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Abstract: Road segmentation has been one of the leading research areas in the realm of autonomous
driving cars due to the possible benefits autonomous vehicles can offer. Significant reduction of
crashes, greater independence for the people with disabilities, and reduced traffic congestion on
the roads are some of the vivid examples of them. Considering the importance of self-driving cars,
it is vital to develop models that can accurately segment drivable regions of roads. The recent
advances in the area of deep learning have presented effective methods and techniques to tackle
road segmentation tasks effectively. However, the results of most of them are not satisfactory for
implementing them into practice. To tackle this issue, in this paper, we propose a novel model,
dubbed as TA-Unet, that is able to produce quality drivable road region segmentation maps. The
proposed model incorporates a triplet attention module into the encoding stage of the U-Net network
to compute attention weights through the triplet branch structure. Additionally, to overcome the class-
imbalance problem, we experiment on different loss functions, and confirm that using a mixed loss
function leads to a boost in performance. To validate the performance and efficiency of the proposed
method, we adopt the publicly available UAS dataset, and compare its results to the framework of
the dataset and also to four state-of-the-art segmentation models. Extensive experiments demonstrate
that the proposed TA-Unet outperforms baseline methods both in terms of pixel accuracy and mIoU,
with 98.74% and 97.41%, respectively. Finally, the proposed method yields clearer segmentation
maps on different sample sets compared to other baseline methods.

Keywords: U-Net; triplet attention module; TA-Unet; road feasible domain segmentation

1. Introduction

The self-driving car (also known as an autonomous vehicle) has been rapidly devel-
oping around the world. Since a self-driving car can automatically sense and understand
its surroundings, and navigate a vehicle without human intervention, it has led to a grow-
ing number of manufacturers and researchers willing to invest significant efforts in this
research area [1]. Additionally, technology can increase the factor of safe driving, and
therefore reduce or avoid human errors in the driving process. Although self-driving cars
are becoming increasingly important, there is still plenty of room for further development
of related technologies.

It is important for the autonomous vehicles to be aware of their surroundings before
they make a decision [2]. Thus, road segmentation is crucial in self-driving areas, which
relates to recognizing the road conditions. Road segmentation can become extremely
challenging at different times of day and weather conditions. Some recently proposed
computer vision methods based on convolutional neural networks (CNNs) [3–6] can
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efficiently solve the segmentation problem [7–11]. In the realm of self-driving cars, the
PLARD framework addresses the limitations of gaps in space for road detection, and
improves road detection performance [12]. In the RNE-RoadSeg article, a new module,
called surface normal estimator, is introduced, that leads to a boost in performance [13].
These methods are capable of demonstrating superior performance to humans. However,
improved accuracy is gained by expanding the depth of CNNs, which, in turn, increases
the time to train these state-of-the-art models [14–16]. Therefore, those state-of-the-art
networks requiring enormous resources are not suitable for deploying them into practice.
In comparison, U-Net has a great advantage in terms of parameter size, and achieves
quality results in binary segmentation problems [17]. Additionally, inspired by the quality
results of the U-Net model for the biomedical image segmentation task, there has been
an increasing number of new methods that incorporate the U-shaped encoder–decoder
architecture of the U-Net model, along with recently introduced techniques to achieve
improved results in the semantic segmentation research area. Mixer U-Net is a method to
solve automatic road extraction from UAV imagery [18]. Dense U-net employs DenseNet
blocks in place of regular layers to achieve quality results in brain tumor detection tasks [19].
Furthermore, Residual U-net utilizes residual connections within each layer of both encoder
and decoder parts of the network for the retinal vessel segmentation task [20]. Finally,
uncertainty quantification (UQ) methods have been increasingly exploited in the field of
autonomous driving as they play a key role in reducing uncertainty in optimization and
decision-making processes [21,22].

Here, we adopt the U-Net network as a foundation because of its symmetric skip-
connection feature [17]. The advantage of skip-connection is that it combines low-level
feature maps with high-level ones. The spatial information not only can help to improve
the precision of pixel-level location but also can spread and gather context information in
high-level feature maps to low-level. However, the U-Net architecture has the following
two critical problems: firstly, the network structure is too simple, and the result would be in-
accurate in the segmentation process. Secondly, downsampling method in the network, i.e.,
max-pooling operation, collapses the feature map and leads to the loss of edge information.

To increase the complexity of the network and to achieve improved results by doing
so, a growing number of attention modules are being exploited in computer vision research.
In 2018, there was a famous article called Attention U-Net, where the authors added
the attention module to the U-Net architecture [17]. Specifically, the attention gate was
introduced to filter the propagated features through the skip connections before being
concatenated with the mirroring decoder stage input. Adding attention modules into the
traditional CNNs can improve the enhancement of the relevant regions which, in turn,
boosts accuracy. However, this method can also cause a large parameter overhead.

In this paper, we adopt a novel architecture, dubbed TA-Unet, which is based on U-Net
and injects triplet attention mechanism in the encoder layer [23]. The motivation for using
triplet attention for road segmentation is twofold. Firstly, combining the existing framework
and an attention U-Net in a proper way can improve the performance. Furthermore, the
aim of triplet attention is to calculate the attention weights by capturing cross-dimensional
interactions using the triplet branch structure, which makes it effective in road segmentation
scenarios without adding too many parameters. The main contributions of this paper are
summarized as follows:

1. We demonstrate the implementation of triplet attention in a standard U-Net architec-
ture (TA-Unet) and apply it to the drivable road area segmentation task.

2. Compared to the state-of-the-art SGSN model provided by the UAS dataset, our
model has significantly improved the mIoU and the accuracy rate.

3. Compared to the original FCNs (fully convolutional networks) for semantic seg-
mentation, DANet (dual-attention network) for scene segmentation, and Attention
U-Net, we have remarkably reduced parameter size while improving mIoU and
accuracy [7,24].
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The remainder of this paper is organized as follows. In Sections 2 and 3 we introduce
related works and the proposed TA-Unet in detail, respectively. Next, we present the
experiments, results, and discussion in Section 4. Finally, the conclusion and future work
are provided in Section 5.

2. Related Work
2.1. U-Net

U-Net is a classical algorithm for image segmentation using fully convolution net-
works [8]. The network was originally designed for solving problems in biomedical images,
but since the results are good, it has been widely used in various areas of semantic segmen-
tation, such as satellite image segmentation and road segmentation. The salient feature
of U-Net-like networks is the symmetric skip connections which merge low-level feature
maps of the encoder with high-level feature maps of the decoder. The spatial information
that contributes to pixel-level localization accuracy is propagated from the low-level feature
maps and aggregated into high-level contextual information. At each stage of the encoder,
two 3× 3 convolutional layers and ReLu activation function are applied, and then a 2× 2
max-pooling layer is adopted to downsample the formed feature maps [25]. In the decoder
part, the output of the encoder is first upsampled by deconvolution operation, and then
the resulted output is concatenated with the mirroring encoder stage output before being
processed with two 3× 3 convolutional layers and ReLU activation function. Finally, every
time the feature maps are downsampled by the max-pooling operation, some edge features
are bound to be lost, and the lost features cannot be recovered from the upsampling oper-
ation. Therefore, in order to retrieve the lost edge features, a feature stitching method is
exploited in the original U-Net [25].

2.2. Attention U-Net

Attention is widely applied in the task of text recognition of complex scenes, and the
aim is to focus on digits to be recognized. Wei et al. proposed an end-to-end self-driving
network that incorporates a sparse attention module. The model automatically attends
to the most important regions within an image, which leads to the remarkable reduction
in computation, and improves the planner safety [26]. In the Attention U-Net paper, soft
attention is used in a CNN for medical images for the first time, and this module can replace
hard attention in classification tasks and localization modules in organ localization tasks.
The essence of the attention module is to enhance regions of interest while suppressing
certain non-interest regions [27]. Compared to the original U-Net paper, the addition of
attention mechanism can lead to a remarkable improvement in the accuracy rate of image
segmentation. However, this approach results in significant computational overhead, so
we are inspired by the Attention U-Net model, which successfully introduces attention
mechanism into the U-Net network. Specifically, we adopt a novel attention mechanism
which reduces the computational cost while improving the accuracy [28].

2.3. Triplet Attention

Triplet attention is one of the recently proposed methods that compute attention
weights by capturing cross-dimensional interactions through the triplet branch struc-
ture [23]. The traditional technique to calculate channel attention includes first calculating
weights and then using these weights to uniformly scale these feature maps. However,
it is important to note that this approach requires the input tensor to be spatially decom-
posed into a single pixel by global average pooling in order to determine the weights
for these channels. Since there is no interdependence between channel dimension and
spatial dimension upon computing attention on a single pixel channel, it might lead to a
large loss of spatial information [29,30]. Thus, the cross-dimension interaction concept has
been introduced in the triplet attention mechanism, which enables to alleviate the spatial
information loss problem by capturing the interaction between spatial dimension and
input tensor channel dimension. Here, cross-dimensional interactions in triplet attention
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are introduced by capturing the dependencies between the (C, H), (C, W), and (H, W)
dimensions of the input tensor through three branches, individually.

3. TA-Unet

In this section, we first introduce the core unit in triplet attention, and then explain the
architecture of the proposed TA-Unet in detail.

The goal of the attention mechanism is to focus on the key information and discard
other parts within an image. One of the pioneering studies that utilized attention mecha-
nism along with convolution operations was carried out in SENet, and it focuses only on
the attention mechanism of the channel dimension [30]. In the successive CBAM model, the
space and channel dimensions are emphasized, but they are computed separately and are
computationally heavy [29]. However, in the triplet attention, dependencies are established
between dimensions. Specifically, cross-dimension interactions are established through
three branches to capture dependencies between the (C, H), (C, W), and (H, W) dimen-
sions of the input tensor, respectively. It addresses the shortcomings of the previous studies
by capturing the interaction between the spatial dimensions and the channel dimension
of the input tensor with a negligible computational overhead. Figure 1 demonstrates the
flowchart of the proposed triplet attention mechanism.

H

C

W H W

H

C

W H

C

WSigmoid

Identity

Avg

H W

Permutation

Triplet AttentionInput Tensor

Z –pool +  Conv+ Batch Norm

.
C

Sigmoid

Sigmoid

Z –pool +  Conv+ Batch Norm

Z –pool +  Conv+ Batch Norm
.

.

Figure 1. Detailed architecture of the triplet attention mechanism, which calculates attention weights
based on a three-branch structure to capture cross-dimensional interactions. The first branch (green)
computes channel dimension C and spatial dimension W, the second branch (yellow) captures channel
dimension C and spatial dimension H, and the third branch (blue) computes spatial dependencies
between H and W. The final output is an average of the resultant feature maps of the branches.

As the flowchart highlights, the triplet attention mechanism is composed of multiple
parallel branches. The first branch computes attention weights across the channel dimen-
sion C and the spatial dimension W, while the second branch is responsible for C and H,
and the final branch captures spatial dependencies across H and W [23]. The shape of
the resultant outputs of all the branches are the same. In order to obtain the final output
of the triplet attention mechanism, we simply take the average of sum of the individual
branch outputs. Further, in order to calculate the channel attention, we exploit singular
weights, which is considered a lightweight and efficient method. Specifically, the operation
is performed by inputting scalars for each channel in the tensor and then using the singular
weights to scale these feature maps uniformly. In practice, however, these singular weights
are computed by spatially decomposing the input tensor into one pixel per channel via a
global average pooling which leads to a significant loss of spatial information [23]. The
authors of triplet attention have introduced a spatial attention module as a complementary



Sensors 2022, 22, 4438 5 of 13

method to address the attention of individual pixel channels. In fact, spatial attention
focuses on the location in the channel, and channel attention aims to focus on the chan-
nel, allowing interaction between the channel dimension and the spatial dimension, as
expressed by the dependencies between the (C, H), (C, W), and (H, W) dimensions of
the input tensor, respectively. By concatenating the outputs of the average pooling and
max pooling operations in the 0th dimension of the input, Z-pool reduces it to the 2nd
dimension It has the advantage that the layer retains the actual rich tensor and reduces its
depth while being lighter to compute. The following is the mathematical expression of the
Z-pool operation:

Z-pool(X) = [MaxPool0d(T), AvgPool0d(T)] (1)

where T ∈ RC×H×W represents the output of a convolutional layer, and C, H, and W
stand for the channels of the tensor or the numbers of filters, height, and width of the
spatial feature maps, respectively. In addition to that, 0d is the 0th dimension across
which max pooling and average pooling operations are performed. For a tensor of shape
(C×W × H), the Z-pool operation results in a tensor of shape 2×W × H, which retains a
rich representation of the actual tensor, while shrinking its depth.

As the name denotes, triplet attention is composed of three separate branches. For each
branch, the shape of the output is the same as that of the input tensor. Given an input tensor
T ∈ RC×H×W , in the first branch, the input is rotated 90◦ counterclockwise along the H-axis
to make interactions between the height dimension and the channel dimension (H, W),
which results in the shape of the input tensor (W × H × C). Furthermore, the resultant
feature map is passed through the Z-pool to make it a (2× H× C)-shaped tensor. The next
step is to convolve the formed feature map with a standard convolution layer followed by
a batch normalization operation. The result of these operations is an intermediate output
of (1× H × C) dimensions. A sigmoid activation function is performed on the output to
obtain the attention weights. Finally, the resultant output T̂1 is rotated 90◦ clockwise along
the H-axis to keep it consistent with the input shape.

In the second branch, interactions between channel dimension and width dimension
(C, W) are built. The first step is to rotate the W axis 90◦ anticlockwise to obtain the
shape (H × C×W). Then, the resultant output is processed through the Z-pool to form a
(2× C×W) tensor. Similarly, as in the first branch, the output of the Z-pool operation is
convolved through a standard convolution layer following a batch normalization operation
to obtain (1 × C ×W). Subsequently, the obtained attention weights are then passed
through a sigmoid activation layer. Finally, the resultant tensor is rotated 90◦ clockwise
along the W axis to retain the same shape as input T.

Unlike in the previous branches, in the third branch, we do not perform rotation
operation. Z-pool is carried out to reduce channels of the input tensor T into two. The
formed tensor T̂3 is further convolved by a standard convolution layer of kernel size
k × k followed by a batch normalization layer. The resultant output is passed through
a sigmoid activation function, and the output is a tensor of the shape (1× C×W). The
resultant tensors of shape (C× H ×W) of each branch of the module are then aggregated
by averaging.

Given an input tensor T ∈ RH×C×W , the process of attaining a refined feature map S
from the triple attention mechanism can be expressed by the following equation:

S =
1
3
(T̂1σ(ψ1(T̂∗1)) +

1
3
(T̂2σ(ψ2(T̂∗2)) + Tσ(ψ3(T̂3) (2)

where σ represents the sigmoid activation function; ψ1, ψ2, and ψ3 denote the standard
two-dimensional convolutional layers defined by kernel size k× k in all the branches of
triplet attention [23]. Equation (2) can be simplified further as follows:

S =
1
3
(T̂1ω1 + T̂2ω2 + Xω3) =

1
3
(S1 + S2 + S3) (3)
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where ω1, ω2, and ω3 are the three cross-dimensional attention weights computed in triplet
attention. The S1 and S2 in Equation (3) stands for the clockwise rotation operation which
is performed to retain the initial input shape of (C× H ×W).

The TA-Unet is a novel U-shaped framework based on the U-Net architecture. The
model is composed of four encoding and decoding stages, and skip connections that allow
to convey the low-level spatial information of the encoder to high-level layers of the de-
coder (see Figure 2). The only modification that we have introduced into our new TA-Unet
architecture is that we have injected the attention mechanism into the encoder. Specifically,
the triplet attention operation is performed after the first two cascaded convolution opera-
tions of the encoder stages. However, the first stage of the encoder remains unchanged, as
in the original U-Net, as we do not want to focus on the noise too early. Adding attention
mechanism too early would deteriorate the performance of the model. The resolution of the
input image is 640× 368, and the encoder layer, also known as the contracting path, is a se-
ries of operations consisting of convolution, max-pooling, and triplet attention mechanisms.
The encoder layer consists of four blocks, each of which include two convolutions, one
triplet attention, and one max-pooling operation, respectively, except the first block that
does not include the attention mechanism, as mentioned above. The number of channels
of the feature map is multiplied by two after each max-pooling operation. The size of
the feature maps changes as shown in Figure 2, and the final feature map shape of the
encoder is 40× 23× 512. Regarding the decoder layer, also known as expansive path, each
block starts with upsampling the feature maps by two through deconvolution operation
and halving channel size. Next, the resultant output is processed through two cascaded
3× 3 convolutions and ReLU activation function after being concatenated with the output
of the mirroring block of the contracting path. Finally, a 1× 1 convolution operation is
performed to extract the binary segmentation map.

Triplet attention
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1 64
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 ×
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Normalization Skip-connection
Bilinear Upsampling
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Figure 2. Illustration of the proposed TA-Unet. The model receives a sample size of 640 × 368 pixels
as an input. Each blue arrow represents convolution operations with a 3 × 3 convolutional kernel
followed by ReLU nonlinearity and batch normalization, the orange arrows represent triplet attention,
and the red and green arrows stand for max-pooling and upsampling operations, respectively. The
gray arrows connect the output of encoder layers with the input of corresponding decoder layers.
The purple box in the decoder layer is the final segmentation map of the model.

4. Experiments and Discussion

In this section, we first introduce the dataset and metrics exploited in our experiments.
Furthermore, we provide numerical results of our method and compare them to two
previously proposed state-of-the-art methods. Finally, to further validate the efficiency
of our method, we present visual segmentation maps of the proposed method as well
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as baselines on samples that were taken at different times of the day and in varying
weather conditions.

4.1. Datasets

In order to demonstrate the efficiency and the performance of the proposed model,
we adopt the publicly available UESTC ALL-Day Scenery (UAS) dataset provided by the
University of Electronic Science and Technology of China [31]. The dataset consists of
a total of 6380 images taken at varying day times and in varying weather conditions. It
includes 1995 samples taken in the sunshine, 2167 samples taken at night, 819 samples
taken in the rainy condition, and 1399 samples taken at dusk. We name these four sets as
sun set, night set, rain set, and dusk set for the sake of better representation. The resolution
of all images is 640× 360, and we resize them to 640× 368 before feeding into the network.

4.2. Implementation Details

For model optimization, we use the Adam algorithm, and the initial learning rate
is set to 0.0005 [32]. Cross entropy (Equation (4)) is a common loss function used in
segmentation tasks to deal with a binary classification task, which calculates the probability
of belonging to one class or to the other [33]. However, it simply represents the error
for each pixel without giving importance to the particular class that one focuses on. In
our drivable road region segmentation task, the road edge area needs more focus. Thus,
using only one loss function is not enough to attain quality results. The Lovasz–Softmax
loss function (Equation (8)), which is the optimization of the evaluation metric IoU, is
designed specifically for segmentation tasks [34]. In this paper, we adopt a loss function
which is the combination of cross-entropy loss (L(Cross-entropy)) and Lovasz-Softmax loss
(L(Lovasz-So f tmax)) (Equation (10)), and it can be demonstrated as follows:

L(Cross-entropy) = −
1
p

p

∑
i=1

log fi(y∗ i) (4)

fi(c) =
eF

i (c)

∑
f
c ∈ ceF

i (c
i)

, i ∈ [1, p], c ∈ C (5)

ỹi = argmaxFi(c) (6)

Jc(y∗, ỹ) =
|(y∗ = c) ∩ (ỹ = c)|
|((y∗ = c) ∪ (ỹ = c)| (7)

LLovasz-So f tmax = ∆Jc(y∗, ỹ) = 1− Jc(y∗, ỹ) (8)

a + b = 1 (9)

L = aLLovasz-So f tmax + bL(Cross-entropy) (10)

4.3. Evaluation Metrics

For a comprehensive comparison, we adopt three metrics to evaluate the segmentation
models on our dataset, and they are pixel accuracy (Acc), mean intersection of union
(mIoU), and parameter size of models. One of the straightforward ways to measure the
performance of a semantic segmentation model is to calculate the proportion of correctly
classified pixels out of all the pixels in an image, and it is called pixel accuracy. In practice,
we can see both conditions where pixel accuracy is calculated for each class individually, or
for all classes globally at the same time. On the other hand, mIoU, also known as Jaccard
index, highlights the intersection of the predicted segmentation map and the ground truth
divided by the union of them. To obtain the final results of mIoU, we first calculate mIoU
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for each class and then take the mean average of them. The mathematical expressions of
Acc and mIoU are as follows:

Acc =
TP + TN

TP + TN + FP + FN
(11)

mIoU =
TP

TP + FP + FN
(12)

where TP stands for true positive predictions, TN represents true negative predictions, FP
denotes false positive predictions, and FN indicates false negative predictions.

4.4. Results and Analysis

Table 1 compares the mIoU results of our model TA-Unet to the framework proposed
in the UAS dataset paper, titled as SGSN across four image sets, and also all sets together.
As is evident from the table, TA-Unet negligibly improves the mIoU results for the dusk
set, night set, and sun set. A huge improvement was detected in the rain set and also
when all the sets are trained together, where the proposed model achieved 98.03% and
97.41%, respectively, with around 1% improvement from the baseline SGSN framework in
both cases.

Table 1. The mIoU scores of the proposed TA-Unet and SCGN framework on the UAS dataset.

Dataset SGSN TA-Unet

Dusk set 98.04 98.18
Night set 94.01 94.39
Rain set 97.04 98.03
Sun set 97.58 97.85

UAS 96.40 97.41

To further validate the efficiency and performance of the proposed model, we compare
the results to four state-of-the-art deep-learning-based models’ results, i.e., fully convolu-
tional networks for segmentation (FCN), dual-attention network for scene segmentation
(DANet), U-Net, and Attention U-Net. For a fair comparison, all the baselines were trained
using the same training hyperparameters on the same hardware platform. Figure 3 reveals
the learning curves of the proposed model and the baselines during the validation. Specifi-
cally, Figure 3a portrays the pixel accuracy for the models, and Figure 3b highlights the
mIoU results.

(a) Pixel accuracy of different networks (b) mIoU of different networks

Figure 3. Pixel accuracy and mIoU of different networks on the validation set. The x-axis represents
pixel accuracy (PA) and mean IoU in subfigures (a,b), respectively, while the y-axis stands for number
of iterations in both subfigures.
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As can be noted from Figure 3, the proposed model dominates in terms of both pixel
accuracy and mIoU metrics. TA-Unet starts from over 97% and 94% pixel accuracy and
mIoU, respectively, and hits the 98% and 96% benchmark score after 1000 iterations. The
final pixel accuracy and mIoU scores of TA-Unet are 98.74% and 97.41%, respectively (see
Table 2). Among the baselines, DANet yields the most promising results on the exploited
dataset. Among all models, U-Net experiences slower convergence, starting from 92%
and 86% pixel accuracy and mIoU, respectively. However, at the end of the training,
the results of U-Net level off with Attention U-Net in terms of mIoU and shrink the gap
in the pixel accuracy score up to less than 1%. Although FCN and DANet networks
performed well in the beginning of the training process, TA-Unet outperformed them as
the iteration progressed.

Table 2. Quantitative results.

Method Accuracy mIoU Parameters

FCN 98.32 96.50 97.25 M
U-Net 97.46 95.97 13.40 M
DANet 98.68 97.20 47.51 M

Attention U-Net 98.01 96.04 34.89 M
TA-Unet 98.74 97.40 31.05 M

As is mentioned above, the UAS dataset suffers from a class-imbalance problem.
Nowadays, class-imbalanced image segmentation is a very hot topic in the research, and
adopting more than one loss function is one of the common solutions to overcome the
problem. The positive effect of mix loss function on performance has been successfully
proven in several papers [35,36]. With the same aim, we adopt mix loss function on the
backbone of TA-Unet, and compare its results with the model trained on a single loss
function, as shown in Table 3. The results confirm that the mix loss function boosts the
performance of the model in terms of both pixel accuracy and mean intersection over union.

Table 3. Performance of TA-Unet when trained on different loss functions.

Cross-Entropy Loss
Function

Lovasz-Softmax Loss
Function Mixed Loss Function

acc 98.66 98.68 98.74
mIoU 97.29 97.30 97.41

The results of extensive experiments conducted by us demonstrate that the TA-Unet
demonstrates consistently better performance than the baselines. Additionally, Figure 4
highlights some of the road segmentation results of all methods at different day times and
under varying weather conditions. As is visible from the figures, the proposed method
yields clearer segmentation maps compared to other methods.
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Figure 4. Road segmentation results of different methods in different conditions.
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5. Conclusions

In this work, we have proposed a novel architecture, dubbed TA-Unet, which incorpo-
rates triplet attention mechanism into the U-Net-like architecture to effectively extract road
segmentation maps. Specifically, we placed the attention mechanism after the convolution
operations at each stage of the encoder model to preprocess the output feature maps of each
stage before concatenating them with the mirroring decoder stage inputs. Triplet attention
is a powerful attention module which captures important features across dimensions and
is calculated through channel attention and spatial attention. To validate the efficiency and
the performance of the proposed model, we adopted the UAS dataset that includes images
captured at varying times of the day and in varying weather conditions. The extensive
experiments demonstrate that the proposed model outperforms baseline networks in terms
of metrics such as pixel accuracy and mean intersection over union. On top of that, TA-
Unet produces relatively clearer segmentation maps under different weather conditions.
Furthermore, adopting mix loss functions can lead to a boost in the performance.

Although the parameter size of the network is smaller than the baselines, it is still
computationally expensive for real-time segmentation. We believe that there is still a lot of
room for improvement in terms of inference time speed and accuracy. In the future, we
intend to continue our research in the following aspects: 1. Utilizing datasets of complex
environments, such as curves under complex road conditions, road conditions during
snowy days, etc., in order to improve the learning ability of the network in complex
environments. 2. Scene expansion. The dataset exploited in this paper includes images
captured in urban road sections. In the future, we will work on datasets that include
samples taken in rural road sections, mountainous roads, etc., which can simulate more
realistic environments. 3. Designing lightweight networks for real-time segmentation.

Author Contributions: Data curation, F.S. and M.S.; Formal analysis, S.K.; Investigation, J.-H.P.;
Methodology, S.L.; Project administration, C.Y.; Supervision, J.-M.K.; Writing—original draft, S.L.;
Writing—review & editing, Q.Y. and Y.B. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was supported by the Korea Agency for Infrastructure Technology Ad-
vancement (KAIA) funded by the Ministry of Land, Infrastructure and Transport under Grant
22QPWO-C158103-03.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not application.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ziegler, J.; Bender, P.; Schreiber, M.; Lategahn, H.; Strauss, T.; Stiller, C.; Dang, T.; Franke, U.; Appenrodt, N.; Keller, C.G.; et al.

Making bertha drive—An autonomous journey on a historic route. IEEE Intell. Transp. Syst. Mag. 2014, 6, 8–20. [CrossRef]
2. Ha, Q.; Watanabe, K.; Karasawa, T.; Ushiku, Y.; Harada, T. MFNet: Towards real-time semantic segmentation for autonomous

vehicles with multi-spectral scenes. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 5108–5115.

3. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [CrossRef]
4. Felzenszwalb, P.F.; Huttenlocher, D.P. Efficient graph-based image segmentation. Int. J. Comput. Vis. 2004, 59, 167–181. [CrossRef]
5. Batra, D.; Kowdle, A.; Parikh, D.; Luo, J.; Chen, T. icoseg: Interactive co-segmentation wit intelligent scribble guidance.

In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA,
USA, 13–18 June 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 3169–3176.

6. Peng, J.; Shen, J.; Li, X. High-order energies for stereo segmentation. IEEE Trans. Cybern. 2015, 46, 1616–1627. [CrossRef]
[PubMed]

7. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

8. Liu, W.; Rabinovich, A.; Berg, A.C. Parsenet: Looking wider to see better. arXiv 2015, arXiv:1506.04579.

http://doi.org/10.1109/MITS.2014.2306552
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1023/B:VISI.0000022288.19776.77
http://dx.doi.org/10.1109/TCYB.2015.2453091
http://www.ncbi.nlm.nih.gov/pubmed/26208377


Sensors 2022, 22, 4438 12 of 13

9. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [CrossRef] [PubMed]

10. Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134.

11. Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks.
In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232.

12. Chen, Z.; Zhang, J.; Tao, D. Progressive lidar adaptation for road detection. IEEE/CAA J. Autom. Sin. 2019, 6, 693–702. [CrossRef]
13. Fan, R.; Wang, H.; Cai, P.; Liu, M. Sne-roadseg: Incorporating surface normal information into semantic segmentation for accurate

freespace detection. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2020; pp. 340–356.
14. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
15. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
16. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

17. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241.

18. Sultonov, F.; Park, J.H.; Yun, S.; Lim, D.W.; Kang, J.M. Mixer U-Net: An Improved Automatic Road Extraction from UAV Imagery.
Appl. Sci. 2022, 12, 1953. [CrossRef]

19. Wang, C.; Zhao, Z.; Ren, Q.; Xu, Y.; Yu, Y. Dense U-net based on patch-based learning for retinal vessel segmentation. Entropy
2019, 21, 168. [CrossRef] [PubMed]

20. Li, D.; Dharmawan, D.A.; Ng, B.P.; Rahardja, S. Residual u-net for retinal vessel segmentation. In Proceedings of the 2019 IEEE
International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; IEEE: Piscataway, NJ, USA, 2019;
pp. 1425–1429.

21. Michelmore, R.; Wicker, M.; Laurenti, L.; Cardelli, L.; Gal, Y.; Kwiatkowska, M. Uncertainty quantification with statistical
guarantees in end-to-end autonomous driving control. In Proceedings of the 2020 IEEE International Conference on Robotics and
Automation (ICRA), Paris, France, 31 May–31 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 7344–7350.

22. Abdar, M.; Fahami, M.A.; Rundo, L.; Radeva, P.; Frangi, A.; Acharya, U.R.; Khosravi, A.; Lam, H.; Jung, A.; Nahavandi, S. Hercules:
Deep Hierarchical Attentive Multi-Level Fusion Model with Uncertainty Quantification for Medical Image Classification. IEEE
Trans. Ind. Inform. 2022. [CrossRef]

23. Misra, D.; Nalamada, T.; Arasanipalai, A.U.; Hou, Q. Rotate to attend: Convolutional triplet attention module. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision, Virtual, 5–9 January 2021; pp. 3139–3148.

24. Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019; pp. 3146–3154.

25. Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011; pp. 315–323.

26. Wei, B.; Ren, M.; Zeng, W.; Liang, M.; Yang, B.; Urtasun, R. Perceive, Attend, and Drive: Learning Spatial Attention for Safe
Self-Driving. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30
May–5 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 4875–4881.

27. Schlemper, J.; Oktay, O.; Schaap, M.; Heinrich, M.; Kainz, B.; Glocker, B.; Rueckert, D. Attention gated networks: Learning to
leverage salient regions in medical images. Med. Image Anal. 2019, 53, 197–207. [CrossRef] [PubMed]

28. Yeung, M.; Sala, E.; Schönlieb, C.B.; Rundo, L. Focus U-Net: A novel dual attention-gated CNN for polyp segmentation during
colonoscopy. Comput. Biol. Med. 2021, 137, 104815. [CrossRef] [PubMed]

29. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

30. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141.

31. Zhang, Y.; Chen, H.; He, Y.; Ye, M.; Cai, X.; Zhang, D. Road segmentation for all-day outdoor robot navigation. Neurocomputing
2018, 314, 316–325. [CrossRef]

32. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
33. De Boer, P.T.; Kroese, D.P.; Mannor, S.; Rubinstein, R.Y. A tutorial on the cross-entropy method. Ann. Oper. Res. 2005, 134, 19–67.

[CrossRef]
34. Berman, M.; Triki, A.R.; Blaschko, M.B. The lovász-softmax loss: A tractable surrogate for the optimization of the intersection-

over-union measure in neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–22 June 2018; pp. 4413–4421.

http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://www.ncbi.nlm.nih.gov/pubmed/28463186
http://dx.doi.org/10.1109/JAS.2019.1911459
http://dx.doi.org/10.3390/app12041953
http://dx.doi.org/10.3390/e21020168
http://www.ncbi.nlm.nih.gov/pubmed/33266884
http://dx.doi.org/10.1109/TII.2022.3168887
http://dx.doi.org/10.1016/j.media.2019.01.012
http://www.ncbi.nlm.nih.gov/pubmed/30802813
http://dx.doi.org/10.1016/j.compbiomed.2021.104815
http://www.ncbi.nlm.nih.gov/pubmed/34507156
http://dx.doi.org/10.1016/j.neucom.2018.06.059
http://dx.doi.org/10.1007/s10479-005-5724-z


Sensors 2022, 22, 4438 13 of 13

35. Yeung, M.; Sala, E.; Schönlieb, C.B.; Rundo, L. Unified focal loss: Generalising dice and cross entropy-based losses to handle class
imbalanced medical image segmentation. Comput. Med. Imaging Graph. 2022, 95, 102026. [CrossRef] [PubMed]

36. Ma, J.; Chen, J.; Ng, M.; Huang, R.; Li, Y.; Li, C.; Yang, X.; Martel, A.L. Loss odyssey in medical image segmentation. Med. Image
Anal. 2021, 71, 102035. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.compmedimag.2021.102026
http://www.ncbi.nlm.nih.gov/pubmed/34953431
http://dx.doi.org/10.1016/j.media.2021.102035
http://www.ncbi.nlm.nih.gov/pubmed/33813286

	Introduction
	Related Work
	U-Net
	Attention U-Net
	Triplet Attention

	TA-Unet
	Experiments and Discussion
	Datasets
	Implementation Details
	Evaluation Metrics
	Results and Analysis

	Conclusions
	References

