spatial and temporal resolu-

tions that are unattainable by experimental techniques. Recently, biological phenomena

involving many biomolecules at larger scales have attracted much more attention than before

in molecular and cellular biology, as well as medical and pharmaceutical studies. Genome-

scale chromatin folding [1] and phase-separated membrane-less condensations [2] are well-

known examples, which have already been targets of MD simulation studies [3–7]. To obtain

biological insights on these phenomena, further methodological and computational challenges

need to be met. An enormous number of atoms, for instance, more than 10–100 million

atoms, are involved in such target systems, requiring us to improve the computational perfor-

mance of the simulations. Alongside the size problem, there are also barriers in achieving suffi-

cient conformational sampling in biologically meaningful time scales. Considering these

issues, coarse-grained (CG) models of biomolecules are very useful in MD simulations, being a

trade-off between modeling accuracy and computational efficiency. The CG models are able to

decrease the number of degrees of freedom in a system and to smooth out the ruggedness of

free energy landscapes, both of which efficiently accelerate MD simulations of biological sys-

tems [8].

Although there are various levels of coarse-graining [9–13], they can be categorized

roughly into two classes of models in terms of their theories and parameterizations: physi-

cal-based or structure-based CG models. The MARTINI model [13] is one of the represen-

tatives in the former, while the Gō model [14–16], which describes the funnel-like energy

landscape of protein folding, is probably the most well-known structure-based one. The res-

olution of each CG model, namely, how many heavy atoms are integrated as a single CG

particle, is another crucial point in the choice of CG models. Besides, the solvent is treated
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differently, either represented by explicit but simplified water models [13] or modeled

implicitly through effective interactions [12,17]. In the latter case, Brownian dynamics with

hydrodynamic interactions [18,19] or the Lattice Boltzmann method [20,21] can be used to

account for the effects of solvent-induced correlations. Here, we focus on residue-level CG

models with non-hydrodynamic implicit solvation [22], whose interaction potentials are

primarily described via structure-based ones. These models have been utilized in many sim-

ulation studies of folding dynamics of single proteins [14], conformational dynamics of

nucleic acids [23,24], and complex molecular machinery [25]. In these models, an amino

acid residue is usually simplified as one CG particle on the Cα atom, and a nucleotide is rep-

resented using three particles corresponding to the phosphate (P), sugar (S), and base (B),

respectively (Fig 1). With this representation, proteins and nucleic acids are modeled with a

similar resolution of around ten heavy atoms per single CG particle. Furthermore, as an

extension from the original Gō model, the atomic interaction-based CG model version 2+

(AICG2+) [26] protein model introduces flexible local potentials and sequence-dependent

contact parameters to gain a finer description of the free energy landscapes. The same strat-

egy has been applied to RNA molecules [27]. On the other hand, for DNA, the 3SPN.2C

model has been designed to describe the sequence-dependent geometric and mechanical

properties of double-stranded DNA (dsDNA) [28].

The AICG2+ and 3SPN.2C models have been used jointly in simulations of protein-DNA

complexes [29–31], although these two were developed by different research groups. In these

simulations, electrostatic and excluded volume interactions between proteins or between pro-

teins and nucleic acids are necessary for heterogeneous biological systems. In addition to

Fig 1. Mapping of a protein (top) and nucleic acids (bottom) from atomistic structures to the residue-level CG

models. Each amino acid residue is represented with one CG particle (Cα), and each nucleotide is represented using

three CG particles, phosphate (P), sugar (S), and base (B), respectively. Left: three-dimensional structure of protein and

nucleic acids. Big and transparent spheres are the CG particles, with Cα in green, P in red, S in yellow, and B in blue.

Small and solid spheres represent heavy atoms, with phosphorus in dark blue, nitrogen in pale blue, oxygen in red, Cα
in green, and all the other carbon in white. Right: two-dimensional ball-and-stick cartoons of protein and nucleic acids

abstracted from the left structures, using the same color scheme.

https://doi.org/10.1371/journal.pcbi.1009578.g001
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generic and physical interactions, the PWMcos method integrates high-throughput sequenc-

ing experimental results in the form of the position weight matrix (PWM) with complex struc-

tural information to describe the recognition of DNA bases by proteins [32]. Not only for the

well-defined folded structures of proteins, residue-level CG models can also be used to study

highly flexible and intrinsically disordered regions (IDR). In particular, two pairwise interac-

tion models, Hydrophobicity scale (HPS) [33] and Kim-Hummer (KH) [34], have been tested

and refined to reproduce the phase behaviors of protein IDRs [35,36] and RNAs [37] by Best,

Mittal, and their coworkers.

The CG models mentioned above were implemented in general-purpose MD packages

such as LAMMPS [38,39], GROMACS [40,41], NAMD [40,42], and OpenMM [43], or special-

ized CG software such as CafeMol [44]. Although these implementations are convenient tools

for performing CG simulations, there are still some barriers for regular users or even develop-

ers. Each residue-based CG model is usually developed by different groups in different MD

packages. If someone wants to use two of them simultaneously, it is not straightforward to

combine two different CG models by treating their input or output data properly. Therefore,

there is a necessity to incorporate the latest CG models into a unified working environment

and provide a user-friendly tool for preparing MD input files. Furthermore, simultaneous

usages of different CG models can be a powerful tool in the cutting-edge studies of protein-

nucleic acid complexes in cellular environments. For example, the liquid-liquid phase-sepa-

rated (LLPS) systems often involve complicated interactions among multi-domain proteins

[45], IDRs [46], RNAs [47], and DNAs [48] and reach the length scales of hundreds to thou-

sands of nanometers [49]. Such systems require both proper modeling of biomolecular inter-

actions and efficient handling of computational resources.

In the current work, we present an implementation of several residue-level CG models of

protein and nucleic acids in the GENESIS MD software [50,51]. In conjunction, we provide

a collection of Julia [52] scripts, which we call GENESIS-CG-tool, to help users generate CG

MD input files of complex biomolecular systems. The optimization and parallelization of

CG MD simulations are the other focus in the current work. Although all-atom MD simula-

tions in GENESIS have been highly optimized and parallelized, additional efforts are

required to improve the performance of CG MD simulations because of the uniqueness of

individual interaction potentials. We also noticed that some computations that take negligi-

ble fractions of time in all-atom MD simulations could be a bottleneck in CG MD simula-

tions. After the implementation in GENESIS, memory and performance benchmark tests

are carried out. CG MD simulations in GENESIS are applied to several cases of different

sizes and molecular compositions, such as protein diffusion on DNA and LLPS consisting

of protein IDRs and RNAs. The atomistic and CG MD simulations available in GENESIS

can be a practical framework to investigate cellular-scale biological phenomena at multi-

scale resolutions.

Design and implementation

Basic interaction terms

We first define basic interaction terms that are commonly used in various residue-level CG

models. Each model, such as AICG2+, 3SPN.2C, HPS/KH, combines several basic interaction

terms to represent intra- and inter-molecular potentials of proteins and/or nucleic acids.

Bond potential. The most typical bond potential has the following harmonic form:

Eð1ÞbondðbiÞ ¼ kð1Þb;i ðbi � bi;0Þ
2
; ð1Þ
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where bi is the bond length between two neighboring CG particles, bi,0 is the value of bi in the

reference structure, and kð1Þb;i is the force constant.

A higher-order term is also used in some CG models, such as the 3SPN.2C DNA model

[39]:

Eð2ÞbondðbiÞ ¼ kð2Þb;i ðbi � bi;0Þ
2
þ kð3Þb;i ðbi � bi;0Þ

4
; ð2Þ

where bi and bi,0 have the same meaning as in Eq (1); kð2Þb;i and kð3Þb;i are the force constants in the

quadratic and quartic terms, respectively.

Angle potential. The harmonic angle potential is given by:

Eð1ÞangleðyiÞ ¼ ka;iðyi � yi;0Þ
2
; ð3Þ

where θi is the bond angle formed by the adjacent three CG particles, θi,0 is its reference value,

and ka,i is the force constant.

The AICG2+ protein model [26] uses a knowledge-based angle potential, which is based on

the Boltzmann inversion method [53],

Eð2Þangle yið Þ ¼ � kBTln
PaðyiÞ

sinyi
; ð4Þ

where kB is the Boltzmann constant, T is temperature in MD simulation, and Pa(θi) is an

amino-acid type-dependent probability distribution of the angles analyzed from a set of PDB

structures. Eð2ÞangleðyiÞ is further refined via the iterative Boltzmann algorithm. Practically, in MD

simulations, we calculate the energies and forces using spline functions fitted to values in a

table containing the energy and its derivatives at several points.

Dihedral potential. The periodic proper dihedral potential is defined as follows:

Eð1Þdihedralð�iÞ ¼
X

n
k�;i;n½1þ cosðnð�i � �i;0ÞÞ�; ð5Þ

where ϕi and ϕi,0 are the dihedral angle and its reference value, respectively, n is an integer

number that controls the periodicity of the function, and kϕ,i,n is the force constant.

We also implement a Gaussian type dihedral potential, which is used in the AICG2+ [26]

and the 3SPN.2C models [39]:

Eð2Þdihedral �ið Þ ¼ � ��;i exp
� ð�i � �i;0Þ

2

2s2
�;i

 !

; ð6Þ

where ϕi and ϕi,0 have the same meaning as in Eq (5), σϕ,i controls the Gaussian width and �ϕ,i

is the force constant.

Similar to Eq (4), AICG2+ [26] also uses a knowledge-based dihedral term, which is based

on the Boltzmann inversion potential [53]:

Eð3Þdihedralð�iÞ ¼ � kBTlnPdð�iÞ; ð7Þ

where Pd(ϕi) is the probability distribution of the dihedral angle. The Eð3Þdihedralð�iÞ is further

refined via the iterative Boltzmann algorithm. This is also calculated as a tabulated function for

better performance. Notably, in each of the dihedral potentials described above, we introduce

a recently proposed algorithm [54] to improve the robustness and numerical stability in the

force evaluations.

Nonbonded interactions. The structure-based Gō-like models for proteins usually use a

12–10 potential to model a native contact, defined as two residues containing heavy atoms at a
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distance less than a specific cutoff in the native structure [14,26]. The potential [14] is defined

as:

EGō rið Þ ¼ �Gō;i 5
si

ri

� �12

� 6
si

ri

� �10
" #

; ð8Þ

where ri is the distance between two CG particles in a native-contact pair, σi is the native value

of ri, and �Gō,i is the force constant. Note that it is applicable not only to proteins but also to

nucleic acids if their experimental structures are known.

The Lennard-Jones (LJ) potential (or 12–6 potential) is also widely used to describe pairwise

nonlocal interactions and is commonly defined as:

ELJ rið Þ ¼ 4�LJ;i
si

ri

� �12

�
si

ri

� �6
" #

; ð9Þ

where �LJ,i represents the minimum energy.

The LJ potential truncated at its energy minimum is a purely repulsive potential and can be

used as the excluded volume interaction:

Eð1Þexv rið Þ ¼
�exv;i

si

ri

� �12

� 2
si

ri

� �6
" #

þ �exv;i; r < rC;exv

0; r � rC;exv

ð10Þ

8
>><

>>:

where rC,exv is the cutoff distance and has the same value as σi. Note that the LJ forms in Eq (9)

and Eq (10) are different in a coefficient of 2 for the 6th-power term. However, these two

forms are mathematically equivalent when the parameters (σ and �) are appropriately

converted.

A simpler form of the excluded volume interaction is given by:

Eð2Þexv rið Þ ¼
�exv;i

si

ri

� �12

þ �0exv;i; r < rC;exv

0; r � rC;exv

ð11Þ

8
><

>:

where rC,exv = 2σi and �0exv;i ¼ � 2� 12�exv;i.

Other pairwise nonbonded interactions include the Gaussian potential:

EGaussian rið Þ ¼ � �G;iexp
� ðri � ri;0Þ

2

2w2
i

 !

; ð12Þ

and the Morse potential:

EMorseðriÞ ¼ �M;ið1 � e� aiðri � ri;0ÞÞ2 � �M;i; ð13Þ

where �G,i and �M,i are the “depth”, and wi and αi are the “width” of the Gaussian and Morse

potentials, respectively. In the 3SPN.2C model [39], the Morse potential is divided into two

parts, the repulsive (EðrepÞMorse) and the attractive (EðattrÞMorse), as defined in the following:

EðrepÞMorseðriÞ ¼
�M;ið1 � e� aiðri � ri;0ÞÞ2; ri < ri;0

0; ri � ri;0
ð13AÞ

(
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and

EðattrÞMorseðriÞ ¼
� �M;i; ri < ri;0

�M;ið1 � e� aiðri � ri;0ÞÞ2 � �M;i; ri � ri;0
ð13BÞ

(

The electrostatic interactions are modeled using the Debye-Hückel theory:

EeleðriÞ ¼
qi1

qi2
e� ri=lD

4pε0εrri
; ð14Þ

where ri is the distance between the charged particles i1 and i2, whose charges are qi1
and qi2

,

respectively, ε0 is the dielectric permittivity of vacuum, λD is the Debye screening length, εr is

the relative permittivity of the solution, which is a function of the solution temperature T and

salt molarity C: εr = e(T)a(C), where eðTÞ ¼ 249:4 � 0:788T þ 7:20� 10� 4T2 [55], and

aðCÞ ¼ 1 � 0:2551Cþ 5:151� 10� 2C2 � 6:889� 10� 3C3 [56]. The Debye length is defined

as: lD ¼
ffiffiffiffiffiffiffiffiffiffiffi
kBTε0εr
2NAe2

c I

q
; where NA is the Avogadro’s number, ec is the elementary charge, and I is the

ionic strength of the solution.

Modulating functions. When residue-level CG models are used to describe specific non-

bonded interactions, such as the hydrogen bonds (HBs) or the π-π stacking, it is necessary to

introduce multi-body potentials. For instance, in the 3SPN.2C model, the base-stacking, base-

pairing, and cross-base-stacking interactions are described with the angle and torsion-angle

dependent multi-body potential functions [28,39]. Specifically, the angle-dependent modulat-

ing function in the 3SPN.2C model is defined as [39]:

f Dyð Þ ¼

1; jDyj < g

1 � cos2
p

2g
Dy

� �

; g � jDyj � 2g

0; jDyj � 2g

ð15Þ

8
>>><

>>>:

where Δθ is the difference between an angle (θ) and its reference value, and γ controls the tun-

ing range.

Residue-level CG models

We next describe the CG models as the combinations of the basic interaction terms defined in

the last section. We mainly focus on the energy function forms rather than the detailed param-

eters, which users can easily change in their MD simulations.

The AICG2+ model for folded proteins. The energy function of the AICG2+ model [26]

is defined as:

VAICG2þðGjG0Þ ¼
X

bi2bonds

Eð1ÞbondðbiÞ þ
X

yi2angles

Eð2ÞangleðyiÞ þ
X

ri21� 3pairs

EGaussianðriÞ þ
X

�i2dihedrals

Eð2Þdihedralð�iÞ

þ
X

�i2dihedrals

Eð3Þdihedralð�iÞ þ
X

ri2native contacts

EGōðriÞ þ
P

ri2non� native contactsE
ð2Þ

exvðriÞ; ð16Þ

where Γ and Γ0 are the simulated and native structures, respectively. The reference values in

each term are determined from the native values in Γ0, except for the non-native contact term.

In the non-native contact interactions, σi is dependent on the excluded volume radii of the par-

ticles in contact, using the combination rule of si ¼
Bi1þBi2

2
, where i1 and i2 are the indices of the

particles in the i-th non-native contact, with Bi1 and Bi2 as their residue type-dependent radii.
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The HPS and KH models for IDR. The two IDR models, HPS [33] and KH [34], share

the same energy function [35]:

VHPS;KHðGÞ ¼
X

bi2bonds

Eð1ÞbondðbiÞ þ
X

ri2charged pairs

EeleðriÞ þ
P

ri2nonbonded pairsEHPS;KHðriÞ; ð17Þ

where Γ is the conformation of an IDP. EHPS,KH(ri) has the Ashbaugh-Hatch form [57]:

EHPS;KHðriÞ ¼
ELJðriÞ þ ð1 � liÞ�LJ;i; ri � 21=6si

liELJðriÞ; ri > 21=6si

ð18Þ

(

where λi in the HPS model is the hydrophobicity scale, and in the KH model is a sign function

to regulate the attractiveness or repulsiveness. All the other quantities, ri, σi, and �LJ,i, have the

same meaning as defined in Eq (9). Specifically, �LJ,i and λi are based on the amino acid hydro-

phobicity in HPS [33] or the Miyazawa-Jerningan potential in KH [34,58], respectively.

The same potential functions are also used in the HPS RNA model [37], which has been

developed to study the co-condensation of RNA and protein IDRs. In the HPS RNA model

[37], the resolution is only one bead for one nucleotide, which is lower than the other nucleic

acid CG models in GENESIS. Accordingly, the bond lengths and particle radii are also larger

than the other models. Note that GENESIS also provides a structure-based three-bead-per-

nucleotide RNA model, as described in a later section.

The 3SPN.2C model for DNA. The potential energy function of the 3SPN.2C model

[28,39] is defined as follows:

V3SPN:2CðGÞ ¼
X

bi2bonds

Eð2ÞbondðbiÞ þ
X

yi2angles

Eð1ÞangleðyiÞ þ
X

�i2all dihedrals

Eð1Þdihedralð�iÞ

þ
X

�i2backbone dihedrals

Eð2Þdihedralð�iÞ þ
X

ri2exv pairs

Eð1ÞexvðriÞ þ
X

ri2phosphate pairs

EeleðriÞ

þ
X

base steps
Ebstk þ

X

base pairs
Ebp þ

X

cross� stacking pairs
Ecstk; ð19Þ

where Γ is the conformation of the DNA molecule, and "exv pairs" are the nonbonded particle

pairs that are not involved in either base-pairing or stacking interactions. The three terms for

base-base interactions, Ebstk, Ebp, and Ecstk, are defined as multi-body energy functions, using

the basic equations described in the previous section (Eq (13A), (13B) and (15)):

Ebstk ¼ EðrepÞMorseðriÞ þ f ðDyBS;iÞE
ðattrÞ
MorseðriÞ; ð20Þ

Ebp ¼ EðrepÞMorse rið Þ þ
1

2
1þ cosD�BP;i

� �
f Dy1;i

� �
f Dy2;i

� �
EðattrÞMorse rið Þ; ð21Þ

Ecstk ¼ f ðDy3;iÞf ðDyCS;iÞE
ðattrÞ
MorseðriÞ; ð22Þ

where ri represents the distance between the two interacting bases, and the angles (θBS,i, θ1,i, θ2,

i, θ3,i, and θCS,i) and dihedral angles (ϕBP,i) are formed by the surrounding sugar and phosphate

sites (for details of the definition, please refer to [39]).

The structure-based model for RNA. In addition to the one-bead (per-nucleotide) HPS

model, we also implement a structure-based three-bead model for RNA [27], whose parame-

ters are determined with the fluctuation matching method [59]. The energy function of this
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model [27] is defined as:

VRNAðGÞ ¼
X

bi2bonds

Eð1ÞbondðbiÞ þ
X

yi2angles

Eð1ÞangleðyiÞ þ
X

�i2dihedrals

Eð1Þdihedralð�iÞ

þ
X

ri2native contacts

EGōðriÞ þ
X

ri2non� native contacts

Eð2ÞexvðriÞ

þ
P

ri2phosphate pairsEeleðriÞ; ð23Þ

where Γ is the conformation of the RNA molecule. The electrostatic term, Eele, is optional in

the intra-RNA interactions but required for protein-RNA interactions [27]. In the later case, ri
in Eele(ri) represents the distance between a charged amino-acid residue and an RNA

phosphate.

The PWMcos model for protein-DNA interaction. The protein-DNA binding is gener-

ally considered in two parts: the sequence-nonspecific interactions between amino acids with

the DNA backbone groups (mainly the electrostatic interactions) and the sequence-specific

interactions between amino acids and DNA bases. The PWMcos model can describe the latter,

incorporating the PWM information into the structure-based interactions [32]. The model

first defines a list of DNA-binding protein residues (DB-Cαs) forming contact with DNA in

the native structure, and then the potential energy is then given by [32]:

X

i2bases

X

j2DB� Ca

X

m2PWM columns
EPWMcosði; j;m; x

!Þ

¼
X

i;j;m
ðUm;jðbi; x

!Þ þ Um0;jðbi; x
!ÞÞ; ð24Þ

where m0 is the base in the complementary strand that forms a base-pair with base m, bi is the

base type of any base i (bi2[A, C, G, T]), and x! is the coordinates of particles in each confor-

mation. The Um;jðbi; x
!Þ function is defined as:

Um;jðbi; x
!Þ ¼ EGaussianðrijÞf ðDy1Þf ðDy2Þf ðDy3Þ;

where rij is the distance between the i-th and the j-th Cα, and θ1, θ2, and θ3 are three angles

defined by the surrounding particles (for details, please refer to [32]). EGaussian(r) and f(Δθ)

functions are defined in Eq (12) and (15), respectively. The energy coefficient of EGaussian(r)
(�G,i in Eq (12)) is defined as a function of base type bi based on the PWM:

�G;i ¼ �PWM;m bið Þ ¼ g
ePWM;mðbiÞ

Nm
þ �0

� �

;

where ePWM,m(b) is the element in the mth column of the PWM and in the row corresponding

to base type b, Nm is the total number of protein contacts formed with the mth base pair, �0 is a

hyperparameter that shifts the absolute value of the function, and γ is a scaling factor to change

the strength of the interaction.

Notably, a variation of the PWMcos has been used to model sequence-non-specific hydro-

gen bonds between protein and DNA backbone [30]:

EHBði; j; x
!Þ ¼ EGaussianðrijÞf ðDy1Þf ðDy2Þ; ð25Þ

where rij represents the distance from the i-th phosphate (instead of base) to the j-th Cα, and θ1

and θ2 are the angles defined by the local particles around the target phosphate and Cα atom in

the configuration with coordinates x!.
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Summary of the potential energy functions available in GENESIS. Although the models

mentioned above are developed independently, some have been proved to work well with each

other. For instance, the association of the AICG2+ and the 3SPN.2C models has shown the

capability to study the protein-DNA binding systems [29,31]. Between proteins and DNA,

electrostatic interactions contribute most to the sequence-nonspecific affinity. For the accu-

racy of electrostatics modeling, the RESPAC method was developed to calculate the surface

charge distribution of proteins [60]. Furthermore, the angle-dependent HB potential enables

modeling the rotation-coupled and uncoupled sliding of nucleosomal DNA [30,61]. The

PWMcos method also facilitates the target search of transcription factors on both linear DNA

and nucleosomes [32,62].

In addition to these well-developed methods, GENESIS also allows the combinations of dif-

ferent models. In Table 1, we list all the available CG models in GENESIS 1.7.0 in mixtures of

proteins, DNAs, and RNAs.

Information flow

Fig 2 shows a flowchart for running CG simulations in GENESIS. We roughly divide the

whole procedure into three steps: (i) preparation, (ii) simulation, and (iii) analysis. GENESIS

provides tools to achieve the task in each step. In the preparation stage, we use a collection of

scripts, “GENESIS-CG-tool”, to translate experimental results into CG topology and coordi-

nate files. Together with the MD control file, these files are then parsed by one of the GENESIS

MD engines, atdyn, to perform energy/force calculations and time integrations. As the output

data from MD simulations, GENESIS produces a log file of system properties including tem-

perature, system size, and potential energy. The output coordinates from MD simulation are

written in a trajectory file with the DCD format, which are processed by the GENESIS analysis

tools and can be visualized by VMD [63], PyMOL [64], or other molecular graphics software.

Here, we mainly focus on our developments in the first two stages, since the analysis using the

DCD format files and analysis tools is common to those of all-atom MD simulations.

Preparation. We next explain the usage of the GENESIS-CG-tool, which can read struc-

tural information and generate force field parameters and coordinates for MD simulations. As

input, the structural information is in the PDB format, which includes atom coordinates deter-

mined by experiments such as X-ray crystallography, NMR, or Cryo-EM. As output, we

decided to use a unified GROMACS-like file format for all the CG models. Particularly, the

output of GENESIS-CG-tool includes a major topology file (.top) and a bundle of molecule-

specific files (.itp), as well as a coordinate file for all the particles in the system (.gro) (Fig 2).

The molecule-specific topology (.itp) files contain the information of intra-molecular interac-

tions, such as bond, angle, dihedral, and Gō-type native-contact interactions. Each term

includes the indices of the involved particles, reference values of the variables, and the force

parameters. Additionally, an integer variable (called the “function type”) is used to distinguish

the various potential functions of the same interaction type. For instance, we set the function

types of 1 and 21 to Eð1Þbond (Eq (1)) and Eð2Þbond (Eq (2)), respectively.

Table 1. Available CG models in heterogeneous biomolecular systems.

Protein DNA RNA

Protein VAICG2+, [VHPS,KH]

DNA VAICG2þ;V3SPN:2C; Eð2Þexv; ½Eele; EGō; EPWMcos;EHB� V3SPN.2C

RNA VAICG2þ;VRNA; ½VHPS;KH �; Eð2Þexv; ½Eele;EGō;EHPS� V3SPN:2C;VRNA; Eð2Þexv; ½Eele; EGō� VRNA, [VHPS]

The interactions written in brackets are optional.

https://doi.org/10.1371/journal.pcbi.1009578.t001

PLOS COMPUTATIONAL BIOLOGY Implementation of residue-level coarse-grained models in GENESIS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009578 April 5, 2022 10 / 30

https://doi.org/10.1371/journal.pcbi.1009578.t001
https://doi.org/10.1371/journal.pcbi.1009578


GENESIS-CG-tool was developed with Julia [52], a fast, open-sourced, and reproducible

programming language. The project’s main entrance is a script called “aa_2_cg.jl”, which

works in the command-line environment of UNIX-like shells. The script takes a PDB file

name as the positional argument and several model-related optional arguments. During the

processing, the atomistic coordinates are read from PDB files. Then, local and nonlocal inter-

actions, including their native values, are detected from the PDB structure. Other parameters,

such as force constants, are determined by the models specified for each molecule.

As a simple example, assuming that one wants to prepare CG MD input files for a protein

using a PDB file, “PRO1.pdb”, the command “aa_2_cg.jl PRO1.pdb” will generate “PRO1_cg.

top” and “PRO1_cg.itp” topology files and “PRO1_cg.gro” coordinate file (Figs 2 and S1). The

Fig 2. Information flow in GENESIS CG MD simulations. Dashed boxes represent collections of files used together

as input or output at a particular step. Solid red boxes are used for the executable tools provided by GENESIS. Small

boxes include typical filename extensions.

https://doi.org/10.1371/journal.pcbi.1009578.g002
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AICG2+ model is used for proteins by default, which can be changed with the option

“--force-field-protein”.

The 3SPN.2C model of DNA uses reference structures that include sequence-dependent

geometric features. These structures can be generated by software such as 3DNA [65]. In GEN-

ESIS-CG-tool, with no requirement of external packages, we provide a simple “sequence-to-

structure” script, which reads in DNA sequences and directly outputs both atomistic PDB and

CG topology/coordinate files for dsDNA, including the necessary sequence-dependent infor-

mation (see S1 Fig).

For heterogeneous systems that contain more than one type of biomolecules, the molecule-

specific “.itp” files can be linked into the “.top” file, using the “#include” keyword.

Notably, recent improvements in experimental techniques such as cryo-EM have fostered

more high-resolution structures of the huge biomolecule complexes, which are valuable

resources in MD simulations. The spatial scales of these structures, however, outstrip the

capacity of the traditional PDB file format. Another format, PDBx/mmCIF [66], has been used

to store coordinate information of large structures. GENESIS-CG-tool also accepts files of the

PDBx/mmCIF format as input. Besides, we also noticed that detecting the Gō-like native con-

tacts is rather time-consuming for large protein complexes. We utilize the Julia thread paralle-

lization to accelerate this procedure in the GENESIS-CG-tool.

We have packaged GENESIS-CG-tool as a part of GENESIS v1.7.0. We have also deployed

the GENESIS-CG-tool in an individual Github repository: https://github.com/noinil/genesis_

cg_tools. Users can refer to the online wiki page of this project for more details on the usage

and available file formats.

MD algorithms

In GENESIS v1.7.0, there are two MD programs: spdyn and atdyn. Spdyn is parallelized using

the mid-point cell method [67], one of the domain-decomposition schemes; while atdyn is

parallelized with the atomic decomposition scheme [50,51]. We implement the residue-level

CG models only in atdyn because of the feasibility of implementations and the number of CG

particles required in most CG MD simulations. In atdyn, the Clementi Gō [14], Karanicolas-

Brooks Gō [68], Domain-enhanced Model (DoME) [69], and dual/multi-basin Gō models

[70] are also available and use the same topology and coordinate file formats as described in

the previous section. Since atdyn is already a well-developed framework, the original source

code is reused as much as possible to implement the residue-level CG models. In the following,

we describe the newly introduced functions and optimization schemes only.

Cutoff scheme of the nonbonded interactions. The nonbonded interaction terms are the

most time-consuming computations both in all-atom and CG MD simulations. Cutoff

schemes are used for the nonbonded terms in CG MD simulations to reduce the computation

time. For relatively short-range nonbonded interactions, such as Eð1Þexv and Eð2Þexv, cutoff values are

already included in the definition (see Eq (10) and (11)). In contrast, the other interactions do

not have generally established cutoff values. We provide three parameters to control the cutoff

lengths of the Ebp, ELJ, and Eele terms in our implementations. We set the default cutoff value of

Ebp to 18Å, following the original 3SPN.2C model [28,39]. We use a value of 52Å for Eele,

which assures that the absolute value of the energy at the cutoff distance to be smaller than

10−4 kcal/mol (calculated at the temperature of 300K and with an ionic concentration of

150mM, for two charges of ±1 e−). This cutoff value of Eele is slightly larger than the one used

in the original 3SPN.2C model and guarantees accuracy [39]. As for the LJ potential used in

the HPS/KH IDR models, the parameters �LJ,i and σi are dependent on residue-types [35].

Therefore, we determine the LJ cutoff using a strategy that, for the i-th pair, the absolute value
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of the energy at the cutoff distance is as small as 10−4 times of the energy minimum: ELJ(rC,LJ)

= 10−4�LJ,i. This gives a value of rC,LJ’5.849σi. We then choose the largest σi from the HPS/KH

models to determine a unified value of 39Å as the cutoff for ELJ. Note that these default values

are considered as the “safest” ones. The users may be able to change them to smaller values by

carefully evaluating the balance between computational efficiency and accuracy.

Several nonbonded interaction terms are considered only for pre-defined pairs of CG parti-

cles, such as the DNA base-stacking (Ebstk) and the Gō-type native contacts (EGō). For these

terms, we don’t apply the cutoffs but directly calculate all the interactions.

Neighbor lists. Neighbor lists are used to maintain a list of particles that can participate in

nonbonded energy/force interactions within a few MD integration steps. We set the neighbor

list distances (rP, also called “pair-list distance” in GENESIS) to be roughly 5Å larger than the

largest cutoff distance (rC). A complete list of the default cutoff and neighbor list distances can

be seen in Table 2.

We utilize the cell linked list strategy to construct the neighbor list. Fig 3 illustrates how we

determine the neighbor lists of different nonbonded interaction terms. During every update of

the neighbor lists, the system is first divided into small cells. In each cell Ci and for each inter-

action term, we construct a “particle list”, Lnb−term(Ci), which contains the particles located in

Ci and that are involved in the interaction (“nb-term”). For example, Lele(Ci) is a list of all the

charged particles in the cell Ci. We then determine the “neighboring cells” for each cell:

Cðnb� termÞneighbor ðCiÞ ¼ fCk; rminðCi;CkÞ < rP;nb� termg, where rmin(Ci, Ck) is the minimum distance

between the cells Ci and Ck. As shown in Fig 3A, relatively short-range interaction terms such

as Eð1Þexv or Eð2Þexv have a small number of the neighboring cells, whereas those with longer cutoff

distances, such as Eele, will have more neighboring cells.

After defining the “particle list” (Lnb−term(Ci)) and “neighboring cells” (Cðnb� termÞneighbor ðCiÞ) of

each cell, the neighbor list for each particle can be determined by the algorithm in Fig 3B (for

convenience, here we use electrostatic interaction as an example). The neighbor lists are

updated every 20 steps in the CG simulations.

Using individual particle list and neighboring cell for each nonbonded interaction term, we

can minimize the pairwise distance calculations. First, as described above, we can avoid do

loops over unnecessary cells for short-ranged interactions by using the potential-dependent

neighboring cells. Besides, in each cell, we just consider a pre-assigned subgroup of particles

(the Lnb−term(Ci) lists defined above) instead of all the particles. For example, in a 3SPN.2C

DNA system, to construct the neighbor list for the electrostatic interactions, we only have to

scan the charged particles (phosphates), which are only ~1/3 of all the particles. Whereas for

the base-pairing interactions, we scan another group of particles, the bases, also ~1/3 of all the

particles. Generally speaking, for the pairwise non-local interactions, considering 1/N of the

Table 2. Default values for the nonbonded cutoff and pair-list distances.

Nonbonded term Cutoff (rC, Å) Neighbor list distance (rP, Å)

Eele 52 57

EHPS,KH 39 44

Ebp 18 23

EPWMcos and EHB − 23

Eð1Þexv and Eð2Þexv − 15

The cutoff of EPWMcos and EHB are given by ri,0+5Å (ri,0 is defined in Eq (12)). The cutoff of Eð1Þexv and Eð2Þexv are defined

in Eq (10) and (11), respectively.

https://doi.org/10.1371/journal.pcbi.1009578.t002
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particles means only 1/N2 calculations compared to scanning over all the particles. Therefore,

using cell linked list and grouping particles according to interaction terms can save a lot of

computations in the neighbor list construction. On the other side, however, we also note that

when periodic boundary conditions are used with the cell linked list method, the simulation

box should have each dimension equal to or larger than three times the largest pair-list dis-

tance (57Å for the electrostatic interaction by default).

Time Integration. GENESIS atdyn has provided various integrators and thermostats/

barostats. For the current CG implementation, we employ the velocity-Verlet integrator cou-

pled with the Langevin thermostat. In the velocity-Verlet algorithm, coordinates (ri) and veloc-

ities (vi) are updated following:

vi tð Þ ¼ vi t � Dtð Þ þ
DtðFiðtÞ þ Fiðt � DtÞÞ

2mi
; ð26AÞ

ri t þ Dtð Þ ¼ ri tð Þ þ Dtvi tð Þ þ
Dt2

2mi
Fi tð Þ; ð26BÞ

where t is the simulation time, Δt is the integration step size, mi, ri, Fi, and vi are the mass,

coordinate, force, and velocity of the i-th particle, respectively. In the Langevin thermostat, the

force Fi is calculated by:

Fi tð Þ ¼ �
@VtotalðriðtÞÞ
@riðtÞ

� migvi tð Þ þmiξi tð Þ; ð27Þ

where Vtotal is the total potential energy and γ is the friction constant. ξi(t) is the Gaussian

noise vector satisfying:

hξiðtÞi ¼ 0; hξiðtÞξiðt
0Þ

T
i ¼

2gkBT
mi

dt;t0

Dt
I; ð28Þ

Fig 3. Using the cell linked list method to construct multiple neighbor lists. (A) An example of determining the neighbor list for Eexv (representing either

Eð1Þexv or Eð2Þexv) and Eele on a two-dimensional space. The gray dotted lines show the edges of the cells. The center cell with dark dashed edges (Ci) contains the

particle a (black dot) whose neighbor list is to be determined. rP,exv and rP,ele are the neighbor-list distances for Eexv and Eele, respectively. The neighboring cells

for the Eexv term (CðexvÞneighborðCiÞ) are represented by the red cells and surrounded by the red dashed lines. Those for the EeleðC
ðeleÞ
neighborðCiÞ) are shown as the green

area edged by green dashed lines. The red and green circles indicate the range of final neighbor lists for Eexv and Eele, respectively. (B) Pseudo code of the

algorithm to determine a neighbor list of the electrostatic interaction. Lele(Ck) is a list of all the charged particles in cell Ck.

https://doi.org/10.1371/journal.pcbi.1009578.g003
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where kB is the Boltzmann constant, T is temperature, δt,t0 = 1 when t = t0 and 0 otherwise, and

I is an identity matrix of size 3×3. ξi(t0)T is the transpose of ξi(t0) and the product follows matrix

multiplication.

We use 10 femtosecond (fs) as the literal time step size (Δt in Eq 26), which is determined

by the highest vibration frequency of the particles. On the other side, the time scale mapping

of large-scale conformational dynamics of biomolecules is system-dependent and requires a

careful comparison between simulated and experimental physical quantities [22].

Performance Optimization

Next, we optimize the performance of CG MD simulations implemented in GENESIS. At first,

we optimize the nonbonded interactions, which are the most time-consuming parts in both

residue-level CG and all-atom force-field models. There are two common strategies in the

optimization. The first one is the vectorization of the most inner loops for utilizing as many

SIMD (single instruction and multiple data) instructions as possible. The second one is to min-

imize the number of computations by using conditional statements. In contrast to all-atom

models, using “conditional” statements is not avoidable due to the complex potential energy

function forms. In our experience, the ratio rP3:rC3 gives us a good criteria whether the calcula-

tion would be vectorized or not using “conditional” statements. For instance, in the case of

Eele, the ratio is about 1.3, and it is better to apply vectorizations to the inner loop without any

“conditional” statements. The ratio in Eð1Þexv or Eð2Þexv evaluations are greater than 3.5, and it is bet-

ter to optimize by minimizing the calculation amount with conditional statements. The ratio

in ELJ or Ebp is less than 3, but we use conditional statements because the energy expression

form itself is changed in HPS, KH, or 3SPN.2C models.

Another computational bottleneck in CG MD simulations is the generation of random

numbers with Gaussian distributions when using the Langevin thermostat. This is mainly

because of the replicated data MPI parallelization scheme used in GENESIS atdyn, in which all

processes have a copy of the coordinate data. By keeping the replicated data scheme, we assign

MPI parallelization in random number generation and apply “MPI_Allgatherv” to collect the

information. We do not apply MPI parallelization to integrate coordinates or momenta

because the communication time is comparable or even more time-consuming than the inte-

gration itself. Instead, OpenMP parallelization is applied in integrations.

Results

Benchmark of MD simulations with residue-level CG models

We first examine the usage of memory and the performance benchmark in MD simulations

with residue-level CG models. The memory usage was examined with a single process and a

single thread on a machine with 93GiB RAM (random access memory). The CPU benchmarks

were executed with 5 OpenMP threads and various MPI processes on a computer server with

Intel Xeon Gold-6148 (2.4GHz) CPU (20 cores per CPU and two CPUs per node) and Infini-

Band EDR networking. GENESIS was compiled with the Intel compiler in couple with Intel

MPI version 2019.5.281. Fig 4 shows the results of the memory benchmark (Fig 4A) and CPU

benchmark using different biological systems (Fig 4B, 4C and 4D).

To test the memory consumption, we built systems consisting of different numbers of RNA

Polymerase II (PolII). The smallest system has only one PolII and contains 3695 CG particles

(3542 from protein, 124 from DNA, and 29 from RNA), based on the X-ray crystallography

structure (PDB ID: 1R9T) [71]. We then duplicated the single PolII to create systems of differ-

ent sizes, ranging from thousands to millions of particles. In all these tested systems, we used
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VAICG2+ for proteins, V3SPN.2C for DNAs, and VRNA for RNAs. For proteins, we use integer

charges distributed on the charged residues (+e for Arg and Lys, −e for Asp and Glu). For the

interactions between different biomolecule types, we applied Eð2Þexv and Eele as general nonspe-

cific interactions, and EGō for native contacts between protein-RNA, protein-DNA, and

RNA-DNA to maintain the whole structure. All the cutoff and pair-list distances are set to the

default values (see Table 2). As shown in Fig 4A, we carried out simulations with n3

(n = 1,. . .10) duplicated PolIIs to track the memory usage. The consumed memory scales with

the system sizes, from ~40 MB for a single PolII to ~22 GB for 1000 PolIIs. Notably, on an

ordinary computer with 10GB memory, we can run GENESIS CG MD simulations for a sys-

tem with about 2 million particles.

To examine the strong scaling of GENESIS CG simulations, we prepare three systems com-

prised of different types of biomolecules:

1. 120 copies of the protein DPSs [72]. In total, 222,360 CG particles modeled with VAICG2+;

2. 5000 chains of IDPs, each consisting of 100 amino acids. In total, 500,000 CG particles

modeled with VHPS;

3. 512 copies of nucleosomes [73]. In total, 1,044,480 particles, using VAICG2+ for proteins,

V3SPN.2C for DNAs, and Eð2Þexv; Eele for protein-DNA interactions.

Fig 4. Benchmark of the GENESIS CG simulations. (A) Memory benchmark of the RNA Polymerase II (PolII) systems. A single PolII has 3,695 CG

particles, which is then duplicated into a n×n×n (n = 1,. . .,10) grid space. The insets show the structure of a single PolII (left) and 1000 PolIIs (right). Protein is

shown in blue, DNA in red, and RNA in yellow. (B) CPU benchmark of a system containing 120 DPS proteins. The total number of CG particles is 222,360.

(C) CPU benchmark for a system of 5000 chains of 100aa IDPs. The total number of CG particles is 500,000. (D) CPU benchmark for a system including 512

nucleosomes. The total number of CG particles is 1,044,480. The insets of (B), (C), and (D) show the initial structure of each system, respectively. N represents

the total number of CG particles in each system. For all the CPU benchmarks, we used 5 OpenMP threads.

https://doi.org/10.1371/journal.pcbi.1009578.g004
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Eð2Þexv and Eele are used as general non-specific interactions for systems 1) and 3); and EHB is

additionally applied between protein and DNA in system 3). For all the cutoff and pair-list dis-

tances, we use the default values listed in Table 2. The benchmark results for these three sys-

tems are shown in Fig 4B, 4C and 4D, respectively. The results suggest that at least up to 64

MPI processes (8 nodes), the parallel performances are scalable in all three systems. Although

this does not show perfect scalability, it is useful for simulating large biological systems. We

discuss possible reasons for the insufficient scalabilities of our implementation and future

plans to improve the performance in the Discussion section.

Application 1: protein target search on DNA

The AICG2+ protein model (VAICG2+), and the 3SPN.2C DNA model (V3SPN.2C), in combina-

tion with the sequence-specific (EPWMcos) or nonspecific (EHB) protein-DNA interactions, can

be used to study the binding, diffusion, and conformational changes of protein-DNA com-

plexes [29,30,61,62]. As a simple example, we performed MD simulations of the sex-determin-

ing region Y protein (sry) [74] and its target DNA. The modeling and simulation results are

shown in Fig 5.

Sry uses a conserved High-Mobility Group (HMG) domain to recognize its consensus

DNA sequence, “TAAACAAT” [75]. The HMG domain intercalates into the DNA minor

groove and forms contacts with the bases. This type of minor groove binding of sry results in a

sharp bending of the DNA [76], which plays a crucial role in regulating the transcription of its

target gene [77]. Starting from the solution NMR structure of the sry-DNA complex (PDB

entry 1J46 [76], see Fig 5A), we generated the CG model of sry using the GENESIS-CG-tool.

We used the AICG2+ model (VAICG2+) for the whole protein. Specifically, we applied Gō-type

native contact interactions (EGō) to the folded HMG domain (residue 9–70) and assigned only

local flexible potentials (Eð1Þbond; E
ð2Þ

angle, and Eð3Þdihedral) to the N-terminal (residue 1–8) and C-termi-

nal tails (residue 71–85). We also employed the RESPAC method [60] to calculate the partial

charge distribution on the surface residues of sry (see Figs 5B and S2). As for the DNA, we

designed a 50bp poly-CG sequence, with the 8-bp piece “TAAACAAT” inserted at the center

(Fig 5C and 5D). The atomistic structure of the dsDNA was then constructed from this 50-bp

sequence using the 3DNA package [65]. The 3SPN.2C CG topology and coordinate files were

then generated from the atomistic structure, using the GENESIS-CG-tool. For sry to find its

consensus sequence in the simulations, we utilize the PWMcos model (EPWMcos) to incorporate

information from the position frequency matrix (PFM, downloaded from JASPAR database

[78] profile MA0084.1 [75]). For details of the model parameters, please see S1 Text.

After getting the input files, we carried out MD simulations of the sry-DNA complex for

107 steps. In the initial structure, sry was placed around 70Å away from the DNA. Soon after

the simulation started, sry was bound onto DNA and began the sliding. We monitored the

binding site of sry on DNA (Fig 5E) and the bending of DNA (Fig 5F). As can be seen, sry is

preferentially bound to the consensus sequence (represented by the green region in Fig 5E)

and occasionally left this target with a quick diffusion on the DNA. As expected, we observed

coupling between the sequence-specific recognition and DNA bending caused by the interca-

lation of the HMG domain. These results show that the CG models (AICG2+, 3SPN.2C, and

PWMcos) for protein-DNA interactions have been correctly implemented in GENESIS and

can be used to study similar biological systems.

Application 2: phase behaviors of IDR and RNA

The HPS and KH IDR models have been used to study the phase behavior of IDRs [35]. Here,

we used the IDR from protein Fused in Sarcoma (FUS) [79] to show that our implementation
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Fig 5. CG MD simulations of the DNA target search process by protein sry. (A) Solution NMR structure of sry

binding on DNA (PDB entry: 1J46). (B) Coarse-grained sry with the Cα particles colored by the partial charges

(determined using the RESPAC method). DNA structure from the PDB is also shown as lines for reference. (C)

Sequence logo of sry’s DNA target. (D) Sequence of DNA used in the CG simulations. The consensus sequence

“TAAACAAT” is inserted at the center of a 50bp poly-CG DNA. (E) Time series of sry’s binding position on DNA

(bsry). The green region represents the consensus sequence. (F) Time series of the bending angle of DNA (θ). Two

representative structures of sry binding at the poly-CG region or the consensus region are shown on top of (E). In

these structures, DNA is colored in gray, except for the consensus sequence region in green. Sry is shown in red.

https://doi.org/10.1371/journal.pcbi.1009578.g005
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of these models in GENESIS can simulate the condensation of proteins. We first simulated a

single chain of the FUS IDR (163aa, see S1 Text for the sequence). The final structure of the

single-chain simulation was then duplicated to create a 120-chains system. We carefully

arranged the multiple chains so that the system had a boundary size of 18nm×18nm×200nm,

which is for the slab sampling method. We performed a 107-step simulation, as shown in Fig

6A and 6B. During the simulation, we monitored the density change of the CG particles along

the z-axis (the longest dimension). As shown in the top panel of Fig 6A, at the beginning of the

simulation, the FUS IDRs formed relatively small and low-density clusters. As simulation time

increased, we observed several merge events of the condensates. After ~3.5×106 steps, all the

FUS IDRs went into the same cluster, and the density finally reached around 5 particles per

nm3 (Fig 6A and 6B). This simple example shows the possibility of using the HPS model in

GENESIS to explore the physical mechanisms of IDR condensation. Besides, we noticed that

there are some recent updates of the parameters of the HPS model [36,80]. These changes of

parameters can be easily used with GENESIS by modifying the parameter files, with no need

to touch the code. In this sense, GENESIS can also serve as a handy framework for the users to

re-calibrate their own set of parameters.

In conjunction with the HPS model for protein IDR, the HPS model for RNA has also been

recently developed [37]. The HPS RNA model has a different resolution from the other CG

models described above, with one CG particle per nucleotide. Nevertheless, we also imple-

mented this model in GENESIS, preparing for possible applications in the study of biophysical

condensations involving both protein and RNA. Here we built and simulated two systems of

IDR from the protein LAF1 and 15-nt (nucleotide) poly-A RNA (hereafter called A15). The

two systems consisted of 300 LAF1 together with 100 A15 (57,300 particles in total) and 750

LAF1 together with 250 A15 (143,250 particles), respectively. The slab method was used to

simulate the first system for 5×106 steps, with the simulation box of 20nm×20nm×200nm (Fig

6C). The second system was simulated in a cubic box of size (100nm)3 for 2×106 steps (Fig

6D). As can be seen in Fig 6C and 6D, in both situations, the A15 RNA entered the condensa-

tion of LAF1. We also quantitatively analyzed the co-condensation of LAF1 and RNA by plot-

ting the radial distribution function (RDF) of protein and RNA particles as a function of the

distance from the center of the LAF1 droplet (Fig 6E). There is a higher density of RNA inside

the LAF1 condensation than in bulk (Fig 6E). These results are consistent with the previous

simulation results [37].

Application 3: virus capsid

We also explored the ability of our GENESIS CG implementation to simulate large-scale bio-

logical systems, such as a virus capsid. Here we reported our modeling and simulation of the

herpes simplex virus (HSV) capsid, whose high-resolution structure has been recently solved

with the cryo-electron microscopy (cryo-EM) (PDB entry: 5ZAP) [81]. The capsid comprises

about 4000 proteins assembled into 12 pentons (pentameric blocks) and 150 hexons (hexame-

ric blocks), and 320 triplexes gluing all the subunits [81]. The number of atoms and the length

scale exceed the PDB format’s upper limit for such a vast structure. Therefore, the structural

information of the HSV capsid was recorded in a file with the mmCIF format. We used the

GENESIS-CG-tool to parse this file and generate the CG structure, which consists of 1,687,980

CG particles in total (Fig 7A). The AICG2+ potentials were used to model the whole structure.

After generating the necessary input files, we then simulated the structure for 2×106 steps. We

tracked the radius-of-gyration (Rg), the root-mean-square-deviation (RMSD), and the native-

ness (Q, see S1 Text for definition) of the whole structure (shown in Fig 7B). As can be seen,

during our simulation, the structure was stably maintained. Although here we only show a
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short equilibrium simulation of the HSV capsid, to our knowledge, it is one of the largest bio-

logical systems simulated with the residue-level CG models. We expect to run CG simulations

of similar systems using GENESIS to probe the conformational changes and dynamic assembly

or disassembly of the capsid.

Application 4: chromatin

Eukaryotic chromatin is the architecture that stores genetic information by packaging DNA

into supercoiled structures around the histone octamer proteins. In addition to the function of

genome organization, chromatin also hosts many biochemical reactions around the informa-

tion flow between DNA and RNA. Due to its extraordinary importance, chromatin and related

biological phenomena have been widely studied by MD simulations at different length scales

and models at different resolutions [4,82–84]. In particular, residue-level CG models, including

those we implemented here (VAICG2+, V3SPN.2C, EPWMcos, and EHB), have shown their abilities to

decipher the dynamics of the nucleosome, which is the building block and basic unit of chroma-

tin [30,31,61,62,85]. Here we tried to expand these residue-level CG MD simulations to a larger

length scale. Instead of using a natural genomic sequence and constructing a Hi-C experiment-

based structure, we chose poly-CG as the DNA sequence and built an artificial chromatin struc-

ture by connecting single nucleosome structures (based on PDB 1KX5) [73] with linear linker

DNAs. The constructed structure contains 1024 nucleosomes linked by a 219,213-bp dsDNA

(see Fig 8A and 8B). More details of the structure modeling can be found in S1 Text.

Similar to previous studies [30,61], we used VAICG2+ for histones, V3SPN.2C for DNA, and

EHB for hydrogen bonds between histone and DNA phosphates. In addition, we applied VHPS

to the flexible histone tails (see S1 Text for definition). We then performed 5×105-step MD

simulations of this system at a temperature of 300K and 150mM ionic concentration. The time

series of Rg of the four types of N-terminal histone tails and the number of wrapped DNA

base-pairs are shown in Fig 8C. These results were based on the statistics over the 1024 nucleo-

somes. This example illustrates the possibility of using our GENESIS CG implementation to

Fig 6. CG MD simulations of the condensation of IDRs and RNAs. (A) and (B) show the slab simulation results of 120 FUS IDRs. (A) Time

series of FUS density along the long axis (z). The intensity of the blue color represents the density, as shown in the color bar above. (B) The first

and last structure of the MD trajectory shown in (A). The FUS IDRs are shown as tubes. Different colors from green to blue are used to

distinguish chains. (C), (D), and (E) show the simulation of the mixture of LAF1 IDRs and 15nt poly-A (A15) RNAs. (C) The last structure of a

5×106 steps slab simulation of 300 LAF1 IDRs and 100 A15 RNAs. LAF1 IDRs are in green or blue, whereas RNAs are in red or purple color. (D)

The last structure of a 2×106 steps droplet simulation of 750 LAF1 IDRs and 250 A15 RNAs. The color scheme is the same as (C). (E) Radial

distribution function of protein and RNA CG particles as a function of the distance from the center of mass of the LAF1 droplet (r). The

structure of the condensation is shown as transparent background for reference.

https://doi.org/10.1371/journal.pcbi.1009578.g006
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carry out studies on the large-scale chromatin dynamics with accurate modeling of DNA and

both well-folded and intrinsically disordered parts of proteins.

Discussion

In this paper, we have implemented residue-level CG models of biomolecules in GENESIS

MD software and have applied them in CG MD simulations of various biomolecules by

Fig 7. Simulation of the herpes simplex virus (HSV) type 2 B-capsid. (A) Structure of the coarse-grained HSV

capsid, based on PDB entry 5ZAP. The pentameric blocks (pentons) are colored in blue, the hexameric blocks

(hexons) are colored in green (VP5) and cyan (VP26). All the other proteins that glue together the pentons and hexons

are colored in white. (B) Time series of the radius of gyration (Rg), RMSD, and nativeness (Q) of the whole structure

during a 2×106-step simulation.

https://doi.org/10.1371/journal.pcbi.1009578.g007
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combining different CG models. The combination of the AICG2+ model for proteins with the

3SPN.2C model for DNA and the PWMcos potential for protein-DNA sequence-specific

interactions has been applied in the previous studies [62]. Whereas the combination of the

HPS model for IDR and AICG2+ for folded protein is tested, for the first time, in this new

framework. We also noticed several recently published CG models at an equivalent or similar

resolution as ours, such as the TIS RNA model [23] and the iSoLF lipid model [86]. We will

consider incorporating these models into GENESIS to cover a broader range of target biomol-

ecules. In the applications presented here, we used the default interaction parameters in GEN-

ESIS. For more practical applications, such as genome-scale chromatin folding or phase-

separated membrane-less condensations, one may need to more carefully optimize interaction

terms between the IDR and the other components and their parameters. If necessary, the

parameters should be calibrated carefully with experimental information as references. The

GENESIS CG framework provides a convenient environment for these attempts.

Similar to the current work, other groups have also released combinatorial implementations

of CG methods, such as the OpenAWSEM-Open3SPN2 within the OpenMM framework [43],

the 3SPN.2C packages in the LAMMPS framework [38,39], and the CafeMol package [44].

Particularly, the OpenMM package utilized GPU calculations to gain better performances

[43]. Compared with its implementation, our development aims to cover more models and

provide a more flexible and feasible environment for the studies of larger-scale biomolecular

Fig 8. MD simulation of artificial chromatin composed of 1024 nucleosomes. (A) Structure of the whole artificial chromatin. DNA is

colored in red, and histones are colored in cyan (for the folded domains) and green (tails). (B) A zoom-in structure of two adjacent

nucleosomes as a part of the artificial chromatin. (C) Time series of the radius-of-gyration (Rg) of the N-terminal tails of the histones (top)

and the number of wrapped DNA base-pairs on histone (bottom). The solid lines represent the average values, and the shadowed regions

show the standard errors.

https://doi.org/10.1371/journal.pcbi.1009578.g008
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systems. CafeMol has been successfully applied for CG simulations in various biomolecular

studies [26,29,30,62,87,88]. However, it is not designed for the high-performance computing

of larger-scale systems. We have optimized our code in GENESIS to enable high-performance

simulations of systems consisting of millions of particles on regular computers (Figs 4, 7 and

8). There is an upper limit of particle number with the atomic decomposition scheme in atdyn,

which essentially limits our the applicability with the current code to huge biological systems.

The domain-decomposition strategy and the efficient load balancer suitable to residue-level

CG models are required to solve this problem. These two will be implemented in a new MD

engine in GENESIS. However, it is worth noting that there are technical difficulties in develop-

ing the domain-decomposition scheme and load balancer for CG simulations. The most

widely appreciated problem is the inhomogeneous particle distribution in the residue-level CG

systems due to the implicit treatment of the solvent. In a conventional uniform spatial decom-

position, the non-uniform particle density causes severe load imbalance among different

domains. Therefore, special decomposition algorithms should be considered [89]. Another

direction is to consider explicit solvent models [13,90], which intrinsically solve the load-bal-

ance problem, but introduce significantly more computations on the solvent particles. Besides,

the large cutoff value of the non-bonded interactions also sets a lower limit of the target system

size. We assume at least two domains in each dimension to apply domain decomposition.

Each domain should have at least the size equal to or larger than the longest cutoff (in our

implementation, 52Å of the electrostatic term). This requirement essentially limits the applica-

bility of the program to relatively small systems. In developing the new CG MD engine in

GENESIS, we will have to solve these problems.

Although the CG models have boosted the computational efficiency to be orders of magni-

tudes faster than the all-atom force fields [22], the speed-up still looks insufficient when study-

ing systems of the organellar or cellular scales. It is necessary to employ enhanced sampling

methods, many of which [91–94] have also been implemented in GENESIS. Taking this advan-

tage, we will combine CG MD simulations with some of the enhanced sampling methods to

obtain more statistically reliable data with reasonable computational times and to enable free-

energy analysis in the organellar or cellular scales.

In parallel to the advances in computational biophysics, mesoscopic pictures of biomole-

cules in the organellar or cellular environments have been better described using the latest

experimental techniques, such as cryo-electron microscopy (cryo-EM) [95], cryo-electron

tomography (cryo-ET) [96], high-speed atomic force microscopy (AFM) [97], and in-cell

NMR [98]. Integrating structural information by these experiments with computational bio-

molecular dynamics is one of the most important tasks in this research field. Recently, there

have been several attempts [99–101] to make more realistic structural models of sub-cellular

systems by utilizing available experimental results as much as possible. We hope that the

implementation of residue-level CG models can provide more realistic structural dynamics of

heterogeneous biological systems together with recent experimental information and model-

ing strategies. For this purpose, multi-scale and multi-resolution simulations are helpful in the

trade-off between modeling accuracy and computational efficiency, if we can switch the reso-

lutions of target biological systems easily from this residue-level CG models to other CG mod-

els with different approximations (MARTINI [13], SPICA [102], PACE [103], etc.) or all-atom

force field models (AMBER [104], CHARMM [105], GROMOS [106], etc.). In the GENESIS

software, most of the above models are already available, and some of them are being imple-

mented by us. Mapping from the atomistic structure to CG is deterministic and easy, although

information such as amino-acid backbone dihedral angles (φ and ψ) and hydrogen bonds are

largely lost. The other direction, namely, reconstructing atomistic structure from CG coordi-

nates, is usually much more difficult [107]. In our current implementation, the structure-
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based models, such as AICG2+ [26], can uphold the secondary, tertiary, or even higher-order

structures in the native structure. Additionally, by using the angle-dependent non-local poten-

tials, the 3SPN.2C [28] and the PWMcos [32] models can partly preserve the base-stacking or

hydrogen-bonding interactions in the DNA and protein-DNA interface, respectively. Struc-

tures sampled with these CG models can be remapped back to reasonable atomistic structures,

provided the reconstruction methods [107,108] are good enough. In the near future, we may

be able to investigate the inside of the cell at various resolutions, as Google Earth can do visual-

izations of both countries and local towns.

In summary, we have implemented several residue-level CG models in the GENESIS MD

software, including the AICG2+ model for protein, the 3SPN.2C model for DNA, the PWMcos

model for protein-DNA interactions, and the HPS/KH model for IDR and RNA. The MD

input data for these CG models are given in a GROMACS-style file format by an easy-to-use

toolbox, GENESIS-CG-tool. The computational performance of CG MD simulations is opti-

mized to regular computers by preparing the nonbonded interaction lists suitable for the CG

potential functions, vectorizing do-loop structures in the time-consuming subroutines, paral-

lelizing the generation of random numbers in Langevin dynamics, and so on. With these

attempts, GENESIS CG MD simulation is applied to large biological systems containing mil-

lions of CG particles efficiently on regular computers. The models and programs implemented

here would be valuable for investigating heterogeneous biological phenomena involving

folded/disordered proteins, RNAs, and DNAs at high concentrations. Implementations for

larger systems containing billion CG particles and the use of enhanced sampling in the systems

will follow the current implementation in the GENESIS software.

Availability and future directions

The source code and user manual of GENESIS v1.7.1 is available at https://www.r-ccs.riken.jp/

labs/cbrt/ website, and GENESIS-CG-tool is both included as a part of GENESIS v1.7.1 and

deployed at https://github.com/noinil/genesis_cg_tool. Tutorials of performing CG simula-

tions with GENESIS v1.7.1 are open on https://www.r-ccs.riken.jp/labs/cbrt/tutorials2019/

website. All the MD simulation files and data to produce the results are available from https://

github.com/RikenSugitaLab/cg-development-GENESIS-1.7.0. We plan to use GENESIS v1.7.1

to study large-scale biological phenomina such as LLPS of protein and nucleic acids. We also

plan to implement more CG models of biomolecules into GENESIS.

Supporting information

S1 Text. Supplementary methods of molecular dynamics simulations.

(DOCX)

S1 Fig. Examples of using GENESIS-CG-tool to prepare CG topology and coordinate files.

(A) Generate CG files (PRO1_cg.gro for coordinates; PRO1_cg.top and PRO1_cg.itp for topol-

ogy) for a protein, based on its atomistic PDB file (PRO1.pdb). (B) Generate CG files

(DNA1_cg.gro for coordinates; DNA1_cg.top and DNA1_cg.itp for topology) as well as an

atomistic coordinate file (DNA1.pdb) for a 20bp DNA, from its DNA sequence (DNA1.fasta).

(TIF)

S2 Fig. Charge distribution on the surface residues of protein sry. The charges of the surface

residues of the HMG domain (residue 9–70, dark blue) of sry was determined with the

RESPAC method. Whereas the charges on the N-tail and C-tail were the original integer char-

ges (green). The same data are used to plot the CG structure of sry (Fig 5B).

(TIF)
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