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Analytical approximations for spatial
stochastic gene expression in single
cells and tissues

Stephen Smith, Claudia Cianci and Ramon Grima

School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK

Gene expression occurs in an environment in which both stochastic and diffu-

sive effects are significant. Spatial stochastic simulations are computationally

expensive compared with their deterministic counterparts, and hence little is

currently known of the significance of intrinsic noise in a spatial setting. Start-

ing from the reaction–diffusion master equation (RDME) describing stochastic

reaction–diffusion processes, we here derive expressions for the approximate

steady-state mean concentrations which are explicit functions of the dimen-

sionality of space, rate constants and diffusion coefficients. The expressions

have a simple closed form when the system consists of one effective species.

These formulae show that, even for spatially homogeneous systems, mean

concentrations can depend on diffusion coefficients: this contradicts the pre-

dictions of deterministic reaction–diffusion processes, thus highlighting the

importance of intrinsic noise. We confirm our theory by comparison with

stochastic simulations, using the RDME and Brownian dynamics, of two

models of stochastic and spatial gene expression in single cells and tissues.
1. Introduction
The biochemical processes of transcription and translation involve species which

exist in very low concentrations [1–5]. In these cases, intrinsic noise does not

average out, and hence stochastic effects are important [6–9]. Although these

effects are highly significant to cell physiology, they cannot be described by the

well-known rate equations (REs) which are generally accurate in vitro. Mathemat-

ical modelling of these systems has correspondingly changed its focus towards

more detailed non-spatial stochastic approaches based on the chemical master

equation (CME) [10–13]. However, these approaches implicitly assume fast diffu-

sion, whereas experiments show that intracellular diffusion of molecules can be

slow compared with in vitro [14] and thus limit the rates of many biochemical

reactions. The importance of such effects has been recently demonstrated in a

theoretical study of the response of an MAPK pathway [15]. Mathematical mod-

elling of stochastic chemical systems incorporating spatial effects remains in its

infancy, and little is known in comparison with stochastic systems which are

well mixed. The slow development of this area can be explained by the stark

difference in computational complexity between stochastic simulation algorithms

(SSA) for the CME, such as the Gillespie algorithm [16–18], which models only

the total number of molecules in a compartment, and the corresponding spatial

algorithms such as Brownian dynamics (BD) [19], which additionally explicitly

model particle positions over time. Furthermore, the lack of an exact equivalent

of the CME for spatial stochastic systems has made analytical approaches to

diffusion generally intractable.

Here, we attempt to resolve this problem by analytically studying the reaction–

diffusion master equation (RDME), an approximate description of stochastic

reaction–diffusion processes [20–22]. Specifically, space is divided into a lattice

of small subcompartments or ‘voxels’. Chemical reactions occur in each voxel,

and diffusion occurs between neighbouring voxels. The master equation
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Figure 1. An illustration of how the CME and RDME approximate the under-
lying BD process. (b) BD consists of a set of particles with fixed radii (red circles)
performing a random walk (dotted tails) in continuous space. Particles react
with a given probability when their radii are overlapping. (a) The CME loses
all spatial resolution and models only the total number of molecules n, in
this case n ¼ 28. The faded particles illustrate only that the CME models
an underlying spatial process (BD), even though the CME itself does not
consider particles in space. (c) The RDME achieves coarse-grained spatial resol-
ution by introducing a spatial grid, in this case a 5 � 5 grid. Inside each grid
square (voxel), only the total number of particles is modelled (analogously to
the CME), whereas the detailed location of particles inside voxels is ignored.
Bimolecular reactions can happen only if a voxel contains at least two reacting
particles. Diffusion occurs by particles hopping between neighbouring voxels.
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describing these processes is called the RDME. The RDME

has been shown to be a good approximation to the continuum

formulation of BD for specific ranges of lattice spacing and

diffusion coefficients [21], though it has also been shown

that incorrect choice of lattice spacing can lead to inaccurate

results [23]. Because it provides coarse-grained information

about particle positions, the RDME is a trade-off between the

simplicity of the CME and the fine-grained accuracy of BD.

The RDME is also an appropriate description of the dynamics

of a tissue of intercommunicating cells when each cell is under

well-mixed conditions.

Our approach to analytically studying the RDME is based

on a recently developed technique known as effective meso-

scopic rate equations (EMREs) [24]. This technique has been

used to obtain approximate formulae for mean molecule

numbers in CME models. In particular, these formulae have

been shown to accurately capture the differences between the

mean protein numbers calculated using the CME and the RE

[13,25]. We here adapt and apply the EMRE approach to the

RDME of a general biochemical system and thereby derive

spatial effective mesoscopic rate equations (sEMREs). The

sEMRE is a general method that approximates the mean con-

centrations of chemical species in a reaction–diffusion system.

In the special case of systems with a single chemical species,

we can obtain closed-form expressions for the sEMRE which

are useful for investigating the dependence of mean concen-

trations on diffusion rates. We subsequently apply our novel

theory to obtain closed-form expressions for the approximate

steady-state protein mean concentrations in two models of

spatial gene expression in single cells and in tissues, as well as

an example that further models the effect of molecular crowd-

ing. These expressions show a dependence on the diffusion

coefficients which is not captured by the classical deterministic

reaction–diffusion theory. We test our formulae against RDME

and BD simulations and show good agreement over a range of

diffusion coefficients.
2. Approximate equations for mean
concentrations of non-spatial chemical
systems

2.1. Rate equations
In this section, we briefly review the deterministic RE approach

which consists of a set of coupled ODEs whose solution

approximates the time evolution of the mean concentrations

of the CME, and which is valid in the limit of large molecule

numbers. The relationship between the CME and BD is

illustrated in figure 1. We describe the approach on a generic

system of reactions, as follows. Consider a system of M chemi-

cal species involved in R reactions, where the jth reaction has

the form

s1jX1 þ � � � þ sMjXM�!
kj

r1jX1 þ � � � þ rMjXM: ð2:1Þ

Here, Xi denotes the chemical species, sij and rij are the

integer stoichiometric coefficients and kj is the reaction rate

constant for reaction j. The CME for this system is defined by

the following equation:

d

dt
Pðn, tÞ ¼

XR

j¼1

YM
i¼1

Esij�rij

i � 1

 !
f̂jðn,VÞPðn, tÞ, ð2:2Þ
whereV is the volume in which the reactions occur, n ¼ (n1, . . . ,

nM) is a vector of the number of molecules of X1, . . . ,XM,
respectively; P(n, t) is the probability of finding the system

with n copies of each species at time t, Ex
i is an operator

which replaces ni with ni þ x, and f̂jðn,VÞ is the microscopic

propensity function of reaction j, which takes the form

f̂jðn,VÞ ¼ kjV
QM

i¼1 V
�sij ni!=ðni � sijÞ! under mass-action kin-

etics. The mean number of molecules of Xi at time t is given

by the usual expected value

knil ¼
X1
n1¼0

. . .
X1

nM¼0

niPðn, tÞ: ð2:3Þ

While equation (2.3) can theoretically be combined with

equation (2.2) to obtain ODEs for knil, the resulting equations

cannot, in general, be solved exactly, and moment-closure

techniques must be used [26]. Alternatively, it can be shown

that a large volume expansion of the CME leads to the result

knl
V
¼ fþ kelffiffiffiffi

V
p , ð2:4Þ

where f ¼ (f1, . . . ,fM)T is a vector of deterministic concen-

trations of species X1, . . . , XM, respectively, e ¼ ðe1, . . . , eMÞ
is a continuous random vector [27] of fluctuations about the

deterministic concentration and k � l denotes expected value.

The vector of deterministic concentrations f is the solution of

the well-known rate equations

d

dt
f ¼ Sf ðfÞ, ð2:5Þ

where f ¼ðf1, . . . , fRÞT is the macroscopic rate vector, and fj is

the macroscopic reaction rate of reaction j, which takes the

form fjðfÞ ¼ kjf
s1j

1 . . .f
sMj

M under mass-action kinetics. Other

forms of reaction rates exist such as Hill-type and Michaelis–

Menten (MM), and we discuss such an example in §5. Note

that S is the stoichiometric matrix with entries Sij ¼ rij � sij:

It has been shown that kel ¼ 0 for systems with at most

first-order reactions (
PM

i¼1 sij � 1 8j) [28] and for a subset

of reversible systems (including those with bimolecular reac-

tions) in detailed balance [29]. It follows that the RE solution
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f is exactly equal to the mean concentrations knl=V for

these systems. For other systems, keil = 0 and so estimat-

ing the expected value is essential to computing accurate

mean concentrations.
 lsocietypublishing.org
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2.2. Effective mesoscopic rate equations
The first-order approximation to kel is given by a set of ODEs

called EMREs (originally derived in [24]). The time-evolution

equation for kel is

d

dt
kel ¼ Jkelþ 1ffiffiffiffi

V
p D, ð2:6Þ

where J ¼ Sð@f ðfÞ=@fÞ is the Jacobian of the deterministic

REs, and D [ RM is a vector whose ith element is defined as

Di ¼
1

2

XM
j; k¼1

@Jij

@fk
kejekl�

XM
j¼1

fj
@Jij

@fj

0
@

1
A: ð2:7Þ

The covariance kejekl can be computed as the ( j, k)th element of

the matrix C [ RM�M which solves the Lyapunov equation

d

dt
C ¼ JCþ CJT þD, ð2:8Þ

where D ¼ Sdiag(f ðfÞ)ST is the diffusion matrix. Note that the

covariance of fluctuations in molecule numbers of two species

Xi and Xj is Vkeiejl: Hence, the estimate of the mean concen-

tration using the EMRE takes into account, via the vector D,

the coupling between the mean and the covariance of fluctu-

ations. Note that the vector D is only non-zero if the Hessian

of the REs is non-zero and hence a necessary (but not sufficient)

condition for e to be non-zero is that the system is composed of

at least one reaction with a nonlinear reaction law, such as a

bimolecular reaction. Note that equation (2.7) is only valid

for a system of elementary reactions (input, unimolecular and

bimolecular); a generalization to the case where some of the

reactions are non-elementary can be found in appendix C.

The EMRE itself is a time-evolution equation for the

approximate mean concentrations c, which is defined as

c ¼ fþ kel=
ffiffiffiffi
V
p

: The defining equation for c is obtained

by substituting equation (2.4) into equation (2.6)

d

dt
c ¼ d

dt
fþ Jðc�fÞ þ 1

V
D: ð2:9Þ

In steady state, all time derivatives are zero, so we recover the

simpler equations for the EMRE

c ¼ f� 1

V
J�1D, ð2:10Þ

and the steady-state Lyapunov equation

JCþ CJT þD ¼ 0: ð2:11Þ

For a system consisting of only one chemical species X, the

EMRE simplifies dramatically. The reaction system can be

written as

sjX�!
kj

rjX, ð2:12Þ

for j ¼ 1, . . . , R, for stoichiometric coefficients sj and rj. The

stoichiometric matrix S will, in this case, be a stoichiometric

vector with entries Sj ¼ rj 2 sj, and the mass-action rate

vector f [ RR will have elements defined as fjðfÞ ¼ kjf
sj ,

where f is now the steady-state deterministic concentration

of X.
Because this is a single-species system, the Jacobian and

diffusion matrices will simply be real numbers, J ¼ a and

D ¼ b respectively. These are defined as

a ¼ S
@f ðfÞ
@f

¼
XR

j¼1

kjsjðrj � sjÞfsj�1 and

b ¼ Sdiag(f ðfÞ)ST ¼
XR

j¼1

kjðrj � sjÞ2fsj : ð2:13Þ

Note that stable systems must have a , 0, because a is

the eigenvalue of the Jacobian, whereas b � 0 is guaranteed

by its definition. The matrix of covariances, C, is now simply

a real number corresponding to ke2l and its value can

be found by solving equation (2.11) to find ke2l ¼ �b=ð2aÞ:
Similarly, the vector D is now a scalar defined as

D ¼ ð1=2Þð@a=@fÞ(ke2l� f): The single-species EMRE in

steady-state conditions is therefore given by inserting these

values into equation (2.10)

c ¼ fþ b

2a
þ f

� �
1

2Va

@a

@f
: ð2:14Þ

Note that the EMRE solution is given by a sum of the RE sol-

ution f and a correction which is inversely proportional to

the system size V. This result can be shown to be accurate

to order V21; higher-order corrections can also be calculated

using the system-size expansion and have been done [30],

but we shall not consider them here.
3. Approximate equations for mean
concentrations of spatial chemical systems

3.1. Spatial rate equations
Just as the REs provide a deterministic approximation of the

CME, one can write spatial REs which are a deterministic

approximation of the RDME. To provide spatial resolution,

the RDME divides space into compartments called ‘voxels’

and uses a CME-like model for each voxel. The relationship

between the CME, the RDME and BD is illustrated in

figure 1. In this paper, we will consider a two-dimensional

N � N grid in a space of size V, where each voxel has an area

V/N2. One- and three-dimensional descriptions are also pos-

sible, and formulae for these are given in appendix

A. For each of our M species, Xi, we now refer to N2 distinct

species XðkÞi , k ¼ 1, . . . , N2, where each corresponds to Xi in

a different voxel. In each voxel k, the system undergoes R
distinct reactions

s1jX
ðkÞ
1 þ � � � þ sMjX

ðkÞ
M �!

kj
r1jX

ðkÞ
1 þ � � � þ rMjX

ðkÞ
M , j ¼ 1, . . . , R:

ð3:1Þ

We furthermore have a set of diffusion events, which are mod-

elled as particles hopping between neighbouring voxels.

For each voxel k, we can define a set Ne(k) as the set of voxels

neighbouring voxel k. The diffusion events are therefore

given by the following ‘reactions’:

XðkÞi �!
kðiÞD Xðk

0Þ
i , i ¼ 1, . . . , M, k0 [ NeðkÞ: ð3:2Þ

Let nðkÞi be the number of copies of XðkÞi , and let nðkÞ ¼
ðnðkÞ1 , . . . , nðkÞM Þ

T: Then, analogous to the CME in equation
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(2.2), we can write the RDME

d

dt
Pðnð1Þ, . . . , nðN

2Þ, tÞ ¼
XN2

k¼1

XR

j¼1

YM
i¼1

Esij�rij

i,k � 1

 !

� f̂ j nðkÞ,
V

N2

� �
Pðnð1Þ, . . . , nðN

2Þ, tÞ

þ
XN2

k¼1

X
k0[NeðkÞ

XM
i¼1

(E1
i,kE�1

i,k0 � 1)kðiÞD nðkÞi

� Pðnð1Þ, . . . , nðN
2Þ, tÞ,

ð3:3Þ

where Ex
i,k is the operator which replaces nðkÞi with nðkÞi þ x,

f̂jðnðkÞ, V=N2Þ is the microscopic rate of reaction j, and

Pðnð1Þ, . . . , nðN
2Þ, tÞ is the probability that the system is in the

given state at time t. The first line of equation (3.3) describes

the reaction system (3.1), whereas the second line describes

the diffusion system (3.2). Just as in equation (2.3), we can

again write the mean number of XðkÞi molecules as

knðkÞi l ¼
XM
r¼1

XN2

j¼1

nðkÞi Pðnð1Þ, . . . , nðN
2Þ, tÞ: ð3:4Þ

As in §2.1, this equation cannot be solved so instead we revert

to the van Kampen ansatz

knðkÞi l
V=N2

¼ f
ðkÞ
i þ

V

N2

� ��1=2

keðkÞi l, ð3:5Þ

where f
ðkÞ
i is the deterministic concentration of XðkÞi , and e

ðkÞ
i

is the corresponding continuous random variable denoting

fluctuations about the deterministic concentrations. Because

there are N2 voxels in our system, each with four neigh-

bours, the system in total consists of N2R reactions and

4 MN2 diffusion events. The vector of concentrations is

f ¼ ðfð1Þ1 , . . . ,f
ðN2Þ
M Þ, the macroscopic reaction rate vector

is f ðfÞ [ RN2ðRþ4MÞ and the stoichiometric matrix has dimen-

sions MN2 � N2(R þ 4 M). The spatial REs are then defined by

d

dt
f ¼ Sf ðfÞ, ð3:6Þ

which is the spatial equivalent of equation (2.5). Note that the

spatial REs are equivalent to a finite-element method for solving

the well-known partial differential equations (PDEs) describing

deterministic reaction–diffusion processes in continuum space.

In the continuum limit of N ! 1, these spatial REs, therefore,

become equivalent to the reaction–diffusion PDEs themselves.

Note that the spatial REs are obtained from the RDME in the

limit of large molecule numbers in each voxel. One way to

obtain this limit is to consider the voxel size V/N2 tending to

infinity while keeping concentrations constant, as can be seen

from equation (3.5) (though other limits are plausible). Note,

however (as we shall discuss in §4), that the choice of N is fun-

damental to the accuracy of the RDME: it should take an

intermediate value that is large enough to model diffusion

well, and small enough to model reactions well [23]. It follows

that the spatial RE (and consequently the reaction–diffusion

PDEs) have the same limitation.

Note that, in non-equilibrium conditions, the solution of the

spatial REs for a single-species system is affected by diffusion.

However, in steady-state conditions, provided the rate constants

and diffusion coefficients are the same in each voxel, the RE

solution is constant across space and precisely the same as

the solution of the RE described earlier, thus implying no
dependence on the diffusion coefficient. For the reaction–

diffusion PDEs of a multi-species system, the effect of diffusion

is given by a Laplacian operator applied to the concentrations.

Because the Laplacian of a spatially homogeneous concen-

tration is zero, it follows that the solution of the PDEs has no

dependence on diffusion coefficients.

As we shall now see, just as the EMRE provides a more

accurate estimate of the CME mean concentrations than

the REs, so does a spatial version of the EMRE provide

more accurate estimate of the means of the RDME than the

spatial REs.
3.2. Spatial effective mesoscopic rate equation
for single-species systems

This section presents the main result of this paper, namely the

derivation of an approximate equation for the mean concen-

trations of a single-species system starting from the stochastic

spatial description of the RDME. We consider the same set-

up as considered for the spatial RE but for a single-species

system, i.e. with M ¼ 1, namely we have an effective system

of N2 species and N2(R þ 4) reactions which describe reaction

and diffusion of a single species in two dimensions. We con-

sider a single-species system, because analytical expressions

can be obtained. A general derivation for multi-species

systems can be found in appendix F, but such systems are

analytically intractable and numerical methods must be

used. We shall call the EMRE approximation applied to this

system, the spatial EMRE (sEMRE). We shall also enforce

the condition of spatial symmetry, introduced earlier.

By analogy with the EMRE approach, we need to first

determine the S, J and D matrices for the spatial REs before

we can obtain the sEMRE. Next, we consider in detail the

construction of these matrices.

First, we consider what we can say about the Jacobian of

the spatial REs of this system. Consider the diagonal element

Jii, which by definition is

Jii ¼
XN2ðRþ4Þ

k¼1

Sik
@fkðfÞ
@fðiÞ

, ð3:7Þ

where f ¼ðfð1Þ, . . . ,fðN
2ÞÞT: Note the lack of subscript,

because we consider only a single species. For the vast majority

of values of k, Sik ¼ 0; the only non-zero values are those

corresponding to reactions inside voxel i, or diffusion into

and out of voxel i. The contribution to Jii of the internal reac-

tions has already been calculated: it is simply a as defined in

equation (2.13) (the symmetry of the system implies that in

steady-state conditions fðiÞ ¼ f, i ¼ 1, . . . , N2, where f is the

steady-state RE solution). For diffusion into voxel i, Sik ¼ 1

and fkðfÞ ¼ ðkD=4ÞfðjÞ, where j is the index of a voxel neigh-

bouring i (note the factor of 1/4 is to ensure that the total

rate of diffusion out of a voxel is kD). It follows that

@fkðfÞ=@fðiÞ ¼ 0, so there is no contribution to Jii. For diffusion

out of voxel i, Sik ¼21 and fkðfÞ ¼ ðkD=4ÞfðiÞ: It follows that

Sikð@fkðfÞ=@fðiÞÞ ¼ �ðkD=4Þ is the contribution to Jii. Because

there are four distinct diffusion fluxes out of i (one into each

neighbouring voxel), this contribution is multiplied by 4, so

that Jii ¼ a� kD: Now, consider the element Jij where i and j
are neighbouring voxels

Jij ¼
XN2ðRþ4Þ

k¼1

Sik
@fkðfÞ
@fðjÞ

: ð3:8Þ
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The only non-zero contributions to Jij will correspond

to reactions that change the number of molecules of Xi

(otherwise Sik ¼ 0) and which involve Xj (otherwise,

@fkðfÞ=@fðjÞ ¼ 0), and the only reactions with this

property are those describing diffusion between voxels i
and j. For diffusion from i to j, fkðfÞ ¼ ðkD=4ÞfðiÞ, so

@fkðfÞ=@fðjÞ ¼ 0, and there is no contribution to Jij. For

diffusion from j to i, Sik ¼ 1 and fkðfÞ ¼ ðkD=4ÞfðjÞ, so the

contribution to Jij is Sikð@fkðfÞ=@fðjÞÞ ¼ kD=4: These are the

only reactions contributing to Jij, so, for j neighbouring i,
Jij ¼ kD=4:

Finally, if voxels i and j are not neighbours, there are no

reactions which involve both Xi and Xj, so the Jacobian

elements are zero for these entries. In summary

Jij ¼

a� kD, if j ¼ i
kD

4
, if j [ NeðiÞ

0, otherwise:

8>><
>>: ð3:9Þ

A similar argument can be used to compute the entries of the

diffusion matrix D, which is given by

Dij ¼

bþ 2kDf, if j ¼ i

� kDf

2
, if j [ NeðiÞ

0, otherwise:

8>><
>>: ð3:10Þ

If the voxels are numbered from left to right and top to

bottom, then the matrices J and D are block-circulant matrices.

More details on the structure of J and D are given in

appendix A. By analogy with the EMRE equation (2.10),

from J and D determined above, it is possible to derive

the sEMRE

c ¼ f�N2

V
J�1D: ð3:11Þ

The factor N2/V appears, because each species now exists

in a voxel of area V/N2. The ith entry of D is defined as in

equation (2.7) (with M replaced by N2, because the latter is

the number of effective species), but because the only entries

of J which have any f-dependence are the diagonal entries,

this can be simplified to Di ¼ ð1=2Þð@a=@fÞðke2
i l� fÞ: By the

condition of spatial symmetry, all the ke2
i l must be the same,

say, ke2l, which implies that the vector D can be simplified to

D ¼ ð1=2Þð@a=@fÞðke2l� fÞ1, where 1 [ RN2

is a column

vector of 1 s.

The sEMRE is then given by c ¼ f1� ðN2=2VÞð@a=@fÞ
ðke2l� fÞJ�11: Note now that the vector 1 is an eigen-

vector of J with eigenvalue a. It follows that 1 is also

an eigenvector of J21 with eigenvalue 1/a, and we can,

therefore, simplify J211 to (1/a)1. The sEMRE then

becomes a vector with every entry the same, so we write

the scalar c as

c ¼ f� N2

2Va

@a

@f
(ke2l� f): ð3:12Þ

It remains therefore only to find the value of the quantity ke2l:
This is given by the first entry of the matrix C which is

defined by the Lyapunov equation given in equation (2.11).

We note that by the symmetries of the system, both J and C
must be symmetric, circulant matrices [31], which implies

that JC ¼ CJT, and therefore, the Lyapunov equation can be

simplified to C ¼ 2(1/2)J21D.

The block circulant structure of J allows us to find

an analytical formula for ke2l, which is equation (A 25) in
appendix A. Combining equation (3.12) with equation (A 25),

we get a formula for c

c ¼ fþ 2afþ b

4Va

@a

@f

�
XN�1

j¼0

XN�1

k¼0

1

a� kD(1� 1=2 cos(2pj=N)� 1=2 cos(2pk=N))
:

ð3:13Þ

Equivalent formulae for one- and three-dimensional topologies

are given at the end of appendix A. In appendix B, we show

that the formula (3.13) can be greatly simplified when N is

large compared with one

c � fþ fþ b

2a

� �
1

2Va

@a

@f

N2a� kD

a� kD

� �
: ð3:14Þ

It can also be shown from Jensen’s inequality that this approxi-

mation is a lower bound for c determined from equation (3.13)

(see appendix B), although as we shall see it is typically numeri-

cally nearly indistinguishable from c. Equation (3.14) can be

written in a particularly informative way to distinguish the

contributions from the EMRE and the sEMRE

c� f|{z}
RE

þ fþ b

2a

� �
1

2Va

@a

@f|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
EMRE correction

þ fþ b

2a

� �
ðN2� 1Þ

2Va

@a

@f

jaj
jaj þ kD|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

sEMRE correction

:

ð3:15Þ

Note that the sign of the sEMRE correction is guaranteed to be

the same as that of the EMRE correction, because the former is a

positive multiple of the latter. Note also that the spatial correc-

tion term is proportional to an MM term, jaj/(jaj þ kD), with

the absolute values arising from the guaranteed negativity of

a. This term monotonically increases from 0 to 1 as the diffusion

rate kD decreases implying that the absolute difference between

the stochastic and deterministic solutions jc� fj increases with

decreasing diffusion coefficients. Note also that the difference is

proportional to the Hessian of the REs @a=@f and hence it is

non-zero only if there is at least one bimolecular reaction. The

equations derived in this section generally apply to systems

with mass-action kinetics; however, systems with any type of

rate (including Hill-type and MM-type rates) are also compati-

ble with the sEMRE. In appendix C, we show that the sEMRE

for such systems is simply given by equation (3.13) but with

an extra added term, and in §5, we study an example system

with MM-type rates.

Hence summarizing, our result shows that the steady-

state mean concentrations for a spatially homogeneous

one-species system generally depend on the diffusion coeffi-

cients. In contrast, the spatial deterministic solution f and

the reaction–diffusion PDEs have no such dependence. This

diffusion dependence is therefore a stochastic effect.

Of course, one could also obtain the sEMREs for an effec-

tive one species system without the condition of spatial

symmetry, but then an explicit solution in closed-form will

be difficult, if not impossible to obtain. The diffusion depen-

dence of the mean concentrations in each voxel will then

have two components, one stemming from the spatial

heterogeneity of the rate constants or diffusion coefficients,

and one stemming from intrinsic noise as found above. The

steady-state solution of the spatial REs will only be able to cap-

ture the first component and hence the diffusion dependence of

the concentrations according to sEMRE will be different from
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Figure 2. Schematic diagram of protein dimerization model (4.1). Uniformly
distributed ribosomes (green) translate proteins (red). These diffuse in the
cytosol until a pair combines to form a dimer (blue).
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those of the deterministic approach, even in the absence of

spatial symmetry. Using a completely analogous approach,

one could also derive sEMREs for a multi-species system, but

once again closed-form steady-state solutions will be difficult

to obtain. A detailed discussion of a numerical solution of

the time-dependent sEMRE for a multi-species system

(allowing for space-dependent diffusion and reaction rates, as

well as general topologies) can be found in appendix F.

In the rest of this article, we apply our results to two

examples of simple gene regulatory networks under the

condition of spatial symmetry. We confirm our results by

comparison with RDME and BD simulations.
4. Application: gene regulatory circuit in a
single cell

In this section, we apply the sEMRE to a simple model of

protein production and dimerization in a single cell, shown

schematically in figure 2.

Ribosomes (green) translate proteins (red) which diffuse

through the cytosol until a pair meets and they dimerize into a

product. We do not model the ribosomes explicitly, rather know-

ing that ribosomes are numerous (in the thousands per cell) and

known to be uniformly distributed for some types of cells (for

example for Escherichia coli in the exponential phase, ribosomes

are spread uniformly around the nucleoids [32]). We therefore

roughly model the translation of proteins by ribosomes via a

zeroth-order reaction at all points inside a cell. Hence, the

system, in figure 2, is approximated by the reaction scheme

��!k0 X, X þ X�!k1 Y, ð4:1Þ

where X is the protein and Y is the dimer.

In the following, we describe a BD algorithm for conti-

nuum space simulations of the protein X in the above

system and compare the results of these simulations with

the sEMRE approximation of the RDME derived in the pre-

vious section. Note that we ignore Y in our simulations

because it has no influence on the proteins which produce

it. As we will show, BD simulations verify our theoretical

result: generally, the steady-state mean protein concentration

has a strong dependence on the diffusion coefficient.

4.1. Brownian dynamics
BD models the diffusion of solute particles in continuum space

as shown in figure 1. The boundaries of the area are periodic,

such that a particle which crosses a boundary appears at the

opposite boundary. Reactions between two particles occur
with some non-zero probability if the particles overlap. For

single-cell modelling, particularly if the cells are prokaryotic

and have no intracellular structures, there is not a natural

length scale for which solute particles can be considered to

be well mixed. In this case, BD is a more accurate description

of real reaction–diffusion processes than the RDME.

In order to compute mean concentrations from BD, one

long simulation is performed (much longer than the time to

reach equilibrium), and the mean number of particles is

simply the average number over that time. Particles are circles

with radius r and have a diffusion coefficient, D. The area of

space is V. The steps of the algorithm are then as follows:

(1) Choose a reaction probability per unit time, p and a

time interval Dt. Set time counter t ¼ 0. Generate an

Exponential(1/k0V) random number t.

(2) Add a normal random number with zero mean and

variance 2DDt to each particle coordinate. Add Dt to t.
(3) For each pair of intersecting particles (when the distance

between the particle centres is less than 2r), generate a

uniform random number. If it is less than pDt, remove

both particles.

(4) If t . t, then add a new particle at a uniformly distribu-

ted point in space. Generate an Exponential(1/k0V)

random number and add it to t.

(5) Repeat steps 2–4 until the desired time has elapsed.

This algorithm is an example of the Doi model of BD [33].

A popular alternative is the Smoluchowski model [34] in

which particles react immediately when their reaction radii

overlap, which corresponds to the above algorithm with

p ¼ 1: There are two reasons why we chose not to use the

latter method. First, we expect the CME to agree with BD

for large diffusion coefficients, but in the CME, the prob-

ability of a reaction in a time Dt is proportional to Dt [35].

We therefore use pDt to ensure that BD has the same prop-

erty. The second reason for using the quantity pDt is that,

in reality, dimerizations only occur if molecules approach

each other with the correct relative orientations and the cor-

rect kinetic energy [36]. In BD, we do not consider either

orientation or kinetic energy, and so instead we approximate

the molecular physics by saying that a collision leads to a

reaction with a probability strictly less than 1.
4.2. Parameter choices for comparison between models
To compare the sEMRE with BD, we will need to relate the

various parameters used by each of them, which we do in

this section.

The value of p that we choose for BD is given (in two

dimensions) by the simple equation p ¼ k1/2pr, and a deri-

vation of this result is given in appendix D. This choice

guarantees that in the limit of well-mixed conditions, the rate

at which the dimerization occurs in the BD description

agrees with that given by the bimolecular propensity in the

CME. The rate of the birth process, k0, is the same in all models.

The choice of relation between D and kD is given by the

equation kD ¼ 4DN2=V, which is valid in two dimensions.

This result can be derived either from Fick’s law or from a

mean first passage time approach [37].

The final choice of parameters for comparison is the

number of voxels N2, given that we choose our system size

V to be 1 and particle diameter to be 1/20. There is no
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Figure 3. The mean steady-state molecule number of protein X in system (4.1) as a function of the diffusion coefficient D. (a) We compare the result of two-
dimensional BD simulations in steady-state conditions (dashed red) with the sEMRE, RE and EMRE approximations of the RDME on a two-dimensional N � N grid
with n ¼ 8. The RE corresponds to the deterministic spatial approximation of the RDME, the EMRE corresponds to the deterministic approximation of the CME plus a
correction to take into account a finite system size V, whereas the sEMRE corresponds to the EMRE plus a correction to take into account finite diffusion coefficients
D. The RE is given by the first term in equation (4.4), the EMRE by equation (4.4) with D! 1, the sEMRE by equation (4.3) and the approximate sEMRE by
equation (33). (b) Comparison of BD simulations (red) with sEMRE equation (4.3) with N ¼ 4 ( purple), N ¼ 6 (green), N ¼ 8 ( pink) and N ¼ 10 (blue).
Parameter values are k0 ¼ 1000, k1 ¼ 30, V ¼ 1, molecule diameter ¼ 1/20 and Dt ¼ 1025. Error bars are the standard deviation of 10 estimates of the
mean protein number, each computed from a time average of a BD trajectory of length 104 iterations.
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obvious choice of voxel size, except that the voxel should be

larger than a molecule, that is, N , 20. Several authors have

proposed bounds for a correct choice of N; see [37] for

a summary.
4.3. Comparison of Brownian dynamics with spatial
effective mesoscopic rate equations

Under the RDME, the reaction system (4.1) takes the form

��!k0 Xi, Xi þ Xi�!
k1

�, Xi�!
kD Xj, j [ NeðiÞ, i ¼ 1, . . . , N2:

ð4:2Þ

The sEMRE formula given by equation (3.13) can be

applied specifically to the system (4.1). We find that it gives

the formula

c¼

ffiffiffiffiffiffiffi
k0

2k1

s
þ

ffiffiffiffiffiffiffiffiffiffiffi
2k0k1

p

8

XN�1

j¼0

XN�1

k¼0

1

V
ffiffiffiffiffiffiffiffiffiffiffi
2k0k1

p
þ 2DN2 1� 1

2
cos(2pj=N)� 1

2
cos(2pk=N)

� � :
ð4:3Þ

Alternatively, we can use the approximate formula given by

equation (3.14)

c �

ffiffiffiffiffiffiffi
k0

2k1

s
þ N2

8V

V
ffiffiffiffiffiffiffiffiffiffiffi
2k0k1

p
þ 2D

V
ffiffiffiffiffiffiffiffiffiffiffi
2k0k1

p
þ 2DN2

: ð4:4Þ

In figure 3a, we compare the steady-state mean concentrations

obtained from BD simulations with the sEMRE formula for

N ¼ 8. The sEMRE agrees well over the whole range of diffu-

sion coefficients, and the approximate formula is also an

excellent approximation. The RE and EMRE cease to be good

estimates at roughly D ¼ 100. In figure 3b, we show that, for

small enough diffusion coefficients, the choice of N is funda-

mental to the accuracy of the sEMRE. When D , 10, only the
sEMRE with N ¼ 8 gives an accurate estimate of the mean

values of BD; however, the sEMRE for any N gives good esti-

mates for D . 10. This is in agreement with the fact that the

RDME agrees with BD only for intermediate voxel sizes (not

too big and not too small); detailed discussions of this fact

can be found in [23,37]. Note that the dependence of the accu-

racy of sEMRE with the choice of N stems from the RDME

which sEMRE approximates. However, this is not of much con-

cern, because for all N, sEMRE captures the correct qualitative

behaviour (the monotonic increase of the steady-state mean

concentrations with decreasing diffusion coefficient) that we

observe from BD simulations.

4.4. Spatial effective mesoscopic rate equations of the
volume-excluded reaction – diffusion master
equation

The sEMRE is derived for the standard RDME, but can equally

be applied to alternative RDMEs. One example is the recently

introduced volume-excluded RDME (vRDME) [38]. The

vRDME is a crude model of molecular crowding [39] which

is known to agree well with BD, and which assumes that

each particle occupies a fixed, non-zero volume and thereby

places an upper bound on the number of particles in the

system. This is done by shrinking the voxel size to be approxi-

mately equal to the size of a single particle. Voxels can then

either be empty, or else contain exactly one particle. Bimolecu-

lar reactions take place between neighbouring voxels, and a

particle can diffuse only if a neighbouring voxel is empty.

This is achieved by a introducing an ‘empty space particle’,

a dummy species which occupies a voxel if it is empty.

For the dimerization example, the vRDME replaces the

reaction system given by (4.2), with the following:

Ei�!
~k0 Xi, Xi þ Xj�!

~k1 Ei þ Ej, Xi þ Ej O
~kD

~kD

Ei þ Xj,

i ¼ 1, . . . , N2, j [ NeðiÞ, ð4:5Þ
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where Ei represents an empty space particle in voxel i. Note

that reaction rates are given as ~kj, because they will, in general,

take a different numerical value from the kj used in the RDME.

The sEMRE for this system is derived in appendix E:

c ¼ f�
~k1

2V(~k0 þ 2~k1f)

�
XN�1

j¼0

XN�1

k¼0

e2pij=N Kd þ 2Kn cos
2pj
N

� �
þ cos

2pk
N

� �� �� �
Jd þ 2Jn cos

2pj
N

� �
þ cos

2pk
N

� �� � ,

ð4:6Þ

where Jd¼�~k0�~k1f�~kDðN2=VÞ, Jn¼�ð~k1=4Þfþ ð~kD=4Þ
ðN2=VÞ, Kd ¼ ~k0(N2=V� f)þ ~k1f

2 þ 2~kD(N2=V� f)f and

Kn ¼ ð~k1=4Þf2 � ð~kD=2Þ(N2=V� f)f:

A significant advantage of the vRDME over the conven-

tional RDME is that the choice of N is automatic in the

former case: we simply choose an integer N such that 1/N2

is approximately the volume fraction occupied by a single

(circular) particle. The benefits of this can be seen in figure 4,

where we plot the sEMRE in equation (4.6) against BD simu-

lations. The particle diameter used in BD is 1/20, which

suggests choosing N � 22, and indeed, the sEMRE for this N
passes through every error bar down to D ¼ 1021, which is

an order of magnitude lower than that plotted in figure 3.

We also show the sEMRE with N ¼ 20 and N ¼ 24, which

both give good approximations to the BD simulations, demon-

strating that N only needs to be approximately correct to give

accurate results.

Note that the BD simulations for this example are slightly

different, because we are trying to model volume exclusion.

The only difference between this BD and the algorithm

described in §4.1 is in point 3 of the algorithm. In this case,

we would add ‘if the uniform random number is greater

than pDt, subtract Dt from t and return to 2’.
5. Application to a system of
intercommunicating cells

Everything derived thus far generally applies to systems with

mass-action kinetics; however, systems with any type of rate

(including Hill-type and MM-type rates) can also be analysed

using the sEMRE approach. As we show in appendix C, the

sEMRE for such systems is simply given by equation (C 6),

which is nothing more than equation (3.13) with an extra

added term. In this section, we therefore apply our results

to a more complex system that can be reduced to an effective

single-species system with non-elementary rates.

In particular, we consider the system illustrated in figure 5,

a tissue of identical cells arranged in a grid-like formation.

Inside each cell, an mRNA molecule, M, is transcribed with

rate h0 and degrades with rate h1. It translates a protein, X,

with rate h2. This protein is consumed by an enzyme, E,

which forms a complex, C. This can either unbind back to the

protein with rate h4 or else convert the protein to a product,

P, with rate h5. Proteins can also move between neighbouring

cells by a combination of active transport and diffusion.

A clear difference between this example and the one described

in figure 2 is that here each voxel represents a single well-mixed

cell, rather than a small region of a cell. Furthermore, the choice

of N2 now has a clear physical significance: it is simply the

number of cells in the tissue. The system in each cell can be

defined in terms of the reactions

��!h0 M�!h1
�, M�!h2 Mþ X, X þ E O

h3

h4

C�!h5 Eþ P: ð5:1Þ

The well-mixed, non-spatial version of this system has been

studied in detail in [30,40], whereas here we study the spatial

version using the sEMRE approximation.

It is known that in bacteria and budding yeast, the mRNA

lifetime is generally considerably shorter than that of the

protein. Under such conditions, it has been shown that

protein synthesis occurs in geometrically distributed bursts

[10]. We therefore consider the overall birth process of a

protein (transcription plus translation) to be effectively

modelled by the single reaction ��!k0 zX, where z is a geome-

trically distributed random number with mean b ¼ h2=h1 and

k0 ¼ h0h2=h1: Furthermore, the enzyme-driven catalysis of X
can be written as a simple first-order decay X �! P with an

effective MM-type propensity k1n=ðK þ n=VÞ, where n is

the number of molecules of X, k1 ¼ h5ET, K ¼ ðh4 þ h5Þ=h3

and ET is the total enzyme concentration. This approximation

is accurate, in a stochastic setting, in the rapid equili-

brium limit h4 � h5 [41,42]. Hence, it follows that reaction

scheme in each cell (5.1) can be adequately described by the

single-species system

X�!MM
P,

� �!
k0pð0Þ

0X, � �!
k0pð1Þ

X, �!
k0pð2Þ

2X, . . . , � �!
k0pðMÞ

MX, . . . ð5:2Þ

where the first line describes nonlinear degradation via an

MM propensity and the second line describes bursty

protein production. Note that pðzÞ ¼ bz=ð1þ bÞð1þzÞ is the

probability distribution of a geometric random variable z
(the burst size) with mean b. This effective representation

for the input reaction has been previously used to study the

effects of bursts on the oscillatory properties of downstream

pathways [43].
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Figure 5. Schematic diagram of a tissue of close-packed cells, each with a gene regulatory network inside and communicating via chemical exchange. (a) Cells are
organized as a two-dimensional grid. Proteins are created inside a cell and can move between neighbouring cells by active transport or diffusion. (b) Detailed picture
of the reactions involved in each cell—see reaction scheme (5.1). DNA ( pink) transcribes mRNA (blue) which translates proteins (red) via a ribosome (green, not
modelled explicitly) until the mRNA degrades. These proteins diffuse until they bind to an enzyme ( peach) which modifies them into a product (orange) through a
standard MM reaction. Proteins can also move between neighbouring cells by diffusive or active transport. We assume, in our calculations, that intracellular diffusion
is fast, so that well-mixed conditions occur in each cell.
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Now, we compute the sEMRE for this reduced system. We

label the enzyme catalytic reaction as reaction 1, and the reac-

tion producing z bursts as reaction 2 þ z. The stoichiometric

matrix S and rate vector f(f ) are then defined by

Sj ¼
�1, if j ¼ 1,

j� 2, if j � 2:

�

fjðfÞ ¼
k1

f

K þ f
, if j ¼ 1,

k0pðj� 2Þ, if j � 2,

8<
:

9>>>>>=
>>>>>;

ð5:3Þ

where f is the deterministic concentration of X. From these,

one can compute the REs, the Jacobian a and the diffusion

matrix b using the definitions given previously. The steady-

state RE solution is given by f ¼ k0Kb=ðk1 � k0bÞ: The Jacobian

is a ¼ �k1 K=ðK þ fÞ2, and the diffusion matrix is

b ¼ k1f=ðK þ fÞ þ k0bð2bþ 1Þ: These formulae can be

plugged in equation (C 6) to obtain the sEMRE

c¼fþk1fðf�KÞþk0bð2bþ1ÞðKþfÞ2

2VðKþfÞ
XN�1

j¼0

XN�1

k¼0

1

�k1 K�ðKþfÞ2kD(1�ð1=2Þ cos(2pj=N)�ð1=2Þ cos(2pk=N))

þ N2f

VðKþfÞ ,

ð5:4Þ

or using the approximate formula given by equation (C 7),

c�f

þ (k1fðf�KÞþk0bð2bþ1ÞðKþfÞ2)(N2Vk1 KþkDðKþfÞ2)

�2Vk1 KðKþfÞ(k1 KVþkDðKþfÞ2)

þ N2f

VðKþfÞ :

ð5:5Þ

Note that c is here to be interpreted as the approximate concen-

tration of protein in each well-mixed cell, taking into account
the noise from reactions inside each cell and from protein

exchange between cells. We remind the reader that the tissue

has N2 identical cells and total area V, protein is generated in

each cell by a gene regulatory network with parameters

b,k0,k1,K and is exchanged at a rate kD with neighbouring

cells via diffusion or active transport.

To verify our formulae, we carried out RDME simu-

lations. In figure 6a, we plot a typical steady-state trajectory

of total protein numbers (sum over all voxels) obtained

from the RDME describing the reduced system (5.2) in each

cell (voxel) and protein exchange with rate kD between

cells. This is compared with various estimates of the mean

concentrations. The RE (pink) and EMRE (green) both give

remarkably bad estimates of the mean concentration of the

RDME (blue crosses). On the other hand, the sEMRE (red cir-

cles) and approximate sEMRE (yellow) both give a good

approximation, only a few molecule numbers away from

the true mean. In the inset, we show the local protein trajec-

tory, i.e. that in a single cell (voxel) of the tissue. Again, the

RE and EMRE give poor estimates, whereas the sEMRE

and approximate sEMRE are in good agreement with the

mean of the RDME.

In figure 6b, we plot the typical steady-state probability

distribution for protein numbers from the RDME, computed

with a time average over 106 iterations (blue histogram). This

is compared with various estimates as in figure 6a, once again

showing the accuracy of sEMRE. In the inset, we show the

local distribution of protein numbers in a single cell, again

the RE and EMRE give inaccurate estimates, whereas the

sEMRE and approximate sEMRE agree well with the true

mean. Hence, RDME simulations verify the accuracy of

the sEMRE approximation, and in particular, the strong

dependence of the steady-state mean concentrations on the

diffusion coefficients which is not captured by the determi-

nistic spatial RE models. Note that the slight difference in

RDME means between figure 6a,b is due to different RDME

trajectory lengths used in generating the two plots.
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Figure 6. (a) Typical global trajectory (across all tissue) of the RDME ( pale blue) describing the non-reduced system (5.1) in each cell (voxel) and protein exchange
with rate kD between cells. The mean value of the RDME calculated over the trajectory is shown as blue crosses. Further lines give the RE ( pink), EMRE (green),
sEMRE (red circles) and approximate sEMRE (yellow). Inset: local trajectory in a particular cell (voxel). (b) Steady-state distribution of the RDME ( pale blue histo-
gram), with solid lines showing the RDME mean (blue crosses), RE ( pink), EMRE (green), sEMRE (red circles) and approximate sEMRE (yellow). Inset: local
distribution in a particular cell. Parameter values are kD ¼ 100, h0 ¼ 2, h1 ¼ 1, h2 ¼ 4, h3 ¼ 30, h4 ¼ 30, h5 ¼ 5, ET ¼ 10, V ¼ 10, N2 ¼ 25.
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6. Discussion
In this paper, we have shown that the mean concentrations of

a single-species reaction–diffusion system in equilibrium

generally depend on the diffusion coefficients: this contra-

dicts the popular reaction–diffusion PDEs, and is therefore

a stochastic effect. We obtained an approximate formula for

the steady-state mean concentrations of an effective one

species system according to the RDME, the conventional sto-

chastic spatial description of kinetics. This expression is a

sum of three components: a term given by the deterministic

REs, and two terms that correct the solution of the latter to

take into account a finite compartment size (or equivalently

finite molecule numbers) and finite diffusion coefficients.

We verified this result by applying it to two simple models

of gene regulatory systems and comparing our approximate

formula with RDME and BD simulations. In particular, the

comparison with BD shows that the predicted noise-induced

dependence on the diffusion coefficients in steady state is not

because of the artificial spatial lattice of the RDME but rather

a genuine phenomenon.

An intuitive explanation of the effect is as follows. Let nj
i

be the molecule number of species i in voxel j. The average

rate at which a bimolecular reaction occurs in a voxel j of

space is necessarily proportional to the average of the product

of the local molecule numbers of the two species involved in

the reaction knj
1nj

2l. Hence, we can write the local average rate

as the sum of two terms: s2
j þ knj

1l knj
2l, where s2

j is the

covariance of fluctuations in voxel j. Clearly, the second

term is the deterministic contribution to the average rate as

given by the spatial REs. The first term is the stochastic con-

tribution to the average rate. Now, two different processes

lead to a non-zero covariance of fluctuations in a voxel:

(i) the variability in the time between reaction events occur-

ring inside the voxel, i.e. intrinsic noise, and (ii) particle

exchange between neighbouring voxels of space stemming

from local diffusion. Because the steady-state mean concen-

trations depend on the average rates of reaction, it follows

that they must depend on both the size of intrinsic noise

owing to finite copy numbers (this is the EMRE correction
in equation (3.15)) and on the size of diffusion coefficients

(this is the sEMRE correction in equation (3.15)).

We finish by noting that, although in this paper we

focused on time-independent and spatially symmetric sol-

utions of sEMRE, these two assumptions are only needed

to obtain compact closed-form formulae and they are not a

limitation of the formalism. Without these assumptions, the

set of coupled ordinary differential equations constituting

sEMRE can be solved numerically for any number of species

and will be advantageous from a computational point of

view because unlike RDME (or BD) simulations, the solution

of sEMRE does not require ensemble averaging (see

appendix F). In particular, the relaxing of spatial symmetry

will allow the modelling of stochastic reaction kinetics in tis-

sues composed of cells exhibiting a high degree of cell-to-cell

variation. Just as we obtained equations for the mean concen-

trations, one can also obtain ordinary differential equations

for the higher moments in each voxel of the RDME. Hence,

we anticipate that extensions of the present formalism

along the aforementioned lines may greatly enhance our

understanding of spatial and stochastic reaction kinetics in

various biological contexts.
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Appendix A. Detailed derivation of spatial
effective mesoscopic rate equations
For two-dimensional topologies, J and D are the block

matrices given by equations (3.9) and (3.10), which have
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the structure

J ¼

RJ
kD

4
I 0 . . . 0

kD

4
I

kD

4
I RJ

kD

4
I . . . 0 0

0
kD

4
I RJ . . . 0 0

..

. ..
. ..

. ..
. ..

. ..
.

0 0 . . .
kD

4
I RJ

kD

4
I

kD

4
I 0 . . . 0

kD

4
I RJ

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

, ðA 1Þ

D¼

RD �kD

2
fI 0 . . . 0 �kD

2
fI

�kD

2
fI RD �kD

2
fI . . . 0 0

0 �kD

2
fI RD . . . 0 0

..

. ..
. ..

. ..
. ..

. ..
.

0 0 . . . �kD

2
fI RD �kD

2
fI

�kD

2
fI 0 . . . 0 �kD

2
fI RD

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

,

ðA 2Þ

where

RJ ¼

a� kD
kD

4
0 . . . 0

kD

4
kD

4
a� kD

kD

4
. . . 0 0

0
kD

4
a� kD . . . 0 0

..

. ..
. ..

. ..
. ..

. ..
.

0 0 . . .
kD

4
a� kD

kD

4
kD

4
0 . . . 0

kD

4
a� kD

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

, ðA 3Þ

RD¼

bþ2kDf �kD

2
f 0 ... 0 �kD

2
f

�kD

2
f bþ2kDf �kD

2
f ... 0 0

0 �kD

2
f bþ2kDf ... 0 0

..

. ..
. ..

. ..
. ..

. ..
.

0 0 ... �kD

2
f bþ2kDf �kD

2
f

�kD

2
f 0 ... 0 �kD

2
f bþ2kDf

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

,

ðA 4Þ

and I [ RN�N is the identity matrix. We seek the first element

of the matrix C defined by

C ¼ � 1

2
J�1D: ðA 5Þ

Because J is block circulant, its inverse is also, and we can

write it as

J�1 ¼

B1 B2 B3 . . .
BN B1 B2 . . .

BN�1 BN B1 . . .

..

. ..
. ..

. . .
.

0
BBB@

1
CCCA: ðA 6Þ
Then, C will be given by

C ¼ � 1

2
B1RD þ B2 �

kD

2
fI

� �
þ BN � kD

2
fI

� �� �
: ðA 7Þ

The defining equations for the relevant Bi are [44]

B1 ¼
1

N

XN

k¼1

RJ þ
kD

2
cos

2pk
N

� �
I

� ��1

,

B2 ¼
1

N

XN

k¼1

e

2pik
N RJ þ

kD

2
cos

2pk
N

� �
I

� ��1

and BN ¼
1

N

XN

k¼1

e

2pikðN � 1Þ
N RJ þ

kD

2
cos

2pk
N

� �
I

� ��1

:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;
ðA 8Þ

Because RJ þ ðkD=2Þcos( 2pk=NÞI is a circulant matrix, we can

write its inverse as

RJ þ
kD

2
cos

2pk
N

� �
I

� ��1

¼ F�1
N LkFN , ðA 9Þ

where ðFNÞ j,w ¼ e�2pijw=N : Lk is diagonal such that

(Lk) j,j ¼
1

a� kD þ
kD

2
cos(2pk=N)þ kD

2
cos(2pj=N)

: ðA 10Þ

Therefore,

B1 ¼
1

N
F�1

N
~L1FN , ðA 11Þ

where

( ~L1) j,j ¼
XN

k¼1

1

a� kD þ kD=2 cos(2pk=N)þ kD=2 cos(2pj=N)
:

ðA 12Þ

Similarly, B2 ¼ 1=N F�1
N

~L2FN and BN ¼ 1=N F�1
N

~LNFN , where

( ~L2) j,j ¼
XN

k¼1

e�2pik=N

a� kD þ kD=2 cos(2pk=N)þ kD=2 cos(2pj=N)
,

ðA 13Þ

and

( ~LN) j,j ¼
XN

k¼1

e�2pikðN�1Þ=N

a� kD þ kD=2 cos(2pk=N)þ kD=2 cos(2pj=N)
:

ðA 14Þ

FN has the structure

FN ¼

1 1 1 1 . . .
1 e�2pi=N e�4pi=N e�6pi=N . . .
1 e�4pi=N e�8pi=N e�12pi=N . . .
1 e�6pi=N e�12pi=N e�18pi=N . . .

..

. ..
. ..

. ..
. . .

.

0
BBBBB@

1
CCCCCA: ðA 15Þ

So the contributions to ke2l, which is the first entry

of the matrix C, will be obtained by substituting equa-

tion (A 8) into equation (A 7). The first contribution will be

proportional to

1 0 . . . 0ð ÞB1RD

1
0

..

.

0

0
BBB@

1
CCCA, ðA 16Þ
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¼ 1 0 . . . 0ð ÞF�1
N

~L1FN

bþ 2kDf

� kD

2
f

0

..

.

0

� kD

2
f

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

, ðA 17Þ

¼ 1 1 . . . 1ð Þ~L1

bþ 2kDf� kDf

bþ 2kDf� kDfcos
2p

N

� �
bþ 2kDf� kDfcos

4p

N

� �
..
.

bþ 2kDf� kDfcos
2pðN � 1Þ

N

� �

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

,

ðA 18Þ

¼ 1

N2

XN

j¼1

bþ 2kDf� kDfcos
2pðj� 1Þ

N

� �� �

�
XN

k¼1

1

a� kD þ kD=2 cos(2pk=N)þ kD=2 cos(2pj=N)
:

ðA 19Þ

The second contribution will be proportional to

1 0 . . . 0ð ÞB2 �
kD

2
fI

� � 1
0

..

.

0

0
BBB@

1
CCCA, ðA 20Þ

¼ 1 1 . . . 1ð Þ~L2FN

� kD

2
f

0

..

.

0

0
BBBBB@

1
CCCCCA, ðA 21Þ

¼�ðkD=2Þf
N2

XN

j¼1

XN

k¼1

e�2pik=N

a�kDþkD=2cos(2pk=N)þkD=2cos(2pj=N)
:

ðA 22Þ

Similarly, the third contribution will be proportional to

�ðkD=2Þf
N2

XN

j¼1

XN

k¼1

e�2pikðN�1Þ=N

a� kDþ kD=2cos(2pk=N)þ kD

2
cos(2pj=N)

:

ðA23Þ

We can combine the second and third contribution into

�ðkD=2Þf
N2

XN

j¼1

XN

k¼1

2cos(2pk=N)

a�kDþkD=2cos(2pk=N)þkD=2cos(2pj=N)
:

ðA 24Þ

The final result is that

ke2l¼� 1

2N2

XN�1

j¼0

XN�1

k¼0

bþ2kDf�kDfcos(2pj=N)�kDfcos(2pk=N)

a�kDþkD=2cos(2pk=N)þkD=2cos(2pj=N)

ðA 25Þ
Therefore, combining equation (A 25) with equation (3.12),

we can explicitly write a formula for c

c ¼ fþ 2afþ b

4Va

@a

@f

�
XN�1

j¼0

XN�1

k¼0

1

a� kD(1� 1=2 cos(2pj=N)� 1=2 cos(2pk=N))
:

ðA 26Þ

Similarly, for one dimension, it can be shown that

c ¼ fþ 2afþ b

4Va

@a

@f

XN�1

j¼0

1

a� kD(1� cos(2pj=N))
, ðA 27Þ

whereas for three dimensions

c ¼ fþ 2afþ b

4Va

@a

@f

XN�1

j¼0

XN�1

k¼0

XN�1

w¼0

1

a� kD

�
1� 1

3
cos

2pj
N
� 1

3
cos

2pk
N
� 1

3
cos

2pw
N

�
:

ðA 28Þ
Appendix B. Derivation of approximate spatial
effective mesoscopic rate equations
The sEMRE in two dimensions is given by

c ¼ fþ 2afþ b

4Va2

@a

@f
þ 2afþ b

4Va

@a

@f

�
XN�1

j¼0

XN�1

k¼0	

1

a� kD(1� 1=2 cos(2pj=N)� 1=2 cos(2pk=N))
:

ðB 1Þ

This sum can be separated into two parts

c ¼ fþ 2afþ b

4Va2

@a

@f
þ 2afþ b

4Va

@a

@f

�
XN�1

j¼0

XN�1

k¼0	

1

a� kD(1� 1=2 cos(2pj=N)� 1=2 cos(2pk=N))
:

ðB 2Þ

The first part corresponds to the term j ¼ 0, k ¼ 0. The second

part covers all the terms other than j ¼ k ¼ 0 (this is denoted

by 0*). Now, we consider what happens in the limit of large

N. The double sum can be approximated by an integral

XN�1

j¼0

XN�1

k¼0	

1

a� kD(1� 1=2 cos(2pj=N)� 1=2 cos(2pk=N))

� ðN2 � 1Þ

�
ð1

0

ð1

0

dxdy
a� kD(1� 1=2 cos(2px)� 1=2 cos(2py))

: ðB 3Þ

This is equal to the expected value of the integrand under the

uniform distributionð1

0

ð1

0

dxdy
a� kD(1� 1=2 cos(2px)� 1=2 cos(2py))

¼ E
1

a� kD(1� 1=2 cos(2pX)� 1=2 cos(2pY))

� �
, ðB 4Þ

for i.i.d. uniform random variables X,Y. By Jensen’s
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inequality, we have

E
1

a� kD(1� 1=2 cos(2pX)� 1=2 cos(2pY))

� �

� 1

a� kDE[1� 1=2 cos(2pX)� 1=2 cos(2pY)]

¼ 1

a� kD
: ðB 5Þ

We therefore have a lower bound for the sEMRE

c � fþ 2afþ b

4Va2

@a

@f
þ 2afþ b

4Va

@a

@f

N2 � 1

a� kD

¼ fþ fþ b

2a

� �
1

2Va

@a

@f

N2a� kD

a� kD

� �
: ðB 6Þ

This is precisely the approximation formula given in

equation (3.14).
13:20151051
Appendix C. General formulation of effective
mesoscopic rate equation/spatial effective
mesoscopic rate equation for elementary
and non-elementary rates
In this appendix, we follow the generalized derivation of the

EMRE in [45] and apply it to the sEMRE. For a system of

reactions given by equation (2.1), the CME is defined as

d

dt
Pðn, tÞ ¼

XR

j¼1

YN
i¼1

E�Sij

i � 1

 !
âj(n,V)Pðn, tÞ, ðC 1Þ

where n ¼ ðn1, . . . , nNÞT is the vector of molecule numbers of

species X1, . . . ,XN, P(n, t) is the probability that the system

has exactly n1, . . . ,nN copies of species X1, . . . ,XN, respectively,

at time t, Ex
i is the step operator which replaces ni with ni þ x,

and âj(n,V) is the microscopic propensity function of reaction

j, i.e. the probability per unit time that reaction j will happen

if the system is in state n. Now, define aj as

aj½f,V
 ¼ âjðn ¼ Vf,VÞ, ðC 2Þ

which is simply the microscopic propensity âj evaluated at the

deterministic concentration. Expanding this as a power series

in V21, we can write

aj½f,V

V

¼ f ð0Þj ðfÞ þV�1f ð1Þj ðfÞ þ � � � , ðC 3Þ

where f ðiÞj ðfÞ are the coefficient functions. The zeroth coeffi-

cient f ð0Þj ðfÞ is equal to the macroscopic reaction rate fj
defined in equation (2.5). The first coefficient f ð1Þj can be used

to define the quantity Dð1Þi :

Dð1Þi ¼
XR

j¼1

Sijf
ð1Þ
j ðfÞ: ðC 4Þ

The REs are given by equation (2.5). The time-dependent EMRE

is then given by equation (2.9) and the Lyapunov equation (2.8)

together with the mean-covariance coupling vector

Dl ¼
1

2

XN

w,z¼1

@Jlw

@fz
kewezlþDð1Þl : ðC 5Þ

Note that for elementary reactions, one can show that

Dð1Þl ¼ ð1=2Þ
PN

w¼1 fwð@Jlw=@fwÞ, which precisely recovers

equation (2.7).
This generic EMRE formulation can be applied to the case

of one species involved in a set of elementary or non-elemen-

tary reactions together with diffusion reactions on a lattice

and this constitutes the generic single-species sEMRE.

Hence, the latter is essentially obtained by the same argu-

ments as in §3.2, however, using equation (C 5) rather than

using equation (2.7). This gives the result

c ¼ fþ 2afþ b

4Va

@a

@f

�
XN�1

j¼0

XN�1

k¼0

1

a� kD(1� 1=2 cos(2pj=N)� 1=2 cos(2pk=N))

� N2

Va

f

2

@a

@f
þDð1Þ

� �
:

ðC 6Þ

Note that given the spatial homogeneity of the system, all the

Dð1Þl will take the same value, D(1). Equation (C6) generalizes

equation (3.13).

We can also obtain an approximate formula which gener-

alizes equation (3.14):

c � fþ fþ b

2a

� �
1

2Va

@a

@f

N2a� kD

a� kD

� �

� N2

Va

f

2

@a

@f
þDð1Þ

� �
: ðC 7Þ

Note that MM and Hill-type reactions do not contribute to

D(1), and therefore, the sEMRE applied to system (5.2) is

equation (C 6) with D(1) ¼ 0.
Appendix D. Relation between the bimolecular
reaction rate and the probability of reaction
given collision
For a system in a two-dimensional area V, we expect the CME

to agree with BD when diffusion is ‘fast’, which really means in

the limit D! 1: Generally, at each BD time step, particle pos-

itions are updated by a normal random number with mean

zero and variance 2DDt; but in the limit of fast diffusion, this

normal distribution will have infinite width. Because our top-

ology has periodic boundary conditions, particles will be

uniformly distributed at each time step. Particles collide if

they intersect: for two particles with radii r1 and r2, a collision

occurs if the particle centres are within R ¼ r1 þ r2 of each

other. The probability of a collision between two particles in

a single time step is therefore the probability that a uniformly

distributed point falls within a circle of radius R. That is

PðcollisionÞ ¼ pR2

V
: ðD 1Þ

Now, suppose that we have a system involving a bimolecular

reaction X1 þ X2�!
k � � � for some species X1 and X2 with radii

r1 and r2, respectively, and molecule number n1 and n2, respect-

ively. There are, therefore, n1n2 possible pairings of reacting

particles. In a given time step Dt, the probability that a given

pair collides is pðr1 þ r2Þ2=V, and in BD, the probability that

a reaction results in a collision is pDt. The probability that a

given pair reacts is therefore

PðreactionÞ ¼ pðr1 þ r2Þ2pDt
V

: ðD 2Þ
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Assuming independent collisions, the total number of reactions

that occur in a given time step is then given by a Binomial

(n1n2, pðr1 þ r2Þ2pDt=V) distribution. By definition, the

probability of m reactions occurring a Dt is then given by

Pðm reactionsÞ ¼ ðn1n2Þ!
m!ðn1n2 �mÞ!

pðr1 þ r2Þ2pDt
V

 !m

� 1� pðr1 þ r2Þ2pDt
V

 !n1n2�m

: ðD 3Þ

The probability of 0 reactions is then

Pð0 reactionsÞ ¼ 1� pðr1 þ r2Þ2pDt
V

 !n1n2

¼ 1� n1n2
pðr1 þ r2Þ2pDt

V
þOððDtÞ2Þ, ðD 4Þ

and the probability of 1 reaction is

Pð1 reactionÞ ¼ ðn1n2Þ
pðr1 þ r2Þ2pDt

V

 !

� 1� pðr1 þ r2Þ2pDt
V

 !n1n2�1

¼ n1n2
pðr1 þ r2Þ2pDt

V
þOððDtÞ2Þ: ðD 5Þ

All further terms are O((Dt)2). If Dt is chosen small enough,

then we can ignore terms of O((Dt)2). Although many collisions

may occur in a single time step, Dt is chosen small enough, so

that at most one of these can result in a collision. At the CME

level, the reaction X1 þ X2�!
k � � � occurs with a rate

kn1n2=V, which implies that the probability that the reaction

occurs in a time stepDt is Pð1 reactionÞ ¼ kn1n2Dt=V: Equating

this expression with equation (D 5), it follows that

n1n2
pðr1 þ r2Þ2pDt

V
¼ kn1n2Dt

V
k ¼ pðr1 þ r2Þ2p: ðD 6Þ

In the special case where the bimolecular reaction happens

between particles of the same type, i.e. X1 þ X1�!
k � � � , we

instead have n1ðn1 � 1Þ=2 possible distinct particle pairings,

and a CME rate of kn1ðn1 � 1Þ=V: The relation therefore

becomes

n1ðn1 � 1Þ
2

pð2r1Þ2pDt
V

¼ kn1ðn1 � 1ÞDt
V

) k ¼ 2pr2
1p: ðD 7Þ

Appendix E. Derivation of spatial effective
mesoscopic rate equation for volume-excluded
reaction – diffusion master equation
We can write down the RE for X(i) in the system (4.5):

dfi

dt
¼ ~k0

N2

V
� fi

� �
�
X

j[NeðiÞ

~k1

4
fifj

þ
X

j[NeðiÞ

~kD

4

N2

V
� fi

� �
fj

�
X

j[NeðiÞ

~kD

4
fi

N2

V
� fj

� �
, ðE 1Þ

where fi is the concentration of X in voxel i. The first term

corresponds to the birth reaction, the second term to the four

possible dimerizations (each with a different neighbouring
voxel), and the third and fourth to diffusions into and out of

voxel i, respectively. Note that (N2=V� fi) corresponds to

the concentration of empty space in voxel i, Ei. This is because

each voxel can contain either E or X, and hence, there exists a

conservation law in each voxel. Also note that the factor of
~k1=4 is due to the fact that the dimerization can occur between

Xi and four distinct neighbours; by dividing by 4, we ensure

that the total dimerization rate for a given Xi is ~k1: By the spatial

symmetry of the system, all the fi are equal, say, f. Because the

diffusion terms in equation (E 1) cancel under this assumption,

f is simply the solution of a quadratic

f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k

2

0 þ 4~k1
~k0ðN2=VÞ

q
� ~k0

2~k1

: ðE 2Þ

We can then write down the entries for the Jacobian matrix J
and diffusion matrix D, analogously to the method used in

§3.2. For the Jacobian, we have

Jij ¼
�~k0 � ~k1f� kD

N2

V
if j ¼ i

�
~k1

4
fþ kD

4

N2

V
if j [ NeðiÞ

0 otherwise:

8>>>><
>>>>:

ðE 3Þ

For the diffusion matrix, we have

Dij¼

~k0
N2

V
�f

� �
þ~k1f

2þ2kD
N2

V
�f

� �
f if j¼ i

~k1

4
f2�kD

2

N2

V
�f

� �
f if j [NeðiÞ

0 otherwise:

8>>>>><
>>>>>:

ðE 4Þ

The method of computing the sEMRE of the vRDME is now

identical to the sEMRE of the RDME, albeit with different

values of J and D. Following the same method, we obtain the

analytical expression for the sEMRE

c ¼ f�
~k1

2V(~k0 þ 2~k1f)

�
XN�1

j¼0

XN�1

k¼0

e2pij=N(Dd þ 2Dn(cos(2pj=N)þ cos(2pk=N)))

Jd þ 2Jn(cos(2pj=N)þ cos(2pk=N))
,

ðE 5Þ

where Dd and Dn are the diagonal and neighbouring elements

of D, respectively, and similarly for Jd and Jn. In other words,

Jd ¼ �~k0 � ~k1f� kDN2=V, Jn ¼ �ð~k1=4Þfþ ðkD=4ÞðN2=VÞ,
Dd ¼ ~k0(N2=V� f)þ ~k1f

2 þ 2kD(N2=V� f)f, Dn ¼ ð~k1=4Þ
f2 � ðkD=2Þ(N2=V� f)f: Equation (E 5) is precisely equation

(4.6) in the main text.

The relationship between the parameters ~kj of the vRDME

and the parameters kj of BD and the RDME requires careful

attention. A detailed discussion can be found in [38]. Here,

we choose parameters such that the vRDME and BD gener-

ally agree when diffusion is fast. To do this, we compare

the RE of the vRDME with the RE of the CME (or equiva-

lently the RDME) which we know is the fast-diffusion limit

of BD. The RE are convenient, because neither of them

depend on the diffusion rate ~kD or kD. It follows that we do

not need to worry about rescaling this parameter; therefore,

we set ~kD ¼ kD: The steady-state RE solution of the CME is

given by fr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0=ð2k1

p
Þ, whereas the RE solution of the

vRDME is fV given by equation (E 2). We therefore need to

choose values of ~k0 and ~k1 which allow the concentrations
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to agree. In this paper, we have chosen

~k0 ¼ k0, ~k1 ¼ 2k1
N2

V
�

ffiffiffiffiffiffiffi
k0

2k1

s !
: ðE 6Þ
ocietypublishing.org
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Appendix F. Spatial effective mesoscopic rate
equations for systems with more than one
species
In this paper, we have focused on systems which either

have one species, or else which can be satisfactorily reduced

to a system with one effective species. This is because it

is only for such systems that the Jacobian and diffusion

matrices J and D are block circulant matrices, and this

fact is essential for deriving analytical expressions for

the sEMRE. However, the sEMRE can be calculated numeri-

cally for any system with any number of species.

Furthermore, the sEMRE is not only applicable to systems

of a two-dimensional periodic grid. We therefore here con-

sider a system of N (not N2) voxels which can be connected

in any way. Consider a general system of reactions with M
species, N voxels and R reactions, where the jth reaction

has the form

s1jX
ðiÞ
1 þ � � � þ sMjX

ðiÞ
M �!

kðiÞj
r1jX

ðiÞ
1 þ � � � þ rMjX

ðiÞ
M , ðF 1Þ

where XðiÞk represents species Xk in voxel i, and kðiÞj is the rate

of reaction j in voxel i. This system is coupled with a set of

diffusion events

XðiÞk �!
kðk;iÞD XðjÞk , j [ NeðiÞ, ðF 2Þ

where kðk;iÞD is the rate at which Xk diffuses out of voxel i,
and Ne(i) is the set of voxels neighbouring i. This descrip-

tion is completely general, because reaction and diffusion

rates can vary between voxels: spatial heterogeneity is

therefore permitted.

The deterministic concentration of XðiÞk is denoted f
ðiÞ
k and

the vector of concentrations is given by

f ¼ ðfð1Þ1 , . . . ,f
ð1Þ
M ,f

ð2Þ
1 , 2pk,f

ðNÞ
M Þ

T [ RNM: ðF 3Þ

The stoichiometric matrix is now S [ RNM�ðRNþcMÞ, where

c ¼
PN

i¼1 jNeðiÞj is the sum of the number of neighbours of

each voxel, i.e. the total number of distinct diffusion events

which can occur (if each voxel has four neighbours this

would be 4N ). The first RN columns of S correspond to reac-

tion events and so Sij ¼ rij � sij for the relevant reaction in this

case. The last cM columns of S correspond to diffusions, and

so have entries 1 and 21 for the species created and

destroyed respectively, and zeros otherwise. The macroscopic

rate vector f ðfÞ [ RRNþcM now has its first RN entries corre-

sponding to reaction rates, and the last cM entries

corresponding to diffusion events. The spatial RE solution
in a time-dependent setting is given by

d

dt
f ¼ Sf ðfÞ, ðF 4Þ

or else in steady state by

Sf ðfÞ ¼ 0: ðF 5Þ

The Jacobian J [ RNM�NM is defined as

J ¼ S
@f ðfÞ
@f

, ðF 6Þ

and the diffusion matrix D [ RNM�NM is defined as

D ¼ Sdiagð f ðfÞÞST, ðF 7Þ

where both equations hold for both time-dependent and

steady-state descriptions. The variance–covariance matrix

C [ RNM�NM is defined by

d

dt
C ¼ JCþ CJT þD, ðF 8Þ

in the time-dependent case, or else

JCþ CJT þD ¼ 0, ðF 9Þ

in the steady-state case. The covariances are then given by

keiejl ¼ Ci;j so that the vector D [ RNM is defined as

Di ¼
1

2

XNM

j;k¼1

@Jij

@fk
kejekl�

XNM

j¼1

fj
@Jij

@fj

0
@

1
A, ðF 10Þ

which holds in both the time-dependent and steady-state

cases. Note that this form for D assumes mass-action kinetics.

For a discussion of non-mass-action kinetics, see appendix

C. The sEMRE is finally given by

d

dt
c ¼ d

dt
fþ Jðc�fÞ þN

V
D, ðF 11Þ

in the time-dependent case, or else by

c ¼ f�N
V

J�1D, ðF 12Þ

in steady state. Note that this recipe can equally be used for

systems without spatial homogeneity (such as a birth process

which takes place in only one voxel). The most significant

computational cost is incurred by the solution of the

Lyapunov equation (F 9). This process is at worst O(N3M3),

but dramatic speed increases are likely, because J is a

sparse matrix [46]. In contrast, the SSA scales with the total

number of reaction and diffusion events per unit time, and

furthermore, typically requires many ensemble averages to

ensure meaningful results. The sEMRE avoids ensemble aver-

aging and hence a direct comparison of computation time

cannot really be made. However, because the total number

of reaction and diffusion events per unit time increases

with the number of molecules in the system [47], it is likely

that the sEMRE is much faster than the SSA, provided that

the number of molecules is not too small.
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