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Abstract

The problem of checking the genotype distribution obtained for some diallelic marker for

compatibility with the Hardy-Weinberg equilibrium (HWE) condition arises also for loci on

the X chromosome. The possible genotypes depend on the sex of the individual in this case:

for females, the genotype distribution is trinomial, as in the case of an autosomal locus,

whereas a binomial proportion is observed for males. Like in genetic association studies

with autosomal SNPs, interest is typically in establishing approximate compatibility of the

observed genotype frequencies with HWE. This requires to replace traditional methods tai-

lored for detecting lack of fit to the model with an equivalence testing procedure to be

derived by treating approximate compatibility with the model as the alternative hypothesis.

The test constructed here is based on an upper confidence bound and a simple to interpret

combined measure of distance between true and HWE conforming genotype distributions in

female and male subjects. A particular focus of the paper is on the derivation of the asymp-

totic distribution of the test statistic under null alternatives which is not of the usual Gaussian

form. A closed sample size formula is also provided and shown to behave satisfactorily in

terms of the approximation error.

Introduction

The Hardy–Weinberg law belongs to the key concepts in genetic epidemiology [1]. Departure

from Hardy–Weinberg equilibrium (HWE) can be caused by factors such as inbreeding, assor-

tative mating, selection or migration [2]. The effect of these factors on HWE can be expected

to be small in most human populations although selection may play an important role in infec-

tious diseases [2]. Another reason is population stratification which causes a deficit of hetero-

zygotes. Population stratification can be controlled for by methods, such as genomic control

(for a detailed overview see e.g., [3]). The presence of copy number variations generally leads
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to an excess of heterozygotes. Finally, deviation from HWE may be simply caused by genotyp-

ing errors. We have previously argued that deviations from HWE should be investigated only

in controls for case-control studies and in the entire cohort in cohort studies [2]. For autoso-

mal loci, several “how to guides” have been published for assessing deviation from HWE [4, 5].

These approaches are commonly used as part of the regular quality control in genome-wide

association studies and meta-analyses.

For testing deviation from HWE for X-chromosomal markers, no such guidelines are avail-

able although testing for HWE is used for quality control on the X-chromosome as well [6].

The complicating factor for assessing deviation from HWE is that males are hemizygous, thus

have only one allele on X-chromosomal markers outside of the pseudoautosomal regions,

while females have two alleles as on autosomes. Some software packages therefore ignore male

subjects and conduct a test for HWE in females only [5]. However, this reduces the sample size

and results in a loss of power. Furthermore, an X-chromosomal marker can only be in HWE if

the allele frequencies are equal in males and females. If males are neglected, deviation from

HWE cannot be thoroughly investigated. Other software packages ignore the difference

between autosomal and X-chromosomal markers (see the genetics package in R). As described

by [5], these tests are potentially misleading due to coding the genotype of a hemizygous male

either as AA or aa as in the standard data format.

The problem of HWE testing on the X chromosome has caught attention quite recently.

For example, Graffelman and Weir [7] proposed four frequentist tests for diallelic markers

using data from both males and females. An implementation of these procedures is available

in an R package called ‘Hardy-Weinberg’ [8]. A Bayesian HWE testing procedure has also

been proposed [9]. Other tests are described in the work by Wang et al. [10] and You et al.

[11], and an extension to multiallelic markers by Graffelman and Weir [12]. Zheng et al. inves-

tigated the impact of deviations from HWE on the properties of association tests for X-chro-

mosomal SNPs [13].

The usual strategy to protect oneself against the distorting effects entailed in violations of

the HWE condition consists of filtering markers that do not conform with HWE prior to the

conduct of genetic association tests. For autosomal SNPs, i.e., diallelic genetic markers located

at an autosome, the traditional statistical procedure to assess HWE is the standard Pearson χ2-

test. Unfortunately, any testing procedure of this type fails to serve the purpose of confirming

the compatibility of the marker with the model. Actually, the conventional χ2-test is tailored

for establishing lack rather than goodness of fit, since the statement that the distribution

underlying the data is in agreement with HWE plays the role of the null rather than an alterna-

tive hypothesis. A significant test result thus indicates incompatibility of the observed data

with the model. A well-established way around this basic difficulty inherent in the logic of sig-

nificance testing is to reformulate and solve the problem of HWE assessment as what is called

in biostatistics a problem of equivalence testing (for a systematic treatise on this still fairly fast

developing area in statistical methodology, see [14]).

This change of the basic inferential paradigm has been successfully exploited by [15, 16]

and [17] for the case of autosomal SNPs. The equivalence tests derived there are tests for good-

ness rather than lack of fit, in the sense, that they allow one to control the risk of erroneously

deciding in favor of the hypothesis that the populations underlying the samples under evalua-

tion are “essentially” compatible with the HWE model. In this phrase, “essentially” means that

the deviations between model and truth, if existing at all, are small enough for being treated as

marginal and thus irrelevant. Inverting a traditional lack-of-fit test by deciding for the new

alternative hypothesis of equivalence between the actual and a HWE-conforming population if

it yields a p-value above the conventional significance level of 5%, fails to provide control over

the type-I error. In the equivalence setting, the latter consists in incorrectly rejecting the null
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hypothesis of relevant deviations from the model. The actual size of this risk highly depends

on the order of magnitute of the sample size: for small sample sizes, it can become as large as

95%, where for huge sample sizes it approaches zero so that the procedure becomes extremely

conservative. The goodness-of-fit test for HWE at autosomal markers constructed by [15] is an

exact, uniformly most powerful (UMPU) procedure based on the conditional distribution of

the observed number X2, say, of heterozygotes given the total number S of A-alleles (with A
denoting the allele of minor frequency). It rejects if X2 falls in the interior of some interval

whose endpoints depend in a fairly complicated manner on the value of S and the significance

level (defined as the maximum acceptable probability of incorrectly rejecting the null hypothe-

sis of relevant disequilibrium). In a subsequent paper [17], we were able to show that without

substantial loss of power, the exact UMPU test can be replaced with a computationally much

simpler approach based on confidence intervals for a function of the population genotype fre-

quencies providing a natural measure of the amount of disequilibrium (the definition of this

parametric function will be made precise below in the first subsection of Materials and

Methods).

The aim of the present paper is to extend the confidence limit based approach to testing for

approximate compatibility of the distribution of some given SNP with the HWE model to the

case of X-chromosomal loci. The Materials and Methods (M&M) section, which is the core

part of the paper, goes far beyond the description of routine methods of data analysis. It focus-

ses on a rigorous derivation of the newly proposed testing procedure and the formal machin-

ery required for investigating basic properties of the method and planning genetic association

studies requiring to ensure the compatibility of sex-linked markers with HWE. It starts with a

formally precise description of the equivalence testing approach to HWE assessment for dialle-

lic markers and an extension of the hypothesis formulation to the case that the population

under assessment consists of a mixture of allele pairs and single alleles. The proposed way of

measuring the amount of disequilibrium jointly for females and males is to define for the

two subpopulations separate measures Δf and Δm of the distance of the underlying distribution

from the model and to combine these by calculating the ordinary Euclidean distance of

(Δf, Δm) from the origin of the plane. In the Subsection 2 of M&M, we study the asymptotic

distribution of the natural estimator of the Euclidean distance of (Δf, Δm) from 0 obtained by

plugging in throughout the observed relative genotype and allele frequencies for the theoretical

frequencies (π1, π2, π3) and pY, respectively. This provides the mathematical basis for the com-

putation of an upper confidence bound to D ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

2

f þ D
2

m

q
, and the corresponding testing

procedure, which decides in favor of goodness of fit if this bound falls below the prespecified

equivalence margin. In Subsection 3 of M&M, we derive an expression for the exact rejection

probability of the goodness-of-fit test under any parameter configuration and establish

approximate formulas for the power against different types of alternatives focussing on so-

called null alternatives specifying perfect coincidence with the HWE model. In the latter case,

which is the most interesting one for applications, the asymptotic distribution of the test statis-

tic is no longer Gaussian and must be established separtely by means of a non-standard con-

struction. The Results section starts with an investigation on level and power of the goodness-

of-fit test, which is inherently an asymptotic procedure, in finite samples. Subsequently, the

new method is compared to the combined χ2-test for lack of fit proposed by [7] both for real

data taken from a GWAS on venous thrombosis, and simulated data sets. The assessment of

the approximate methods of power calculation and the associated sample-size formulas for the

new test, is again done by means of exact numerical computation.

Goodness of fit of a X-chromosomal SNP to HWE
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Materials and methods

Mathematical notation and formulation of the testing problem

The first goodness-of-fit testing procedure made available for purposes of HWE assessment in

genetic association studies involving diallelic markers ([15]) was constructed by solving the

equivalence problem

H : y � 4=ð1þ d� Þ or y � 4ð1þ d� Þ versus K : 4=ð1þ d� Þ < y < 4ð1þ d� Þ: ð1Þ

In (1), δ˚ stands for a fixed positive constant to be chosen a priori defining the equivalence

range for the function

y ¼
p2

2

p1ð1 � p1 � p2Þ
ð2Þ

of the true proportions π1, π2, and π3 of the possible genotypes AA, AB, and BB at the selected

locus in the underlying population. The adequacy of the hypotheses formulation (1) for the

purpose of establishing goodness rather than lack of fit of an autosomal SNP to HWE is

ensured by the following facts:

1. θ/4 − 1 has the same sign as p2 � 2ð
ffiffiffiffiffi
p1

p
� p1Þ, and any genotype distribution with parame-

ter (π1, π2, π3) is in perfect HWE if and only if (π1, π2) is a point on the graph of the func-

tion

p2 ¼ 2ð
ffiffiffiffiffi
p1

p
� p1Þ ; 0 < p1 < 1 : ð3Þ

2. For any 0< δ˚ < 1, there holds the relationship

4=ð1þ d� Þ < y < 4ð1þ d� Þ , ~p
l;d�
2 ðp1Þ < p2 < ~p

u;d�

2 ðp1Þ; ð4Þ

where the region bounded by the curves

~p
l;d�
2 ðp1Þ ¼ 2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ d� Þ
� 1
p1ð1 � d�p1=ð1þ d� ÞÞ

q

� p1=ð1þ d� ÞÞ ; 0 < p1 < 1; ð5Þ

~p
u;d�

2 ðp1Þ ¼ 2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ d� Þ p1ð1þ d�p1Þ

p
� ð1þ d� Þ p1Þ ; 0 < p1 < 1; ð6Þ

encloses the HWE curve (2).

The family fMðp1; p2; p3Þj0 < p1; p2; p3 < 1; p1 þ p2 þ p3 ¼ 1g of all trinomial distribu-

tions is readily seen to be an exponential family with parameters θ (as defined in Eq (2)) and

ϑ = π1/π3. This fact is the starting point for the construction of the optimal—precisely: uni-

formly most powerful unbiased—solution carried out by [15]. The practical implementation

of the UMPU test requires acquaintance with advanced statistical software (in R, the programs

gofhwex and gofhwex_1s of the package EQUIVNONINF [18] can be used). Since this

might restrict the suitability of the method for routine use in the analysis of large-scale genetic

association studies, in a more recent paper [17], we developed an asymptotic testing procedure

for the same problem as a more user-friendly alternative. The latter relies on the principle of

confidence interval inclusion, which was introduced by [19] into the field of bio-equivalence

assessment and can easily be shown (cf. [14], § 7.1) to be a special case of the intersection-

union principle (IUP) as formulated by [20]. Despite its conceptual and computational sim-

plicity—a pocket calculator suffices, the IUP-based asymptotic test for (1) turns out to produce

rejection regions which, for the sample sizes commonly availabe for genetic association

Goodness of fit of a X-chromosomal SNP to HWE
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studies, do not differ by more than a practically negligible amount from the critical region of

the exact UMPU test for the same setting and specifications.

Fig 1 illustrates the confidence interval inclusion rule for the case that a sample of size

n = 200 is available from a genotype distribution of an autosomal SNP and the choice δ˚ = 0.96

for the constant determining the equivalence bounds to θ considered acceptable for a SNP in

sufficiently good agreement with HWE. Using de Finetti’s coordinate transformation (π1,

π2)7!(π1 + π2/2, π2), the graph shows the rejection region of the test obtained by checking an

asymptotic 95%-confidence interval for θ for inclusion in the equivalence interval specified

under the alternative hypothesis K of (1). As shown by [17], the choice δ˚ = 0.96 can be justified

by the fact that the corresponding equivalence margin is the smallest one for which the sample

size required to attain a power 90% against the null alternative of perfect agreement with HWE

Fig 1. De Finetti diagram of the boundary curves of the equivalence region specified under the alternative hypotheses of (1). Ragged lines: critical region of the

test to be generalized for X-chromosomal SNPs. [δ˚ = 0.96, α = 0.05, n = 200].

https://doi.org/10.1371/journal.pone.0212344.g001
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in a test at nominal level α = 0.05 does not exceed 3,000, provided a SNP with minor allele fre-

quency satisfying 0.1�MA� 0.5 has to be evaluated.

If A and B are the two possible alleles for a SNP at an X-locus, generalizing the alternative

hypothesis of (1) in a natural way leads to replacing K by the statement that the values taken in

the underlying subpopulations, i.e., female and male subjects, by the following two distance

measures are both “sufficiently small”:

Δf = distance among females between the parameter θ of (2) or some suitable transform of

it, and its value under perfect HWE

Δm = distance between the true distribution of A-alleles among males being binomial with

parameter pY, say, and a binomial distribution having the allele frequency holding for females

under perfect HWE as its parameter.

Regarding the female subpopulation, we adopt the confidence-limit based approach to con-

structing a goodness-of-fit test for HWE assessment with autosomal SNPs in a 1:1 manner.

Conceptually, this version of a test for equivalence of the genotype distribution of a diallelic

marker under analysis with HWE relies on the following fact: a measure of distance from the

model which combines straightforward biological interpretability with mathematical conve-

nience can be based on the difference between half the square root of the parameter θ as

defined above in Eq (2), and unity. Actually, 1 is the value of o :¼ ð1=2Þ
ffiffiffi
y
p

in a population

being in perfect HWE. With a view to symmetry of the distribution of its natural point estima-

tor, we prefer to replace the parameter ω, which we proposed to term relative excess heterozy-

gosity (REH), by its logarithm and to measure in the subpopulation of females the degree of

disequilibrium in terms of the distance of log ω from zero, i.e., |log ω|. Accordingly, we define

the first component of an aggregate measure of disequilibrium combining the characteristics

of the genotype distributions for both gender strata to be given by

Df ¼ jlogðp2Þ � ðlogðp1Þ þ logðp3ÞÞ=2 � logð2Þj; ð7Þ

assuming throughout that the πj denote the genotype frequencies in the subpopulation of

females (with the subscript f being omitted for brevity).

As explained above, the other component, Δm, must be defined as a function of (π1, π2, π3)

and pY, the true frequency of the allele A of interest in the male subpopulation. In order to

make this definition suitable for the present purpose, Δm has to be a reasonable measure of dis-

tance between two binomial distributions with parameters p1 = π1 + π2/2 and p2 = pY. The lit-

erature on equivalence testing methods for clinical trials contains several different proposals

for choosing such a measure. As has been argued by [14] (see also [21]), a particularly well

suited definition is based on the log odds ratio between p1 and p2, which in the present context

leads to setting

Dm ¼ jlogðp1 þ p2=2Þ � logð1 � p1 � p2=2Þ � logðpYÞ þ logð1 � pYÞj: ð8Þ

Thus, as an aggregate criterion of approximate compatibility of an X-chromosomal SNP

with HWE to be satisfied under the alternative hypothesis of the test to be subsequently

derived, we use the condition

½ðlogðp2Þ � ðlogðp1Þ þ logðp3ÞÞ=2 � logð2ÞÞ2 þ ðlogðp1 þ

p2=2Þ � logð1 � p1 � p2=2Þ � logðpYÞ þ logð1 � pYÞÞ
2
�
1=2
< ε:

ð9Þ

Denoting the signed version of Δf and Δm by D
�

f and D
�

m, respectively, the set of all combina-

tions of subpopulation genotype and allele frequencies satisfying (9) obviously corresponds to

a circular disc of radius ε in the parameter space of ðD
�

f ;D
�

mÞ centered at the origin. Hence, it
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seems reasonable to choose ε to be the radius of the smallest circle which contains a square

with edges of length being equal to twice a suitable common margin to Δf and Δm. In testing

for equivalence of two binomial distributions with respect to the log odds ratio, a well-estab-

lished specification of the equivalence margin is εLOR = log(12/8)� 0.41 (for the rationale

behind this recommendation (cf. [14], § 1.6). Furthermore, the margin which has been pro-

posed by [17] for REH = ω2 = θ/4 is 1.96 corresponding to log(1.4)� 0.34 for Δf. Since these

margins are not identical we propose to take the tighter one as a basis for specifying the margin

ε to D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

2

f þ D
2

f

q
so that we propose to set ε ¼

ffiffiffi
2
p

logð1:4Þ � 0:48.

Interval estimation and testing procedure

As a pivotal quantity for inference about our distance measure Δ we consider the plug-in point

estimator obtained through replacing the population frequencies involved by the homologous

empirical proportions

p̂ j ≔ Xj=n1; j ¼ 1; 2; 3; p̂Y ≔ Y=n2: ð10Þ

(X1, X2, X3) and Y are assumed to belong to independent samples of sizes n1 [females] and n2

[males] from a multinomial distribution with parameters (π1, π2, π3) and a binomial distribu-

tion with parameter pY, respectively. Recalling (7) and (8), this leads to the expression

D̂ ¼ ½ðlogðp̂2Þ � ðlogðp̂1Þ þ logðp̂3ÞÞ=2 � logð2ÞÞ2þ

ðlogðp̂1 þ p̂2=2Þ � logð1 � p̂1 � p̂2=2Þ � logðp̂YÞ þ logð1 � p̂YÞÞ
2
�
1=2
:

ð11Þ

As usual in an asymptotic treatment of inferential procedures for two-sample settings, all

statements about convergence in distribution of variables being functions of the p̂ j and p̂Y will

hold under the assumption that the relative sample sizes n1/N and n2/N tend to nondegenerate

limits λ and 1 − λ, say, as the total sample size N = n1 + n2 increases to infinity. The basic prop-

erties of the multinomial family and the independence of (X1, X2, X3) and Y ensure that the

limiting distribution of
ffiffiffiffi
N
p
ððp̂1; p̂2; p̂3; p̂Y ; 1 � p̂YÞ � ðp1; p2; p3; pY ; 1 � pYÞÞ is multivariate

normal with expected value zero and (singular) covariance matrix

Σ ¼

1

l
p1ð1 � p1Þ �

1

l
p1p2 �

1

l
p1p3 0 0

�
1

l
p1p2

1

l
p2ð1 � p2Þ �

1

l
p2p3 0 0

�
1

l
p1p3 �

1

l
p2p3

1

l
p3ð1 � p3Þ 0 0

0 0 0
1

1 � l
pYð1 � pYÞ �

1

1 � l
pYð1 � pYÞ

0 0 0 �
1

1 � l
pYð1 � pYÞ

1

1 � l
pYð1 � pYÞ

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

: ð12Þ

Weak convergence of
ffiffiffiffi
N
p
ððp̂1; p̂2; p̂3; p̂Y ; 1 � p̂YÞ � ðp1; p2; p3; pY, 1 − pY)) to a centered

Gaussian distribution with the above covariance structure is the starting point for establishing

the following result (for details of a proof see S1 Appendix).

PROPOSITION 1. Let D̂�f and D̂�m denote the plug-in estimators of the parametric functions D
�

f

and D
�

m. Then, as N!1, the joint distribution of these estimators centered at their popula-

tion analogues and scaled by
ffiffiffiffi
N
p

converges to the product of two normal distributions with
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expected value zero and variances given by

s2
f ;l ¼

1

l

1

4

1 � p2

p1p3

þ
1

p2

� �

; ð13Þ

s2
m;l
¼

1

ð1 � lÞpYð1 � pYÞ
�

1

lð1 � p1 � p2=2Þ
2
þ

p1 þ p2=4

lð1þ p2=2Þ
2
ð1 � p1 � p2=2Þ

2
: ð14Þ

The plug-in estimator of the joint distance measure Δ to be eventually used for HWE assess-

ment can be written as D̂ ¼
ffiffiffiffi
D̂

p
2
f þ D̂

2
m with D̂2

G ¼ ðD̂
�
GÞ

2
, G 2 {f, m}. Hence, except for suit-

able centering and rescaling by means of
ffiffiffiffi
N
p

, it has a limiting normal distribution whose

variance is a weighted average of s2
f ;l and s2

m;l
. Precisely speaking, there holds the following

PROPOSITION 2. Assume that for at least one subgroup G 2 {f, m}, the true value of D
�

G does

not vanish. Then, as N!1,
ffiffiffiffi
N
p
ðD̂ � DÞ converges in law to a normally distributed variable

with expectation zero and variance given by

t2
l
¼ ðD

2

f þ D
2

mÞ
� 1
ðD

2

f s
2
f ;l þ D

2

m s
2
m;l
Þ : ð15Þ

Proof. The result follows directly from Proposition 1 by means of the delta method (cf.

[22], § 14.6).

Obviously, D
2

f , D
2

m, s2
f ;l and s2

m;l
are all continuous functions of (π1, π2, π3, pY) so that the

same holds true for the asymptotic variance t2
l

of
ffiffiffiffi
N
p

D̂. Since the relative frequencies

ðp̂1; p̂2; p̂3; p̂YÞ are consistent for the corresponding population frequencies, this implies, that

plugging in the latter in all terms appearing on the right-hand side of Eq (15) and replacing the

limiting relative size λ of the sample of females with the actual proportion n1/(n1 + n2) yields a

consistent estimator of t2
l
. Consistency of this estimator denoted t̂2

n1 ;n2
in the sequel, allows us

to infer from Proposition 2 that there holds

ffiffiffiffi
N
p D̂ � D

t̂n1 ;n2

!
L Z � N ð0; 1Þ asN !1: ð16Þ

The testing problem which we are interested in reads in formal terms

H0 : D � ε versus H1 : D < ε; ð17Þ

and it can be solved through checking an upper confidence bound to the target parameter Δ
for non-exceedance of the equivalence margin ε. By (16), an upper confidence limit to Δ at

asymptotic level 1 − α is given by

�CD
a;n1 ;n2
ðp̂

1; p̂2; p̂3; p̂YÞ ¼ D̂ þ z1� at̂n1 ;n2
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ n2

p
: ð18Þ

Finally, as the critical region of the corresponding test at asymptotic level α for (17), we

obtain

Cn1 ;n2
ðaÞ ¼ fðx1; x2; x3; yÞj 0 � x1; x2; x3 � n1;

x1þx2 þ x3 ¼ n1; 0 � y � n2;
�CD
a;n1 ;n2
ðx1=n1; x2=n1; x3=n1; y=n2Þ < εg:

ð19Þ
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Exact and approximate methods of computing rejection probabilities and

sample-size planning

The rejection probability of the test with critical region (19) under arbitrary parameter config-

urations is accessible to exact numerical computation. Exploiting the assumed independence

of (X1, X2, X3) and Y, we can write:

Pp;pY ½ðX1;X2;X3;YÞ 2 Cn1 ;n2
ðaÞ� ¼

Xn1

x1¼0

Xn1 � x1

x2¼0

Xn2

y¼0

n1!n2!p
x1
1 p

x2
2 p

n1 � x1 � x2
3 py

Yð1 � pYÞ
n2 � y

x1!x2!ðn1 � x1 � x2Þ!y!ðn2 � yÞ!

�

� Ið0;1Þ ε � �CD
a;n1 ;n2

x1

n1

;
x2

n1

;
n1 � x1 � x2

n1

;
y
n2

� �� ��

;

ð20Þ

where I(0,1)(�) denotes the indicator of the positive real half-line. Evaluation of the triple sum

appearing on the right-hand side of this equation by means of the SAS/IML script we made

available for that purpose is fast enough for keeping execution time within reasonable limits

even for sample sizes exceeding 1,000.

Planning a study under a non-null alternative. Under any alternative ðp�
1
; p�

2
; p�

3
; p�YÞ,

say, for which the assumptions of Proposition 2 are satisfied, an approximate formula for the

sample size required in order to guarantee that the power does not fall short of some prespeci-

fied target value 1 − β, say, is readily obtained. According to that result, the rejection probability

of the test using the critical region defined in (19) under an arbitrary parameter configuration

with Δ> 0 converges toF½za �
ffiffiffiffi
N
p
ðD � εÞ=tlÞ� as N!1 and n1/N! λ. In terms of Δ, our

testing problem is one of one-sided equivalence or, as one would put it in the language of the

methodology of clinical trials, of non-superiority. In the literature on asymptotic testing proce-

dures for non-inferiority problems (cf. [23]), it is recommended to approximate the power of

an asymptotic test with critical region f
ffiffiffiffi
N
p
ðTN � y0Þ=s0 > z1� ag through computing the

probability that the data fall in this region from a normal distribution with variance s2
1

rather

than s2
0
, where s2

1
denotes the limiting variance of

ffiffiffiffi
N
p

TN under the selected alternative θ = θ1

> θ0. Adapting this approach in the straightforward way to the setting we are dealing with and

denoting the distance of ðD
�

f ;D
�

mÞ from zero under the selected alternative by Δ� leads to

POWεðD
�
; l;NÞ � F½ð~tl za �

ffiffiffiffi
N
p
ðD
�
� εÞÞ=tl� : ð21Þ

In this approximate equation, t2
l

has to be computed by evaluating (13)–(15) with

ðp1; p2; p3; pYÞ ¼ ðp
�
1
; p�

2
; p�

3
; p�YÞ, and in order to determine ~t2

l
, the same formulas have to be

applied with some ð~p1; ~p2; ~p3; ~pYÞ such that the corresponding point in the paramter space of

ðD
�

f ;D
�

mÞ lies on the circle of radius ε around the origin. For definiteness, we propose to choose

ð~p1; ~p2; ~p3; ~pYÞ as conjugate to ðp�
1
; p�

2
; p�

3
; p�YÞ, in the sense, that we have ~p1 ¼ p

�
1

and ~p2, ~p3,

~pY are determined through solving the equations D
�

f ð~p; ~pYÞ ¼ ε=
ffiffiffi
2
p
¼ D

�

mð~p; ~pYÞ. The final

step required for transforming (21) into the desired sample size formula consists of specifying

the power 1 − β one wants to attain and solving the equation F½ð~tlza �
ffiffiffiffi
N
p
ðD
�
� εÞÞ=tl� ¼

1 � b for N which yields after a little algebra the expression

N ¼
ð~tlz1� a þ tlz1� bÞ

2

ðD
�
� εÞ2

: ð22Þ
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The case of null alternatives. Despite the often unsatisfactory accuracy provided by for-

mula (22) for sample size planning under non-null alternatives, its derivability from standard

weak convergence results is obvious. In contrast, for the power of the test with critical region

(19) under alternatives under which the true value of Δ is zero, no useful approximation by

means of a simple Gaussian distribution exists. An approach which will turn out to solve the

problem in a very satisfactory way is based on the following concept.

DEFINITION 1. Let Z1. . ., Zk be mutually independent with Zj � N ð0; c2
j Þ where c1 = 1 and cj

denotes an arbitrary positive constant for all j = 2, . . ., k. Then, the distribution of

Q ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

j¼1
Z2

j

q

is called an extended χ-distribution with k degrees of freedom and parameter

c. Its cdf (cumulative distribution function) will be written Qcð�Þ.

Although Qcð�Þ is not a known statistical function for which the packages provide prede-

fined routines (except, of course, for the standard χ-distribution corresponding to the special

case cj = 18j = 1, . . ., k), it is not difficult to find a representation which can serve as a basis for

an easy to implement algorithm for numerical computation. In the special case k = 2 where we

drop the subscript from the only non-unity component of c, we can rely on the following

result.

LEMMA 1. For arbitrarily fixed c> 0 and any q 2 Rþ, there holds

QcðqÞ ¼ 2

Z q

� q
F

1

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � z2

1

p
� �

�ðz1Þdz1 � 2F qð Þ � 1½ �; ð23Þ

with ϕ(�) and F(�) denoting, as usual, the standard normal density and cdf, respectively.

Proof. See S2 Appendix.

The key computational tool being required for working with the distribution function

Qcð�Þ in practice is an efficient procedure for the evaluation of the integral appearing on the

right-hand side of Eq (23). The SAS/IML script we developed for that purpose uses Gauss-

Legendre 96-point quadrature and partitioning of the range of integration into 10 subintervals.

Even when numerical integration is done at that high level of accuracy, the algorithm is still

fast enough to enable also exact computation of the corresponding quantile function Q� 1

c ð�Þ.

The relevance of the distribution function Qcð�Þ for finding an approximation to the power of

our test for goodness of fit to HWE becomes obvious from

PROPOSITION 3. Let PðNÞ
�
ð � Þ denote the joint distribution of (X1, X2, X3, Y) under some fixed

parameter configuration ðp�
1
; p�

2
; p�

3
; p�YÞ with D

�

f ¼ 0 ¼ D
�

m. Then, there holds for every d> 0

PðNÞ
�
½
ffiffiffiffi
N
p

D̂ � d� ! Qsm;l=sf ;l
ðd=sf ;lÞ as N !1: ð24Þ

Proof. From the definition of D̂, it is immediately clear that denoting the Euclidean distance

of any point (z1, z2) in the plane from the origin by q(z1, z2), we can write

ffiffiffiffi
N
p

D̂ ¼ sf ;l qð
ffiffiffiffi
N
p

D̂�f =sf ;l; ðsm;l=sf ;lÞ
ffiffiffiffi
N
p

D̂�m=sm;lÞ : ð25Þ

Furthermore, by Proposition 1, we know that in the case of D
�

G vanishing both for G = f and

G = m, there holds

ð
ffiffiffiffi
N
p

D̂
�

f =sf ;l; ðsm;l=sf ;lÞ
ffiffiffiffi
N
p

D̂�m=sm;lÞ!
L
ðZ1;Z2Þ as N !1 ; ð26Þ

where (Z1, Z2) are as assumed in Definition 1 with k = 2, c2 = σm;λ/σf;λ. Since q(�, �) is continu-

ous, the mapping theorem for weakly convergent sequences of probability measures (see, e.g.,
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[24], p. 379) allows us to conclude from (26) that we also have

qð
ffiffiffiffi
N
p

D̂
�

f =sf ;l; ðsm;l=sf ;lÞ
ffiffiffiffi
N
p

D̂�m=sm;lÞ!
L qðZ1;Z2Þ � Qsm;l=sf ;l

ð�Þ as N !1;

which in view of (25) completes the proof.

The steps to be taken in order to exploit Proposition 3 for approximating the probability of

the event fD̂ þ z1� at̂n1;n2
=
ffiffiffiffi
N
p

< εg under a fixed null alternative ðp�
1
; p�

2
; p�

3
; p�YÞ are analogous

to those which lead from Proposition 2 to the power approximation (21) for the case of non-

null alternatives. First of all, we replace the empirical asymptotic standard error t̂n1 ;n2
of

ffiffiffiffi
N
p

D̂

with ~tl, i.e., the square root of the theoretical asymptotic variance of
ffiffiffiffi
N
p

D̂ computed at a

point ð~p1; ~p2; ~p3; ~pYÞ on the boundary of the equivalence circle in the parameter space of

ðD
�

f ;D
�

mÞ being conjugate to ðp�
1
; p�

2
; p�

3
; p�YÞ in the sense made explicit above (! paragraph

following Eq 19). Making this substitution reduces the problem of power computation against

null alternatives to that of calculating

PðNÞ
�
½
ffiffiffiffi
N
p

D̂ <
ffiffiffiffi
N
p

ε � z1� a~tl� � Qsm;l=sf ;l
ð½
ffiffiffiffi
N
p

ε � z1� a~tl�=sf ;lÞ : ð27Þ

By definition (recall Eq 13), ~t2
l

is a weighted mean of ~s2
f ;l and ~s2

m;l
, with ~s2

f ;l and ~s2
m;l

denot-

ing the asymptotic variance of
ffiffiffiffi
N
p

D̂�G and
ffiffiffiffi
N
p

D̂�m computed by plugging-in ð~p1; ~p; ~p3; ~pYÞ

in (13) and (14), respectively. Preliminary numerical investigations have clearly shown that

the accuracy of the power approximation (27) can be considerably improved through replac-

ing ~t2
l

with maxf~s2
f ;l; ~s

2
m;l
g. Finally, solving the equation Qsm;l=sf ;l

ð½
ffiffiffiffi
N
p

ε �

z1� amaxf~s f ;l; ~sm;lg�=sf ;lÞ ¼ 1 � b for N yields

N ¼
ðz1� amaxf~s f ;l; ~sm;lg þ sf ;lQ

� 1

sm;l=sf ;l
ð1 � bÞÞ

2

ε2

ð28Þ

as the desired null-alternative analogue of (22)

Results

Small-sample properties of the proposed test for goodness of fit

A first basic question to answer is whether the procedure maintains the nominal significance

level when performed with samples of sizes being commonly available in genetic association

studies. The results shown in Tables 1 and 2 give the exact rejection probabilities at a selection

of points in the parameter space lying on the common boundary of the hypotheses we are

interested in. The position of these points in the ðD
�

f ;D
�

mÞ-plane is shown in Fig 2. In the con-

stellations covered by Tables 1 and 2 and many other instances we found no single case of an

anti-conservative behavior. On the other hand, it becomes obvious from the entries in the

table that the convergence of the rejection probability under the null hypothesis of relevant

deviations from HWE to the nominal significance level is comparatively slow. Even for settings

with sample sizes of more than 1000 in both subgroups, the absolute difference by which the

rejection probability under H0 falls below the nominal level of 5% can still be larger than 1%.

In testing for goodness rather than lack of fit of empirical distributions to some probability

model, the specific alternatives of primary interest are usually those satisfying the null hypothe-

sis of the corresponding test for lack of fit. In the present case, under such null alternatives,

there is only a single free parameter left, namely, the common frequency of allele A in females

and males. As becomes obvious from the results shown in Table 3, the power of the proposed

test against null alternatives is highly sensitive to changes in this parameter. For an allele
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Table 1. Exact rejection probabilities of the goodness-of-fit test with critical region (19) at the common boundary of the hypotheses (17). [Nominal significance level

α = 0.05; equivalence margin ε ¼
ffiffiffi
2
p

logð1:4Þ � 0:48].

π1 π2 pyÞ
X

pY D
�

f D
�

m
n1 n2 Rej. Prob.

0.25 0.57897 0.53949 0.45557 0.33647 0.33647 100 100 0.01103

@ @ @ @ @ @ 400 400 0.03505

@ @ @ @ @ @ 400 600 0.03474

@ @ @ @ @ @ 600 400 0.03966

@ @ @ @ @ @ 800 800 0.03972

@ @ @ @ @ @ 1200 1200 0.04164

0.25 0.41402 0.45701 0.37546 −0.33647 0.33647 100 100 0.01381

@ @ @ @ @ @ 400 400 0.03944

@ @ @ @ @ @ 400 600 0.03906

@ @ @ @ @ @ 600 400 0.04352

@ @ @ @ @ @ 800 800 0.04316

@ @ @ @ @ @ 1200 1200 0.04459

0.25 0.57897 0.53949 0.62123 0.33647 −0.33647 100 100 0.01167

@ @ @ @ @ @ 400 400 0.03475

@ @ @ @ @ @ 400 600 0.03432

@ @ @ @ @ @ 600 400 0.03963

@ @ @ @ @ @ 800 800 0.03955

@ @ @ @ @ @ 1200 1200 0.04154

0.25 0.41402 0.45701 0.54093 −0.33647 −0.33647 100 100 0.01289

@ @ @ @ @ @ 400 400 0.03948

@ @ @ @ @ @ 400 600 0.03944

@ @ @ @ @ @ 600 400 0.04356

@ @ @ @ @ @ 800 800 0.04326

@ @ @ @ @ @ 1200 1200 0.04467

0.25 0.51212 0.50606 0.38958 0.04879 0.47334 100 100 0.01634

@ @ @ @ @ @ 400 400 0.04023

@ @ @ @ @ @ 400 600 0.03830

@ @ @ @ @ @ 600 400 0.04380

@ @ @ @ @ @ 800 800 0.04323

@ @ @ @ @ @ 1200 1200 0.04452

0.25 0.60637 0.55319 0.53475 0.47000 0.07432 100 100 0.00912

@ @ @ @ @ @ 400 400 0.03175

@ @ @ @ @ @ 400 600 0.03538

@ @ @ @ @ @ 600 400 0.03145

@ @ @ @ @ @ 800 800 0.03748

@ @ @ @ @ @ 1200 1200 0.03989

0.09 0.52274 0.35137 0.27899 0.33647 0.33647 100 100 0.00702

@ @ @ @ @ @ 400 400 0.03240

@ @ @ @ @ @ 400 600 0.03282

@ @ @ @ @ @ 600 400 0.03705

@ @ @ @ @ @ 800 800 0.03785

@ @ @ @ @ @ 1200 1200 0.04012

0.09 0.32718 0.25359 0.19529 −0.33647 0.33647 100 100 0.00041

@ @ @ @ @ @ 400 400 0.03403

@ @ @ @ @ @ 400 600 0.03509

@ @ @ @ @ @ 600 400 0.03873

(Continued)
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frequency of 50%, 400 observations from each subpopulation are sufficient to increase the

power above 95%. In contrast, for alleles occurring at a frequency of only 10% both in females

and males, the sample size per group must be a bit more than three times as large if one wants

to rule out that the power drops below 75%.

With regard to power, null alternatives are obviously most favorable parameter configura-

tions, and perfect fit of the distributions underlying the data to the model is of course a limiting

case which will hardly occur in reality. Given anything else, it has to be expected that the

Table 1. (Continued)

π1 π2 pyÞ
X

pY D
�

f D
�

m
n1 n2 Rej. Prob.

@ @ @ @ @ @ 800 800 0.04017

@ @ @ @ @ @ 1200 1200 0.04235

†) = π1 + π2/2 [� allele frequency among females]

https://doi.org/10.1371/journal.pone.0212344.t001

Table 2. Exact rejection probabilities of the goodness-of-fit test with critical region (19) at additional points on the common boundary of the hypotheses (17). [Nom-

inal significance level α = 0.05; equivalence margin ε ¼
ffiffiffi
2
p

logð1:4Þ � 0:48].

π1 π2 pyÞ
X

pY D
�

f D
�

m
n1 n2 Rej. Prob.

0.09 0.52274 0.35137 0.43130 0.33647 −0.33647 100 100 0.00941

@ @ @ @ @ @ 400 400 0.03367

@ @ @ @ @ @ 400 600 0.03414

@ @ @ @ @ @ 600 400 0.03765

@ @ @ @ @ @ 800 800 0.03863

@ @ @ @ @ @ 1200 1200 0.04079

0.09 0.32718 0.25359 0.32233 −0.33647 −0.33647 100 100 0.00325

@ @ @ @ @ @ 400 400 0.03639

@ @ @ @ @ @ 400 600 0.03746

@ @ @ @ @ @ 600 400 0.03976

@ @ @ @ @ @ 800 800 0.04140

@ @ @ @ @ @ 1200 1200 0.04326

0.09 0.43445 0.30723 0.21645 0.04879 0.47334 100 100 0.00347

@ @ @ @ @ @ 400 400 0.03657

@ @ @ @ @ @ 400 600 0.03401

@ @ @ @ @ @ 600 400 0.04222

@ @ @ @ @ @ 800 800 0.04137

@ @ @ @ @ @ 1200 1200 0.04012

0.09 0.56438 0.37219 0.35500 0.47000 0.07432 100 100 0.00762

@ @ @ @ @ @ 400 400 0.03177

@ @ @ @ @ @ 400 600 0.03555

@ @ @ @ @ @ 600 400 0.03152

@ @ @ @ @ @ 800 800 0.03759

@ @ @ @ @ @ 1200 1200 0.04003

0.00564 0.18874 0.10001 0.07354 0.33647 0.33647 400 400 0.00726

@ @ @ @ @ @ 800 800 0.02603

@ @ @ @ @ @ 1200 1200 0.03304

@ @ @ @ @ @ 1600 1600 0.03643

†) = π1 + π2/2 [� allele frequency among females]

https://doi.org/10.1371/journal.pone.0212344.t002
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power drops quite rapidly when the point in the parameter plane of ðD
�

f ;D
�

mÞ corresponding

to the specific alternative of interest is shifted from the origin towards the boundary of the

equivalence circle. In order to obtain insight in the speed of this decline in power, we calcu-

lated the exact power of the test at nominal level α = 0.05 attained at 9 equidistant points on

the segment between 0 and ε ¼
ffiffiffi
2
p

logð1:4Þ on the main diagonal for samples of size 800 each.

From the results of these calculations which are shown in Table 4, one can see that increasing

Fig 2. Visualization of the parameter configurations covered by Table 1 as points in the ðD
�

f ;D
�

mÞ-plane.

https://doi.org/10.1371/journal.pone.0212344.g002
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the deviation from perfect HWE by 50% of the equivalence margin set under the alternative

hypothesis to be established decreases the exact power of the proposed test from over 95% to

60.7%.

Illustrating examples

To illustrate our method, we use the same data as Graffelman and Weir [7]. They illustrated

the application of their combined χ2-test for lack of fit of an X-chromosomal SNP to HWE.

The genotype and allele frequencies observed in these examples were extracted from the pub-

licly accessible [25] database of the GENEVA venous thrombosis project, a genomewide asso-

ciation study (GWAS) performed in 2010/11 with the objective to identify genetic variants

associated with venous thromboembolism (VTE). The subjects recruited for the project were

1300 VTE cases and 1300 unrelated controls, frequency-matched on 5 elementary criteria. The

Table 3. Exact power of the goodness-of-fit test with critical region (19) under selected null alternatives. [Nominal significance level α = 0.05; equivalence margin

ε ¼
ffiffiffi
2
p

logð1:4Þ � 0:48].

π1 π2 pyÞ
X

pY D
�

f D
�

m
n1 n2 Rej. Prob.

0.25 0.5 0.5 0.5 0.00 0.00 100 100 0.10239

@ @ @ @ @ @ 400 400 0.95828

@ @ @ @ @ @ 400 600 0.98461

@ @ @ @ @ @ 600 400 0.98224

@ @ @ @ @ @ 800 800 0.99979

@ @ @ @ @ @ 1200 1200 1.00000

0.16 0.48 0.4 0.4 0.00 0.00 100 100 0.09111

@ @ @ @ @ @ 400 400 0.94585

@ @ @ @ @ @ 400 600 0.97755

@ @ @ @ @ @ 600 400 0.97700

@ @ @ @ @ @ 800 800 0.99965

@ @ @ @ @ @ 1200 1200 1.00000

0.09 0.42 0.3 0.3 0.00 0.00 100 100 0.03006

@ @ @ @ @ @ 400 400 0.88172

@ @ @ @ @ @ 400 600 0.93296

@ @ @ @ @ @ 600 400 0.94927

@ @ @ @ @ @ 800 800 0.99818

@ @ @ @ @ @ 1200 1200 0.99998

0.04 0.32 0.2 0.2 0.00 0.00 100 100 0.00008

@ @ @ @ @ @ 400 400 0.62410

@ @ @ @ @ @ 400 600 0.70607

@ @ @ @ @ @ 600 400 0.79884

@ @ @ @ @ @ 800 800 0.96535

@ @ @ @ @ @ 1200 1200 0.99750

0.01 0.18 0.1 0.1 0.00 0.00 100 100 0.00000

@ @ @ @ @ @ 400 400 0.06914

@ @ @ @ @ @ 400 600 0.10738

@ @ @ @ @ @ 600 400 0.18311

@ @ @ @ @ @ 800 800 0.45744

@ @ @ @ @ @ 1200 1200 0.73707

†) = π1 + π2/2 [� allele frequency among females]

https://doi.org/10.1371/journal.pone.0212344.t003
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observed genotype and allele counts obtained in the GENEVA project for four X-chromo-

somal SNPs (indexed here for brevity by integer numbers) analyzed by [7] are the entries in

the left-hand columns of Table 5, which additionally shows the values of the basic estimators

required for carrying out the goodness-of-fit test derived in this paper. Except for rs12010339,

the upper 95% confidence bound to the combined distance measure Δ falls below the proposed

numerical value of the equivalence limit ε to Δ so that 3 out of the 4 SNPs under consideration

pass the check for approximate compatibility with HWE. The only setting for which there is

full coincidence in terms of the qualitative conclusions between our procedure and the lack-

of-fit test proposed by [7] is that of rs5968922: with these data, the latter gives a (2-sided) p-

value of 100% and thus clearly indicates nonexistence of deviations from HWE. In the other

cases, a well-judged synoptic interpretation of the results of both testing procedures requires to

take into account that a small p-value of a test tailored for detecting differences in no way rules

out that an equivalence test carried out with the same data likewise leads to a positive decision.

This follows from the fact that the indifference zone corresponding to the alternative hypothe-

sis of an equivalence problem consists of points which also belong to the alternative to the clas-

sical null hypothesis of perfect coincidence with the model. Thus, there are parameter

constellations under which both tests may have moderate or even high power (In the setting of

Fig 2 this holds true for all interior points of the circular disc with radius ε = 2log(1.4)).

In order to have a broader basis for comparing the new testing procedure with the inverted

traditional χ2-test for lack of fit, we generated by simulation 100,000 samples of varying sizes

consisting of genotype distributions observed at an X-chromosomal SNP in a population with

pre-specified parameters, and computed the rejection rates of both procedures. For the first

half of these simulations, the parameters were chosen as in the 7th horizontal block of Table 1

studying the behavior of the tests under a configuration belonging to the null hypothesis of

Table 4. Exact power of the goodness-of-fit test with critical region (19) and 800 observations per subgroup under alternatives specifying that the true deviation

from HWE is a non-zero fraction of that considered compatible with equivalence. [Nominal significance level α = 0.05; equivalence margin ε ¼
ffiffiffi
2
p

logð1:4Þ � 0:48].

π1 π2 pyÞ
X

pY D
�

f D
�

m
Δ Rej. Prob.

0.04 0.32870 0.20435 0.19893 0.03365 0.03365 0.04758 0.94943

@ 0.33755 0.20878 0.19788 0.06729 0.06729 0.09517 0.91198

@ 0.34656 0.21328 0.19684 0.10094 0.10094 0.14275 0.84553

@ 0.35573 0.21787 0.19580 0.13459 0.13459 0.19034 0.74342

@ 0.36506 0.22253 0.19478 0.16824 0.16824 0.23792 0.60695

@ 0.37453 0.22727 0.19377 0.20188 0.20188 0.28551 0.45004

@ 0.38415 0.23208 0.19276 0.23553 0.23553 0.33309 0.29666

@ 0.39392 0.23696 0.19176 0.26918 0.26918 0.38068 0.17046

@ 0.40382 0.24191 0.19076 0.30283 0.30283 0.42826 0.08390

†) = π1 + π2/2 [� allele frequency among females]

https://doi.org/10.1371/journal.pone.0212344.t004

Table 5. Testing four X-chromosomal SNPs ascertained in the GENEVA project [25] for goodness of fit to HWE. [Nominal significance level α = 0.05; equivalence

margin ε ¼
ffiffiffi
2
p

logð1:4Þ � 0:48; decision = “+”, rejection of the null hypothesis of relevant deviations from HWE. The results for rs12010339 were calculated replacing

both zero entries by 1 and decreasing x1 by 2, in line with common rules for the analysis of sparse contingency tables].

SNP# n1 x1 x2 x3 n2 y D̂ t̂ 2
n1 ;n2

�CD
a;n1 ;n2

Decision

rs6646338 651 230 314 107 604 399 0.2835 13.2641 0.4526 +

rs12010339 @ 651 0 0 605 603 3.9475 157.4547 5.7856 −
rs5935567 @ 231 337 83 605 372 0.1964 8.8719 0.3346 +

rs5968922 @ 275 296 80 604 392 0.0040 12.1492 0.1658 +

https://doi.org/10.1371/journal.pone.0212344.t005
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relevant deviations from HWE. For each individual sample, in the first and second of these

simulation experiments, the number of genotyped subjects was chosen to be for both females

and males 100 and 1200, respectively. The rejection rates obtained with these data are shown

in the upper half of Table 6. The other part of the simulation experiments whose results are

summarized in Table 6, were run to compare both procedures in terms of the power against

null alternatives generating the data under the parameter configuration appearing in the mid-

dle block of Table 3. Not surprisingly, the outcome of comparisons of that kind highly depends

on the sample size: for small sample sizes, inverting the lack-of-fit test in the naive way entails

gross eceedances of the target significance level, whereas in large samples, the same procedure

becomes grossly overconservative. In the latter case, the power falls distinctly below that of the

correct goodness-of-fit test, in the former it provides a strong pseudo-advantage in power.

Another inherent feature of the inverted lack-of-fit test becoming conspicuous from the

entries in Table 6 is that its power against null alternatives, is constant (except for minor devi-

ances due to the large-sample approximations involved) rather than increasing in the sample

sizes. Thus, it is lacking a property to be required of any statistical decision procedure which

merits being called a test of significance.

Sample size calculation for the test for goodness of fit to HWE

The sample sizes shown in Table 7 as entries in Column 2 and 3 from right are obtained by

applying formula (22) to a selection of specific non-null alternatives, again for a nominal sig-

nificance level of 5% and with the equivalence margin ε chosen as proposed in Subsection 2 of

M&M. Comparing the exact power attained with these approximate sample sizes which is

shown in the right-most column of the table, with the target power of 80% reveals that the

accuracy of the approximation is acceptable for settings for which it has to be expected that the

number of male subjects is a multiple of the size of the sample of females. In strongly unbal-

anced cases of the complementary kind, the approximation error becomes much too large for

making formula (22) useful for real applications. Even when n2 has to be much larger than n1,

using (22) for sample size planning of a study where interest is in controlling the power against

a non-null alternative leads to marked underestimation of the exact numbers of subjects.

Evaluation of the accuracy provided by formula (28) was performed along the same lines as

in assessing formula (22): For a selection of null alternatives ðp�
1
; p�

2
; p�

3
; p�YÞ and values of the

proportion λ of females among all subjects to be recruited, the target power was compared

with the exact power attained with the sample sizes required according to the approximation

formula. Overall, the results of these comparisons being shown in Table 8 are distinctly more

satisfactory than those obtained with formula (22) for alternatives which, in terms of the dis-

tance measure Δ, fall in between zero and the equivalence margin ε. Except for the low-power

Table 6. Comparisons between the goodness-of-fit test and the inverted χ2-test in data sets generated by simulation from a population satisfying the null hypothesis

of relevant disequilibrium [upper lines] and being in perfect HWE [lines 3-4], respectively. [Nominal significance level α = 0.05; equivalence margin

ε ¼
ffiffiffi
2
p

logð1:4Þ � 0:48; 100,000 replications per Monte Carlo experiment].

π1 π2 pyÞ
X

pY D
�

f D
�

m
n1 n2 Sim. Rej. Prob. Prop. of concord. dec.

Gof-Test invtd. χ2

0.09 0.52274 0.35137 0.27899 0.33647 0.33647 100 100 0.00696 0.60024 0.40672

@ @ @ @ @ @ 1200 1200 0.03983 0.00000 0.96017

0.09 0.42 0.3 0.3 0.00 0.00 100 100 0.03102 0.95177 0.07925

@ @ @ @ @ @ 1200 1200 0.99996 0.94926 0.94930

†) = π1 + π2/2 [� allele frequency among females]

https://doi.org/10.1371/journal.pone.0212344.t006
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settings with 1 − β = 0.60, which are of limited relevance for real applications, the maximum of

the absolute difference between exact and target power taken over all parameter configurations

covered by the table, is less than 3%. More often than not, the solution obtained by means of

the formula turns out conservative, in the sense of (slightly) overestimating the sample sizes

effectively required.

Discussion

It was demonstrated over a decade ago that autosomal SNPs could be tested for HWE in a way

being logically adapted to the needs of genetic association studies. It has never been explicitly

challenged that this requires to treat goodness rather than lack of fit to the model as the

hypothesis to be established. The equivalence test to be performed for establishing goodness of

fit has been made available both as an exact optimal procedure [15] and an asymptotic proce-

dure being particularly attractive for practitioners for its computational simplicity [17]. Never-

theless, the process of revising the practice of genetic association studies through switching

from lack-of-fit to goodness-of-fit testing in the HWE-related part of preliminary data analysis

has taken place only hesitantly up to now.

The problem of extending HWE testing to X-chromosomal SNPs has been addressed in the

literature only recently, and the authors of the pertinent papers [7, 10, 11, 13] adopt the tradi-

tional perspective treating the statement that the distribution underlying the data satisfies the

model, as the null hypothesis.

As is generally the case in the derivation of equivalence testing methods, we had to start

with making precise the notion of “sufficient closeness” between the true and the HWE-

conforming joint distribution of the genotype frequencies for females and the allele frequency

in the subpopulation of males through defining a suitable distance measure. This was done in

two steps: First, we introduced separate distance measures for the trinomial genotype distribu-

tion among females and the binomial distribution of the count of the allele of interest (denoted

by A) among male subjects. Considering the female subpopulation only, the problem of mea-

suring the amount of disequilibrium is the same as in the case of an autosomal diallelic marker.

In the existing literature on the latter convincing arguments can be found for looking at the

deviation of the relative excess heterozygosity (REH), defined as 1/2 times the frequency of het-

erozygotes over the geometric mean of the population frequencies of both homozygotic

Table 7. Sample-sizes approximated by means of formula (22) and exact power effectively attained with them against selected non-null alternatives of the form con-

sidered in Table 3. [Nominal significance level α = 0.05; target power = 80%; equivalence margin ε ¼
ffiffiffi
2
p

logð1:4Þ � 0:48].

π1 π2 pyÞ
X

pY D
�

f D
�

m
Δ λ n1 n2 POWex

0.25 0.54097 0.52048 0.47846 0.16824 0.16824 0.23792 1

2
485 485 0.69063

@ @ @ @ @ @ @ 1

3
449 898 0.75536

@ @ @ @ @ @ @ 2

3
552 276 0.60427

@ @ @ @ @ @ @ 1

4
436 1308 0.77938

@ @ @ @ @ @ @ 3

4
612 204 0.54963

0.04 0.35573 0.21787 0.19580 0.13459 0.13459 0.19034 1

2
697 697 0.67720

@ @ @ @ @ @ @ 1

3
656 1312 0.73626

@ @ @ @ @ @ @ 2

3
774 387 0.58844

@ @ @ @ @ @ @ 1

4
641 1923 0.75422

@ @ @ @ @ @ @ 3

4
846 282 0.53012

†) = π1 + π2/2 [� allele frequency among females]

https://doi.org/10.1371/journal.pone.0212344.t007
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genotypes, from unity. To avoid technical difficulties entailed with distributional parameters

with bounded range, we replaced REH with its logarithm throughout. Our proposal to mea-

sure the distance between the two binomial distributions involved in terms of the log-odds

ratio between the probabilities of obtaining an A-allele in the corresponding subpopulations

is in line with the general methodology of equivalence testing. The second step to be taken

in order to get a basis for formalizing the notion of approximate compatibility of an X-

chromosomal SNP with HWE consisted of selecting a metric on the parameter space of

(log REH, log OR). The most natural candidates for that purpose are Euclidean and

Chebyshev distance on R2
defined in the usual way, namely by (i) DEUCLððx01; x

0
2
Þ; ðx00

1
; x00

2
ÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx0
1
� x00

1
Þ

2
þ ðx0

2
� x00

2
Þ

2

q

and (ii) DCHEBððx01; x
0
2
Þ; ðx00

1
; x00

2
ÞÞ ¼ max jx0

1
� x00

1
j; jx0

2
� x00

2
j, respec-

tively. Our preference in favor of option (i) has mainly technical reasons: As a function of

ððx0
1
� x00

1
Þ; ðx0

2
� x00

2
ÞÞ, DCHEB fails to be differentiable everywhere, in contrast to DEUCL. Fur-

thermore, when the amount of HWE disequilibrium is measured in terms of the Euclidean dis-

tance of (log REH, log OR) from the origin, only a single equivalence margin is involved in

hypotheses formulation. Replacing Euclidean by Chebyshev distance leads to an equivalence

region in the parameter space of (log REH, log OR) which is of rectangular rather than circular

Table 8. Sample-sizes approximated by means of formula (28) and exact power effectively attained with them against selected alternatives exactly satisfying the

HWE condition. [Nominal significance level α = 0.05; equivalence margin ε ¼
ffiffiffi
2
p

logð1:4Þ � 0:48].

p�
1

p�
2

p�
3

p�Y λ σm;λ/σf;λ 1 − β n1 n2 POWex

0.25 0.50 0.25 0.5 1/2 1.22475 0.60 213 213 0.64299

@ @ @ @ @ @ 0.80 279 279 0.82359

@ @ @ @ @ @ 0.90 338 338 0.91139

@ @ @ @ 1/3 1.00000 0.60 163 326 0.61533

@ @ @ @ @ @ 0.80 214 428 0.80902

@ @ @ @ @ @ 0.90 260 520 0.90585

@ @ @ @ 1/4 0.91287 0.60 157 471 0.64940

@ @ @ @ @ @ 0.80 205 615 0.82969

@ @ @ @ @ @ 0.90 247 741 0.91558

0.09 0.42 0.49 0.3 1/2 1.12250 0.60 264 264 0.61656

@ @ @ @ @ @ 0.80 346 346 0.80669

@ @ @ @ @ @ 0.90 419 419 0.90118

@ @ @ @ 1/3 0.91652 0.60 210 420 0.59908

@ @ @ @ @ @ 0.80 276 552 0.79392

@ @ @ @ @ @ 0.90 335 670 0.89315

@ @ @ @ 1/4 0.83666 0.60 202 606 0.62698

@ @ @ @ @ @ 0.80 265 795 0.80995

@ @ @ @ @ @ 0.90 321 963 0.90049

0.01 0.18 0.81 0.1 1/2 0.73485 0.60 1054 1054 0.65511

@ @ @ @ @ @ 0.80 1375 1375 0.80985

@ @ @ @ @ @ 0.90 1668 1668 0.88892

@ @ @ @ 1/3 0.60000 0.60 986 1972 0.66802

@ @ @ @ @ @ 0.80 1288 2576 0.80764

@ @ @ @ @ @ 0.90 1575 3150 0.88403

@ @ @ @ 1/4 0.54772 0.60 960 2880 0.66463

@ @ @ @ @ @ 0.80 1259 3777 0.80283

@ @ @ @ @ @ 0.90 1547 4641 0.88074

https://doi.org/10.1371/journal.pone.0212344.t008
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shape. This rectangle needs to be neither a square nor centered about the origin so that, in

principle, 4 margins have to be specified numerically which considerably complicates the

process of finding a consensus about how to make the testing problem fully precise. Insisting

nevertheless on testing for equivalence in the sense that there holds � ε0
1
< log REH < ε0

2

and � ε00
1
< logOR < ε00

2
raises a problem for which an asymptotic solution is comparatively

easy to derive exploiting the results of Section 3. The construction of such a test can be carried

out through combining separate tests for equivalence in terms of log REH and log OR by

means of the intersection-union principle. The details of this construction as well as an analysis

of basic properties of the resulting procedure are left to a future publication.

From a technical perspective, the most innovative result of the paper is the derivation of an

approximation to the rejection probability at the boundary of the range of the parameter of

interest of a test based on a statistic shown to be asymptotically normal at any interior point of

the parameter space. The corresponding sample size formula provides reasonable numerical

accuracy and involves as the only non-elementary ingredient the inverse of a distribution func-

tion which can easily computed by means of standard tools of numerical analysis. For the

implementation of the formula, a SAS/IML and a R script are available for download from the

website hosting supporting materials (! S1 Programs).
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