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ABSTRACT The model oleaginous alga Nannochloropsis gaditana was completely
sequenced using a combination of optical mapping and next-generation sequencing
technologies to generate one of the most complete eukaryotic genomes published
to date. The assembled genome is 30.7 Mb long.

As the world moves away from fossil fuels to more sustainable and renewable
energy sources, photosynthetic algae have shown great promise as a potential

alternative liquid fuel. Nannochloropsis gaditana and other members of the genus
Nannochloropsis have been extensively studied because of their natural ability to make
lipids (1–3), and there have been several publications of draft whole-genome
sequences, transcriptomes, and organelle genomes for this species (4–10). Recently, we
published a doubling of lipid productivity in this species by decreasing the expression
levels of a single transcription factor (11).

Nannochloropsis gaditana CCMP1894 was obtained from CCMP, now known as
the National Center for Marine Algae and Microbiota (https://ncma.bigelow.org/), cell
sorted to a single cell, and propagated to produce a clonal population. The strain was
cultivated as described previously (9), and DNA was isolated by grinding with liquid
nitrogen, followed by a general phenol-chloroform clean-up procedure. The genome
was sequenced using PacBio single-molecule real-time (SMRT) sequencing technology.
In addition, optical mapping (12) was used to generate chromosome size scaffolds and
to aid in gap filling. Several PacBio SMRTbell libraries were made and sequenced on a
total of 26 SMRT cells on the PacBio RS II platform, for a total of 8.86 Gb. The PacBio data
were assembled using Hierarchical Genome Assembly Process 2 (HGAP2) into 92
nuclear contigs (after removal of 20 contigs, including the plastidial and mitochondrial
contigs, as well as contigs determined to originate from bacterial contamination), and
the resulting contig sequences were polished with Quiver. The polished assembled
contigs were then mapped and assigned to chromosomes using an optical map
obtained from OpGen (Gaithersburg, MD) as a reference. Out of the 92 nuclear contigs,
39 contigs were uniquely assigned to chromosomal positions. Further manual finishing
resulted in the closure of 5 of the 9 remaining gaps.

The final assembly was 30.7 Mb long, and it consisted of 30 chromosomal scaffolds
(29.98 Mb; 97.6%) and 53 unplaced contigs (725 kb; 2.4%). Out of the 30 chromosomal
scaffolds, 23 scaffolds included both telomeric sequences and no gaps, 4 scaffolds
included both telomeric sequences and a single gap each, and 3 scaffolds included one
of the two telomeric sequences with no additional gaps. The earlier draft genome
sequences of Nannochloropsis species have been useful for understanding the basic
metabolic machinery and genes involved in important processes, such as lipid metab-
olism. However, these genomes were highly fragmented and are not suitable for
understanding chromosome architecture or to effectively engineer chromosomes, and
they almost certainly do not annotate a number of functional genes (11). This near-
complete assembly will enable future studies to better understand lipid metabolism,
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carbon partitioning, and photosynthetic efficiency and the ability to manipulate chro-
mosomes within this model oleaginous alga (13).

Accession number(s). This whole-genome shotgun project has been deposited at
DDBJ/ENA/GenBank under the accession number PEIC00000000.
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