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Urothelial carcinoma (UC), the most common type of bladder cancer, is one of the most expensive malignancies to treat due
to its high rate of recurrence. The characterization of the genetic alterations associated with UC has revealed the presence of
two mutually exclusive molecular pathways along which distinct genetic abnormalities contribute to the formation of invasive
and noninvasive tumors. Here, we focus on the epigenetic alterations found in UC, including the presence of an epigenetic
field defect throughout bladders with tumors. A distinct hypomethylation pattern was found in noninvasive tumors, whereas
widespread hypermethylation was found in invasive tumors, indicating the two pathways given rise to two tumor types also
differ epigenetically. Since certain epigenetic alterations precede histopathological changes, they can serve as excellent markers
for the development of diagnostic, prognostic, and surveillance tools. In addition, their dynamic nature and reversibility with
pharmacological interventions open new and exciting avenues for therapies. The epigenetic abnormalities associated with UC
would make it an excellent target for epigenetic therapy, which is currently approved for the treatment of a few hematological
malignancies. Future research is needed to address efficacy and potential toxicity issues before it can be implemented as a
therapeutic strategy for solid tumors.

1. Introduction

Bladder cancer is one of the most commonly diagnosed
malignancies in the United States, with an estimated num-
ber of 73,510 new cases and 14,880 deaths in 2012 [1].
Worldwide, bladder cancer is the seventh most common
malignancy [2]. The risk factors associated with development
of bladder cancer include cigarette-smoking, exposure to
chemicals, such as aromatic amines, chronic bladder inflam-
mation, genetic predisposition, and age [3, 4]. In the United
States, more than 90% of bladder tumors are diagnosed as
urothelial carcinoma (UC), 5% as squamous-cell carcinoma
(SCC), and 2% as adenocarcinomas [5]. In countries, where
chronic urinary infection by Schistosoma haematobium is
prevalent, most bladder cancers are SCC [6]. Due to the low
incidence of SCC in the US as well as the rest of the Western
countries, this paper primarily focuses on UC. Of all newly

diagnosed UC cases, approximately 80% are noninvasive
papillary tumors, which are confined to the urothelium (CIS,
Ta) or lamina propria (T1). The remaining 20% of tumors
are muscle invasive (T2–T4) and are typically treated by
radical cystectomy [7]. Despite the fact that most noninvasive
UCs can be successfully treated by transurethral resection of
bladder tumor (TURBT), 70% of patients will suffer tumor
recurrence after the initial treatment and 10–20% of those
recurrent tumors will become invasive. Specific genetic alter-
ations characterize UCs; for instance, noninvasive tumors
show frequent mutations in fibroblast growth factor receptor
3 (FGFR3) mutations; whereas invasive tumors often display
TP53 mutations. Further progression of noninvasive tumors
to invasive tumors requires subsequent mutations in TP53
(Figure 1) [4, 8]. The high rate of recurrence and inability
to predict which tumor will progress require frequent and
invasive clinical management after the initial treatment.
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Figure 1: Two distinct molecular pathways for the initiation and progression of urothelial carcinoma. Normal urothelium acquire both
aberrant DNA hypermethylation and hypomethylation, prior to the onset of genetic mutations. Normal-appearing urothelium then can
transform into either noninvasive (Ta/T1) tumors or invasive tumors (T2–T4) through the accumulation of activating mutations of FGFR3
(fibroblast growth factor receptor 3) or TP53, respectively. Approximately, 80% of all newly diagnosed cases are noninvasive papillary
tumors, which do not often progress to invasive tumors. Acquiring subsequently TP53 mutation is necessary for the progression. Noninvasive
tumors acquire less hypermethylation and more aberrant hypomethylation, among which a group of genes is distinctively hypomethylated
in noninvasive tumors. Invasive tumors display the reversed methylation profile.

Currently, the gold standard for bladder cancer diagnosis
and surveillance is cystoscopy, which is an invasive and
expensive method that allows direct visualization of the
bladder. Noninvasive methods are also available, but the
majority of them lack sensitivity. Urinary cytology is the
most widely used noninvasive method for detecting the
presence of cancerous cells in urine and is often used in
conjunction with cystoscopy. However, this method shows
poor performance in detecting low-grade tumors [5, 9].
Furthermore, the accuracy of urinary cytology is jeopardized
by interobserver variability [5]. The current recommended
post-TURBT surveillance regimen for tumor recurrence
involves a combination of cystoscopy and voided urine
cytology every three months for two years and once a year
thereafter [10]. This results in $2.2 billion annual expen-
diture, making bladder cancer one of the most expensive
malignancies to treat [4, 11, 12]. In recent years, much effort
has been dedicated to the discovery of tumor biomarkers
that represent tumor properties to overcome the limitations
of cystoscopy and cytology. Although some progress has
been made in this area with some biomarkers showing
considerable clinical values, the majority of them lack sen-
sitivity and/or specificity [13]. To date, no biomarker assay
stands alone to detect and monitor the disease. Therefore,
the elucidation of the molecular mechanisms that underlie
the high rate of recurrence shown by bladder tumors will
help to develop more accurate and cost-effective noninvasive
strategies for diagnosis, prognosis, and surveillance of the
disease.

2. Genetic Mutations Associated with Invasive
and Noninvasive Urothelial Carcinoma

Many types of invasive carcinomas, including colon cancer
[14], arise from noninvasive carcinomas via the accumula-
tion of mutations over time. However, pioneering work done
by our group has demonstrated that such a developmental
continuum does not exist in UC. There is substantial
evidence for the existence of two mutually exclusive molec-
ular pathways that lead to bladder carcinogenesis in which
distinct genetic alterations are responsible for the formation
of noninvasive and invasive tumors, resulting in divergent
clinical behaviors [15]. Noninvasive tumors usually arise
by tissue hyperplasia and show mutations in fibroblast
growth factor receptor 3 (FGFR3) [16, 17], which is involved
in cell differentiation and angiogenesis [18]. Patients with
such tumors usually do not show disease progression, but
experience frequent recurrence [8, 19]. Invasive tumors
are believed to arise by tissue dysplasia and often harbor
mutations in TP53 [15, 20], a critical tumor suppressor gene
that initiates cell-cycle arrest upon DNA damage [21]. These
tumors are aggressive and associated with high mortality
[8]. These two pathways do not occur sequentially and only
under rare circumstances, when a subsequent p53 mutation
is acquired, noninvasive tumors can progress to invasive
tumors [15]. The genetic alterations associated with UC
are relatively well defined as compared to its epigenetic
alterations. Therefore, this paper mainly focuses on the
epigenetic aberrations found in UC.
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3. The Epigenetic Landscape and
Its Deregulation in Urothelial Carcinomas

Epigenetics encompasses the heritable changes in gene
expression that are not caused by changes in the underly-
ing DNA sequence [22]. Such epigenetic changes include
DNA methylation, histone modifications, and nucleosome
positioning [15, 22–24]. Among the three layers of epi-
genetic regulation, DNA methylation was the first to be
identified and is the most extensively studied. It involves the
covalent addition of a methyl group to the 5′ position of
cytosine residues in the context of CpG dinucleotides. The
distribution of CpG sites is asymmetrical and nonrandom
throughout the genome, with a high frequency of CpG
sites occurring near promoters (CpG islands) and repetitive
elements [25, 26]. The majority of promoter-associated CpG
islands are usually not methylated under normal conditions,
with the exception of imprinted genes [25, 27]. DNA
methylation at gene promoters modifies DNA accessibility
to transcription factors or helps recruit silencing-associated
proteins, resulting in gene silencing [28, 29].

The N-termini of histones undergo a variety of posttrans-
lational modifications, including methylation, acetylation,
phosphorylation, ubiquitination, and sumoylation to gen-
erate transcriptionally permissive or refractory chromatin
conformations depending on the type and location of the
modification [23, 30]. For instance, trimethylation of lysine
4 on Histone 3 (H3K4me3) is enriched at the promoters of
transcriptionally active genes [31], whereas trimethylation
of H3K9 and H3K27 is associated with transcriptionally
inactive gene promoters [23]. The balanced activity of
histone modifying enzymes that add or remove specific
modifications is critical for normal cell physiology [32]. In
addition, the presence of specific histone variants at regula-
tory regions also plays a role in controlling gene expression
by influencing the stability of nucleosome occupancy [33],
which either facilitates or prevents binding of transcription
machinery at transcription start sites [34, 35].

In addition to genetic abnormalities, epigenetic alter-
ations also play vital roles in the initiation as well as
progression of cancer. Global disruption of the epigenetic
landscape, resulting in aberrant gene expression and func-
tion, is a hallmark of human cancer [27, 36]. The cancer
methylome is highly disrupted, featuring hypermethylation
and aberrant silencing of tumor suppressor genes, and
hypomethylation of repetitive sequences, transposons, and
oncogenes, which contributes to tumorigenesis by increasing
chromosomal instability and activating aberrant transcripts
[36–38]. Substantial evidence shows that the epigenome of
UC cells displays profound alterations in DNA methylation,
histone modifications, and nucleosome positioning. In this
context, a few well-known tumor suppressor genes, including
CDH1, CDH13, INK4A, RASSF1A, APC, ARF, MLH1, and
DAPK [39–41], have been reported to be frequently hyper-
methylated and silenced in UC, resulting in deregulated cell
proliferation [42]. In addition to global hypomethylation
of repetitive elements, such as long interspersed nuclear
elements (LINE-1) [43], work done by our group has
demonstrated that a specific LINE-1 located within the

mesenchymal-epithelial transition factor (MET) oncogene
(L1-MET ) is hypomethylated and transcriptionally active in
UC, accompanied by the presence of a nucleosome-depleted
region (NDR) just upstream of the transcription start site
(TSS), active histone marks, and the histone variant H2A.Z
[44]. Recent advances in high-throughput technologies have
facilitated the identification of distinct DNA methylation,
gene expression, and histone modification profiles associated
with tumors, including UC [45–48]. Such technologies will
aid in establishing a comprehensive understanding of the
altered epigenome present in the diseased state, and subse-
quently facilitate the identification of potential drug targets
and biomarkers for diagnostic and prognostic purposes.

The two mutually exclusive molecular pathways for
the formation of noninvasive and invasive tumors also
differ epigenetically in addition to genetically. A genome-
wide analysis of DNA methylation patterns in noninva-
sive and invasive urothelial tumors revealed a distinct
hypomethylation pattern only in noninvasive tumors and
widespread hypermethylation in invasive tumors, suggesting
that they arise via distinct epigenetic pathways [46]. When
correlations between DNA methylation and gene expression
were performed, an inverse relationship was observed for
most genes, highlighting the functional significance of both
aberrant DNA hypermethylation and hypomethylation of
gene promoters in tumors. Many of the hypomethylated loci
distinctively associated with noninvasive tumors are non-
CpG island promoters of tissue-specific genes. The unique
hypomethylation pattern present in the noninvasive tumors
may explain the failure of these tumors to become invasive
[46].

4. Epigenetic Field Defect

The alarmingly high recurrence rate of bladder cancer is
of clinical concern, highlighting the need for physicians
and scientists to elucidate its underlying mechanism. The
presence of a field defect, an area of tissue that is predisposed
to undergo oncogenic transformation, has been postulated
to be responsible for such high recurrence rate [49]. This
concept was first introduced by Slaughter et al., who found
abnormal tissues composed of epithelial cells of polyclonal
origins surrounding oral squamous cell carcinomas [50].
Since then a field defect, as identified by genetic alterations,
has been found in tumors arising from various tissues,
including upper aerodigestive tract [51], lung [52], esoph-
agus [53], vulva [54], cervix [55], colon [56], skin [57], and
bladder [58, 59].

In addition to genetic field defects, epigenetic field defects
have also been found in various types of cancer, including
stomach [60, 61], liver [62], colon [63–65], lung [66], breast
[67], kidney [68], and esophageal [69]. Using the Illumina
GoldenGate assay to compare primary tumors, normal-
appearing tissues at 0.5 cm increments away from the tumor
in multiple directions, and urothelium from cancer-free
bladders, our group found that cancer-bearing bladders
have a widespread epigenetic field defect [46]. Methylation
at a significant number of loci (169 probes spanning 155



4 Advances in Urology

unique gene regions) was altered not only in tumors but
also in normal-appearing urothelial taken at least 5 cm away
from the corresponding primary tumor, with the majority
of the loci, such as ZO2, MYOD1, and CDH13, being
aberrantly hypermethylated [46]. Among the 169 loci, 145
loci displayed a trend of increasing methylation in invasive
tumors and 41 loci in noninvasive tumors, indicating that
hypermethylation may constitute the majority of epigenetic
defects present in the urothelium. In addition, we also
observed hypomethylation and ectopic expression of L1-
MET in primary tumors and surrounding histologically
normal tissues [44]. Together, these studies suggest that
uniquely hypermethylated or hypomethylated loci that are
found in bladder tumors and surrounding tissues may serve
as biomarkers and could be used to develop diagnostic,
prognostic, and/or surveillance tools.

The field defect found in tumor-bearing bladders could
be propagated by clonal expansion or a generalized epi-
genetic field defect. Clonal expansion involves the process
of accumulating aberrant DNA methylation in one cell,
followed by expansion of that cell population across the
urothelium, resulting in subsequent transformation. Anal-
ysis of the pattern of X-chromosome inactivation, which is
maintained during clonal expansion, in samples taken from
2 female patients indicated that the widespread epigenetic
field defect observed in UC could not be attributed to clonal
expansion. Instead, it is likely that epigenetic alterations
occur independently in many cells across the urothelium,
thereby predisposing them to undergo oncogenic trans-
formation [46]. The urothelium is uniformly exposed to
carcinogens, causing epigenetic alterations, initially with-
out associated histological changes. It is plausible that at
the initiation of UC, there is no “normal” urothelium
present and this may provide an explanation for its high
recurrence rate after TURBT. The altered epigenome in
the normal-appearing urothelium may allow for a more
permissive environment for the growth of newly transformed
cells.

5. Using DNA Methylation as a Marker for
Diagnosis, Prognosis, and Surveillance

Since bladder cancer may remain asymptomatic until a
relatively late stage, ideal clinical management would be
comprised of early detection, accurate prediction of disease
progression, and frequent monitoring. However, unlike
many other types of cancers, there is no standard and
effective noninvasive strategy for early detection [70]. Cur-
rently, conventional histopathological evaluations that are
used for the categorization of tumor grade and stage are
also used to predict the potential behavior of tumors. Such
histopathological evaluations are not accurate in predicting
the behaviors of heterogeneous tumors, resulting in signifi-
cant differences in clinical outcomes for patients with tumors
of similar stages [71]. Therefore, patients undergo frequent
and long-term surveillance after the initial treatment. There
is a strong need to develop economically viable, noninvasive
methods with high sensitivity and specificity for diagnosis,

prognosis, and monitoring of UC. A better understanding
from both a genetic and an epigenetic perspective of how UC
arises and progresses has greatly contributed to the ongoing
efforts to create these new assays.

The ability to detect cancer-specific genetic and epi-
genetic alterations in cells detached from the urothelium,
which can be found in voided urine samples, supports the
use of such biomarkers in the development of noninvasive
methods for bladder cancer detection and progression [40,
72–75]. Several of the most promising genetic biomarkers
whose protein or expression levels are upregulated in the
diseased state, including nuclear matrix protein 22 (NMP-
22), telomerase, and the nuclear matrix protein bladder
cancer 4 (BLCA-4), have been reported to have promising
values [73]. However, they suffer from similar limitations
as urine cytology—low sensitivity for low grade tumors.
Although some of the markers have been used to comple-
ment cystoscopy and urinary cytology, none of them has
been utilized independently [73]. The detection of genetic
mutations DNA extracted from urine sediment is another
screening method, and mutations of the fibroblast growth
factor 3 (FGFR3) gene, which frequently occur in superficial
bladder tumors, can be readily identified by this method,
providing greater sensitivity in the detection of TA tumors
than cytology [76].

A greater understanding of the roles epigenetics plays in
tumorigenesis has opened up new avenues for developing
innovative diagnostic and prognostic biomarkers. Because
of their early onset in bladder tumorigenesis and presence
in precancerous lesions and tissues surrounding primary
tumors (field defect), DNA methylation changes are excellent
biomarker candidates [46, 74]. Tumor-associated alterations
in DNA methylation are readily detectable in body fluids,
such as blood [77] and urine [72, 78]. We have shown that
DNA isolated from urine and primary tumors of bladder
cancer patients show similar methylation profiles, displaying
hypermethylation at a number of apoptosis-associated genes,
including DAPK, BCL2, and TERT. These loci are not
methylated in urine specimens from healthy controls [72],
suggesting that such tumor-specific methylation markers
have the potential to serve as diagnostic tools using a nonin-
vasive sample procurement method. Numerous studies have
identified a number of additional methylation marks suited
for urine-based detection, including the combination of
TWIST and NID2 [79] and the combination of E-cadherin,
p14, and RASSF1A [80]. Costa and collaborators reported
100% sensitivity and 94% of specificity for early stage Ta and
low-grade UC when evaluating DNA methylation changes in
a panel of 3 genes: GDF15, TMEFF2, and VIM [74]. Reinert
and collaborators established a detailed mapping of the
methylome in bladder cancer and identified four novel DNA
methylation marks: HOXA9, ZNF154, POU4F2, and EOMES
[75]. It is of interest that the methylation status of genes
that show nontumor specific DNA methylation patterns
can be potentially used for assessing prognosis and risk for
recurrence. This category includes genes that are aberrantly
methylated in histologically normal tissues surrounding
bladder primary tumors, such as ZO2, MYOD1,and CDH13
[46].
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The technological advances in the detection of global
methylation patterns have facilitated the characterization of
tumor methylomes, thereby providing new opportunities to
find better and more sensitive biomarkers. Although efforts
in this regard are currently underway, more studies are
needed to translate these findings into the clinical setting.

6. Urothelial Carcinoma and
Epigenetic Therapies

Although epigenetic modifications are heritable, their
dynamic nature and reversibility through pharmacological
interventions make them excellent targets for anticancer
therapies. Over the past few decades, various drugs aimed
at targeting different types of epigenetic alterations observed
in cancer, including DNA methylation and histone modifi-
cations, have been developed, with the goal of reactivating
aberrantly silenced genes. In addition to having genetic
abnormalities, UC is also driven by progressive alterations in
the epigenome, resulting in changes in chromatin packaging
and aberrant gene expression [46]. Epigenetic changes in UC
have been well elucidated and their significance has been
demonstrated, making UC a suitable candidate for epigenetic
therapy. Due to the presence of an epigenetic field defect
in UC, epigenetic therapies may also prevent recurrence by
reversing the epigenetic aberrations occurring in histological
normal tissues that remain after TURBT.

UC is an excellent candidate for epigenetic therapy due
to the presence of a highly disturbed epigenome, which
can be restored via the intervention of epigenetic agents.
Promoter hypermethylation accompanied by histone mod-
ifications which facilitate the formation of heterochromatin
is commonly seen in UC. DNA methyltransferase inhibitors
(DNMTi) and/or histone deacetylase inhibitors (HDACi)
could be used to reverse such abnormalities and restore the
expression of aberrantly silenced genes. In addition to having
therapeutic value, epigenetic therapies also have preventive
value in patients who had undergone TURBT, which leaves
large areas of epigenetically altered tissues. Our lab has
demonstrated that ZO2, which is methylated in tumors and
adjacent normal-appearing tissues, is reactivated upon 5-
Aza-2-deoxcytidine (5-Aza-CdR) treatment in a panel of
bladder cancer cell lines [46]. Treatment with DNMTi also
has the potential to reverse the invasiveness of high-grade
tumors by creating an epigenetic profile similar to that of
low-grade tumors. As discussed above, noninvasive tumors
show a unique hypomethylation pattern in the vicinity of
TSSs which may account for their failure to acquire an
invasive phenotype.

7. DNA Methyltransferase Inhibitors

The widespread hypermethylation at promoters in UC,
particularly in invasive tumors [40, 41, 46] suggests that
restoration of a normal epigenome through the use of DNA
hypomethylating agents would be clinically beneficial. Many
of these agents are nucleoside analogues, which get incor-
porated into DNA and sequester DNA methyltransferases

(DNMTs), resulting in depletion of DNMTs and global
hypomethylation upon subsequent cell divisions [81].

Two DNA methylation inhibitors, 5-Azacytidine (5-
Aza-CR; Vidaza) and 5-Aza-2-deoxycytidine (5-Aza-CdR;
Decitabine), have been approved by the Food and Drug
Administration (FDA) for the treatment of myeloid malig-
nancies [81]. Both are cytosine analogues that are incorpo-
rated into replicating DNA in the place of cytosine, resulting
in heritable global demethylation [32, 82]. In addition, 5-
Aza-CR is also incorporated into RNA, which prevents the
translation of oncogenic proteins [83, 84].

Despite their promising results in treating myeloid malig-
nancies, both 5-Aza-CdR and 5-Aza-CR have limited efficacy
in treating solid tumors due to their plasma instability,
cytotoxicity, and potentially mutagenic properties [85–87].
The instability of 5-Aza-CR and 5-Aza-CdR is attributed to
hydrolysis and deamination, presenting a challenge for their
clinical application. To address this issue, several cytidine
analogues with improved stability and efficacy have been
developed. Zebularine, which lacks an amino group in the
4-position of the pyrimidine ring, is less chemically labile
and cytotoxic than the 5-Aza analogs. Studies have shown
that it reactivates aberrantly silenced tumor suppressor genes
in breast cancer cell lines [88] and inhibits polyp formation
in female MIN mice [89]. Another method used to increase
drug stability is to generate them as prodrugs. An example of
this type of analogue is S110, a dinucleotide containing the
5-azacytosine ring that is less prone to deamination and less
cytotoxic. S110 has been shown to induce p16 expression by
reducing DNA methylation in human xenografts [90].

In the past few years, tremendous efforts have been
invested into broadening the application of 5-Aza-CdR and
5-Aza-CR to the treatment of solid tumors. A preclini-
cal phase I trial in which 5-Aza-CR was subcutaneously
administered to 19 dogs with naturally occurring invasive
UC showed favorable tumor response. 72% of the dogs
have demonstrated either partial remission or stable disease,
meriting potential application of such treatment in humans
[91].

8. Histone Deacetylase Inhibitors

Another layer of epigenetic regulation includes posttransla-
tional modifications of histones, which play an important
role in gene expression by altering chromatin structure [92].
The type and location of histone modifications determine
the conformation of chromatin. Certain modifications, such
as H3K4me3 and H3K9 acetylation, are associated with
euchromatin and make the DNA more accessible to the
transcriptional machinery. Other modifications, such as
H3K9me3 and H3K27me3, are associated with heterochro-
matin and make the DNA more condensed and less accessible
to the transcriptional machinery [93, 94]. Cytosine methy-
lation is associated with increased H3K9me3 and decreased
H3 acetylation and H3K4me3 at gene promoters, leading
to chromatin condensation and subsequent transcriptional
silencing [95, 96]. The level of histone modifications is
orchestrated by histone modifying enzymes, which add or
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Figure 2: Epigenetic therapies can reverse aberrant epigenetic modifications in cancer. Genes that are expressed in normal cells, such
as tumor suppressor genes, have an open chromatin structure, consisting of an unmethylated promoter, active histone marks, and a
nucleosome-free region immediately upstream of the transcription start site. During tumorigenesis, genes can be silenced through one of
the two silencing mechanisms: polycomb repressive complex (PRC) reprogramming and de novo DNA methylation. PRC-mediated silencing
can be reversed upon treatment with EZH2 inhibitors, such as DZnep. The de novo methylation-mediated silencing can be reversed upon
treatment with DNA methylation transferase inhibitors, such as 5-Aza-CdR, 5-Aza-CR, Zebularine, and S110. The therapeutic value of
above reagents may be enhanced when combining with HDAC inhibitors, such as SAHA, PBA, and TSA. Open and closed circles represent
unmethylated and methylated CpG sites, respectively.

remove specific histone marks to promote or hinder gene
expression. A balance between these enzymes is necessary
to maintain normal physiological conditions. Cancer cells
lack this balance, as they typically overexpress histone
deacetylases (HDAC), which results in a global reduction in
histone acetylation [97].

More than 15 HDAC inhibitors are currently undergoing
preclinical or clinical investigations for the treatment of both
hematological malignancies and solid tumors, including UC
[98]. Their common mechanism of action is the chelation
of Zn2+ ion, which is critical to the enzymatic activity of
HDAC [99]. To date, there are only 2 HDACIs that have
been approved by the FDA for the treatment of cutaneous
T-cell lymphoma, Vorinostat, also known as suberoylanilide
hydroxamic acid (SAHA), and Romidepsin [94, 100]. HDACi
have shown great clinical efficacy as single anticancer ther-
apy only against certain hematological malignancies [101].
Although many have shown great potential for solid tumors
in preclinical settings, in clinical settings they have generally
yielded low responses [97, 102]. Among such HDACi, SAHA

showed modest efficacy against UC in a phase I trial [103,
104]. To date, HDACi have demonstrated limited antitumor
activity in UC and other solid tumors as a single agent;
however, they have been well tolerated by patients [105].
In vivo studies have shown that a combinatorial treatment
of HDACi and adenovirus-mediated gene therapy is more
efficacious than either one alone, resulting in upregulation
of the coxsackie and adenovirus receptor (CAR) gene, which
is essential for the uptake of adenoviruses in target cells
[106–108]. Such studies suggested the potential benefits of
combining HDACi with other therapeutic agents to achieve
a better therapeutic value in treating patients with UC.

9. Combination Therapy

The epigenome of UC is highly disrupted, featuring aberrant
gene silencing either through the acquisition of DNA methy-
lation or the repressive histone mark H3K27 trimethylation
(Figure 2). The existence of these mechanisms suggests that



Advances in Urology 7

the combination of DNMTi and HDACi may result in higher
therapeutic efficacy. Both additive and synergistic effects have
been reported with the combination of these two classes of
epigenetic agents in patients with advanced hematological
malignancies and solid tumors [32, 102]. However, the
clinical utilization of combined epigenetic therapies is still
in its early stages and more work is needed to elucidate
the mechanism behind the increased clinical efficacy of
sequential administration of DNMTi and HDACi in order to
achieve an even greater synergistic effect.

The discovery of the vital role that aberrant epigenetic
changes play in tumorigenesis as well as the reversibility of
such changes has spurred great interest in the application
of epigenetic therapies in cancer treatment with the primary
goal of restoring aberrantly silenced genes. In addition, epi-
genetic therapies can also enhance the expression of cancer
germline antigens, which are genes only expressed in germ
cells and in a variety of cancers, including UC [109, 110].
Activating such genes increases the likelihood that tumor
cells will be recognized and killed by antigen reactive CD8(+)
T cells [111]. Epigenetic therapy can enhance the expression
of cancer germline antigens, which are being actively pursued
as vaccine targets. Therefore, combining epigenetic therapy
with cancer germline antigen vaccine therapy may help
amplify the therapeutic value of immunotherapy [110].

Despite its great promise, the application of epigenetic
therapies to the treatment of UC and other types of solid
tumors is still in its infant stage. Some of the issues that
need to be resolved before this therapeutic approach is
implemented includes the poor stability of the two FDA-
approved DNMTi and the relapse of methylation after
DNMTi treatment.

10. Conclusion and Future Directions

UC is as much a disease of disrupted epigenome as it
is a disease of genetic mutations. Here, we have sum-
marized the epigenetic abnormalities associated with UC,
with an emphasis on DNA methylation. The presence of
an epigenetic field defect, where DNA methylation of a
significant number of genes is altered not only in primary
tumors but also in the surrounding normal-appearing
tissues, provides a plausible explanation for the high rate of
UC recurrence. Since certain epigenetic alterations precede
disease pathology, they have the potential to serve as excel-
lent biomarkers for diagnosis, prognosis, and monitoring.
Although a large number of highly specific markers, both
genetic and epigenetic, have already been identified, they
suffer from low sensitivity. The ability to detect methylation
changes in readily obtainable urine samples opens the door
for the development of sensitive and specific noninvasive
methods for early detection and monitoring of UC. In
addition to serving as biomarkers, epigenetic alterations
are also excellent therapeutic targets. Epigenetic therapies,
such as DNMTi and HDACi, aim at restoring the diseased
epigenome to its normal state by reactivating aberrantly
silenced genes. While they have shown promising results
in both preclinical and clinical settings, their efficacy is

still limited to a few hematological malignancies. Epigenetic
therapies also reactivate cancer germline antigens, which can
be recognized by the immune system, and, therefore, they
could potentially enhance the therapeutic value of cancer
germline antigen vaccines. Future work, including obtaining
a greater understanding of the mechanisms of DNMTi and
HDACi, is necessary to determine the extent of their utility
in treating solid tumors. With the aid of readily available
genome-wide DNA methylation and expression analyses and
our rapidly accumulating knowledge regarding epigenetic
regulation, the translation of these findings from the bench
to the bedside in the near future is an obtainable goal.
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