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Abstract
Histological slides are an important tool in the diagnosis of tumors as well as of other diseases that affect cell shapes and 
distributions. Until now, the research concerning an optimal staining time has been mainly done empirically. In experimen-
tal investigations, it is often not possible to stain an already-stained slide with another stain to receive further information. 
To overcome these challenges, in the present paper a continuum-based model was developed for conducting a virtual (re-)
staining of a scanned histological slide. This model is capable of simulating the staining of cell nuclei with the dye hema-
toxylin (C.I. 75,290). The transport and binding of the dye are modeled (i) along with the resulting RGB intensities (ii). For 
(i), a coupled diffusion–reaction equation is used and for (ii) Beer–Lambert’s law. For the spatial discretization an approach 
based on the finite element method (FEM) is used and for the time discretization a finite difference method (FDM). For the 
validation of the proposed model, frozen sections from human liver biopsies stained with hemalum were used. The staining 
times were varied so that the development of the staining intensity could be observed over time. The results show that the 
model is capable of predicting the staining process. The model can therefore be used to perform a virtual (re-)staining of 
a histological sample. This allows a change of the staining parameters without the need of acquiring an additional sample. 
The virtual standardization of the staining is the first step towards universal cross-site comparability of histological slides.

Keywords  Histological staining · Finite element simulation · Numerical simulation · Reaction–diffusion equation · Image 
segmentation · Beer–Lambert law

Introduction

Cancer is one of the leading causes of death worldwide 
today (Ferlay et al. 2020). In order to discover and treat can-
cer appropriately, it is necessary to examine the histological 

characteristics of tumor cells (Jones et al. 2015). The two 
main ways to diagnose the presence of cancer and its char-
acteristics, such as the degree of malignancy are (i) the stain-
ing of histological sections (Falk et al. 2018; Giuliano et al. 
2011; Hiddemann and Bartram 2010; Veuthey et al. 2014) 
and (ii) radiological techniques, e.g., magnetic resonance 
imaging (Dong et al. 2017). It is anticipated that pathologists 
will receive support in the diagnosis of diseases from models 
based on artificial intelligence methods (Ari and Hanbay 
2018; Dong et al. 2017; Kather et al. 2019; Sharma et al. 
2014). Additionally, methods without the need of preparing 
classical histological slides were developed (Hollon et al. 
2020).

The goal of staining is to create a visual distinction 
between the components of the tissue (see Fig. 1). To obtain 
a general overview, the cell nuclei and cytoplasm are stained 
with an appropriate dye.

The most common tissue stains for that purpose are 
hematoxylin (stains mainly the nuclei) and eosin (stains 
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mainly the cytoplasm) (Lang 2006; Mulisch and Welsch 
2010; Suvarna et al. 2019; Veuthey et al. 2014).

The aim of the present paper is to model and simulate the 
nuclei staining of histological sections with the dye hema-
toxylin. A histological slide, which was already stained with 
dye A, could therefore be virtually re-stained with a differ-
ent dye B. Such a model is feasible because each cell in an 
organism can be characterized by the structure of its nuclei 
and cytoplasm (Mulisch and Welsch 2010). Additionally, 
the dye reacts always in the same way with the respective 
tissue (Lang 2006).

Modeling and simulation of dyeing in general has been 
studied mainly with respect to textile fiber dyeing (de Souza 
et al. 2007; Lin 1992; Reddy et al. 1995). Reddy et al. (1995) 
used the Langmuir model and compared that to a diffusion 
equation. de Souza et al. (2007) and Lin (1992) used cou-
pled diffusion–reaction equations. There are also examples 
like by Winzek and Baumgärtel (1988) who simulated the 
staining of histological slides or by Irion et al. (1993) who 
modeled the staining of single-cell organelles.

In the current work, the mechanics of the staining of his-
tological sections is investigated via the methods of building 
a simplified model and conducting numerical simulations. 
After a short introduction into the basics of histological 
staining, the model to describe the diffusion and reaction 
processes during the staining of histological sections is pre-
sented. This model allows the determination of the resulting 

stain for each nucleus individually, since it is important for 
an investigator to look at the entire tissue section and not 
just individual nuclei. Therefore, a workflow was created to 
derive a two-dimensional representation of the geometry of 
the scanned histological slide. This geometry is then used 
to create a finite element mesh for the sample. This proce-
dure is described in the following section, together with the 
discretization of the problem and the applied initial condi-
tions and boundary conditions. The proposed model is then 
compared to real histological slides that were created at the 
Institute of Pathology at the University Hospital Carl Gustav 
Carus Dresden.

Materials and methods

Theoretical framework and continuum‑based model

Here, we give a brief introduction to the dye used for the 
experiments and simulations and how it binds to the tissue 
sections. Afterwards, the proposed model for the compu-
tation of the dye concentration and the resulting color is 
described. The model is based on continuum mechanics, i.e., 
the local concentration of the dye changes due to transport 
that is caused by diffusion.

Hematoxylin

Hematoxylin is a commonly used dye to stain nuclei (Prentø 
2001) and is often used in a combination with eosin (Mulisch 
and Welsch 2010; Suvarna et al. 2019) but also as a coun-
ter stain for immunohistochemical staining (de Cea and Nie 
2018; Suvarna et al. 2019). For this reason, the staining of a 
histological section with hematoxylin was modeled.

The actual dye is not hematoxylin but a combination of 
the oxidized hematoxylin (called hematein) and a mordant 
with additional components. There are diverse recipes with 
varying amounts of hematein, mordant, and other compo-
nents (Prentø 2001, 2009). In our investigation, Mayer’s 
hemalum was used for the experimental tissue sections as 
well as for the numerical simulation.

Physico‑chemical binding theory of tissue staining

Several theories exist that describe the processes involved 
in tissue staining. The most commonly used theory is the 
physical–chemical bonding theory, which is based on elec-
trostatic attraction (Mulisch and Welsch 2010; Veuthey 
et al. 2014). It is assumed that the dye and the tissue have 
an acidic or basic pH value, which results in a negative or 
positive charge. After the dye has interacted with the tissue 
due to the electrostatic attraction, a chemical bond is formed 
(Mulisch and Welsch 2010; Prentø 2001, 2009; Veuthey 

Fig. 1   Comparison of a frozen section (top) with a paraffin section 
(bottom) from the same patient sample. The region denoted by a is 
a portal field with bile ducts and lymphocytes, b denotes liver cells 
which are arranged in cell strands (trabeculae) and c is a fat vacuole. 
The scale bar is 50 µm
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et al. 2014). Please note that a dye must have complementary 
properties to the tissue in order to be able to form a chemical 
bond. This is necessary in order to compete against other 
molecules (Prentø 2001).

Histological changes of tumors

For tumor cells, a de-differentiation occurs, which is accom-
panied by changes in shape of the nucleus that becomes 
often enlarged and irregularly shaped and is hyperchromatic. 
This is also referred to as pleomorphism. In addition, the 
cytoplasm of the tumor cell may exhibit a staining different 
from normal cells.

Transport and binding of the dye

In literature concerning the mechanics of staining, the diffu-
sion is described to be the dominant factor for the transport 
of the dye (Goldstein 1980; Irion et al. 1993; Siedel and 
Zimmermann 1995; Winzek et al. 1987). Therefore, a dif-
fusion term is used to model the transport of the dye. Inside 
the cell, no difference regarding the diffusion coefficient is 
made between its single components, e.g., the membranes, 
cytoplasm, or nucleus. As a consequence, the diffusion in the 
cell can be modeled as a single step. For a better understand-
ing of the staining process, a dye basin with a histological 
slide as well as a simplified model of a cell is depicted in 
Fig. 2. Usually, the glass slides with the attached tissue sec-
tions are moved inside the dye basin. Thus, the dye solution 
is always in motion and is getting mixed. This leads to a 
constant dye concentration at the surface of the histological 
slide. Therefore, diffusion is modeled only in the tissue and 
not also inside the dye basin.

Once the dye has reached its binding sites due to the 
electrostatic attraction, it forms a chemical bond with the 

respective tissue (see “Physico-chemical binding theory of 
tissue staining”).

The binding of the dye to the tissue is a reversible reac-
tion (Ferus-Comelo 2002; Winzek and Baumgärtel 1988). 
Therefore, the binding of the dye can be represented as a 
pseudochemical reaction

where A is the free, unbound dye concentration, B the tissue 
with which the dye can form a bond, and C is the dye which 
is bound to the tissue.

The staining can be considered to be a two-step process 
(Prentø 2009). The first step is the diffusion of the dye 
into the tissue section and the second step is the binding 
of the dye to the tissue components. For the simulation of 
both steps, a diffusion–reaction equation and a reaction 
equation are fully coupled to form the resulting system of 
equations. The detailed derivation can be found in Men-
ning (2021).

The used material parameters are the diffusion coef-
ficient D, the rate constant which determines the binding 
rate kon , the rate constant which determines the dye release 
rate koff , and the maximal concentration of dye cmax

b
 that 

the respective part of the cell, in this case the nucleus, can 
bind. The general variables in Eq. (1) can now be defined 
with the used variables

Please note that Eq. (4) is not an exact chemical for-
mula; it is only for better representation. The unknown 
functions in Eqs. (2) and (3) are the concentration of the 
unbound dye cf (which is free to move) and the concentra-
tion of the bound dye cb . The latter describes the concen-
tration of the dye which has formed a chemical bond with 
the tissue. Therefore, cb is no longer able to diffuse and 
thus no diffusion term is needed in Eq. (3). Additionally, 
to the diffusion in the first step (Prentø 2009) describes an 
ion exchange. This ion exchange is not explicitly modeled. 
It determines how and where the dye is able to bind to 
the tissue. Through the common use of Mayer’s hemalum, 
it is already known that the dye can bind to almost all 
nuclear acids (Prentø 2001). Equations  (2) and (3) are 
used to model the transport and the binding of a dye to a 
histological section. Equations (2) and (3) are similar to 
the equations used by Lin (1992) to model the staining of 
textile fibers.

(1)A + B ↔ C

(2)
�cf

�t
= D∇2cf − koncf

(

cmax

b
− cb

)

+ koff cb

(3)
�cb

�t
= koncf

(

cmax

b
− cb

)

− koffcb

(4)cf +
(

cmax
b

− cb
)

⇌ cb

Fig. 2   Illustration of a dye basin (a) in which the slide rack (b) is sub-
merged. A histological slide (c) with a tissue sample (d) represents 
multiple histological sections situated on the slide rack. A zoom of 
this tissue sample shows a simplified model of a cell used in the cur-
rent work. In this simplification, the cell consists of only two compo-
nents, the cell nucleus (e) and the cytoplasm (f)
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RGB color model

There exist different models to mathematically describe a 
color (Bejnordi et al. 2015; Ruifrok et al. 2001; Van der 
Laak et al. 2000). The model used in this paper is the RGB 
model, which is an additive color model (Heid and Reith 
2010). The three intensities red (R), green (G), and blue 
(B) span a vector space whose axes are the three intensities 
(Fig. 3). Typically, the values range between 0 to 1 or from 
0 to 255. The latter range was used in the current work. A 
combination of (0,0,0) represents the color black and if each 
intensity is maximal, i.e., 255, the color white is represented 
(Van der Laak et al. 2000). That is, the lower the intensities, 
the darker the color.

Derivation of a color from the dye concentration

Using the equations given in “Transport and binding of the 
dye”, it is possible to calculate the concentration of the dye 
bound to the tissue cb . To derive the resulting color from this 
concentration, Beer–Lambert’s law.

is used. It links the intensity of the light after passing 
the slide I with the concentration of the bound dye cb via 
the extinction coefficient ε, the thickness of the slide h and 
the intensity of the light before it enters the specimen I0 
(Bettinger and Zimmermann 1991; Gavrilovic et al. 2013; 
Ruifrok et al. 2001). The extinction coefficient ε is a mate-
rial parameter of the dye. It determines which wavelengths 
λ of the light are absorbed by the dye and are thus no longer 
present in the light leaving the slide. Please note that the 
Beer–Lambert’s law is only valid for dyes that absorb the 
light like hematoxylin or eosin. Beer–Lambert’s law cannot 
be applied for dyes that reflect light (Gavrilovic et al. 2013).

The intensities I and I0 as well as the extinction coef-
ficient ε are dependent on the wavelength λ. The thickness 

(5)I = I0 exp
(

−�cbh
)

h of the slide is a parameter of the slide’s production pro-
cess. Following Van der Laak et al. (2000), Eq. (5) can be 
formulated individually for the three colors red (R), green 
(G), and blue (B)

Equations (6)–(8) can be used to calculate the intensities 
IR , IG and IB and required to derive a resulting color. The 
extinction coefficient ε can be (i) determined independently 
by experimental investigations, (ii) taken from the literature 
or be (iii) calculated from data of stained slides, as has been 
done in the present work.

Numerical implementation

For the implementation of the introduced equations, the 
open-source software FEniCS (Alnæs et al. 2015) was used. 
After the discretization, the initial conditions and the bound-
ary conditions are given in “Initial conditions and boundary 
conditions”. After that, the used material parameters, are 
determined in “Material parameters”. In “Finite element 
mesh from a scanned slide”, the workflow for deriving a FE 
mesh based on a scanned slide is described.

Discretization

The finite element method is used to discretize and solve 
Eqs. (2) and (3). The required weak formulations are

with the two weighting functions �cf and �cb and the inte-
grals over the area A and the volume V. n represents the 
normal vector at the boundary in outwards direction. Typi-
cal dimensions of a histological section are 20 mm × 15 mm 
in the plane (Mulisch and Welsch 2010) and only a few 
micrometer in thickness. For the sections actually used in the 
experiments, a cutting thickness of h = 6μm was set at the 
microtome. Due to these striking differences in dimensions, 
diffusion over h, i.e., along the z-axis (Fig. 4 (top)) will be 
much faster than in the xy-plane. Therefore, the assumption 
was made that diffusion in the xy-plane can be neglected. 

(6)IR = I0,R exp
(

−�Rcbh
)

(7)IG = I0,G exp
(

−�Gcbh
)

(8)IB = I0,B exp
(

−�Bcbh
)

(9)∫ Ω
ċf�cf dV = ∫ �Ω

n ⋅ (D∇cf�cf )dA − ∫ Ω
D∇cf ⋅

∇�cf dV − ∫ Ω
koncf

(

cmax
b − cb

)

�cf dV + ∫ Ω
koff cb�cf dV

(10)
∫ Ω

ċb𝛿cbdV = ∫ Ω

koncf
(

cmax
b

− cb
)

𝛿cbdV − ∫ Ω

koffcb𝛿cbdV

Fig. 3   Representation of the color space defined by the red, green, 
and blue intensity according to Van der Laak et al. (2000)
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Thus, the problem is considered to be one-dimensional in 
z-direction. In Fig. 4 (bottom), a schematic representation 
of the used one-dimensional finite element mesh (FE mesh) 
is shown.

For the time discretization, the backward Euler finite dif-
ference method is used

where n is the actual point in time and t is the time. The used 
time step size is tn+1 − tn = Δt = 0.5s.

Initial conditions and boundary conditions

The simulation starts right before the slides are placed 
into the dye basin. Hence, the concentration of the free 
and of the bound dye are both equal to zero at t = 0s , i.e., 
cf (z, t = 0s) = 0molm−3 and cb(z, t = 0s) = 0molm−3.

At its surface, where the tissue section is in contact 
with the dye solution, a constant concentration of the free, 
unbound dye is assumed, cf(z = 6 µm, t) = cf  with cf  being 

(11)ċf = ċn+1
f

≈
cn+1
f

− cn
f

Δt

(12)ċb = ċn+1
b

≈
cn+1
b

− cn
b

Δt

the concentration of the dye used in the respective recipe. At 
the tissue section base, due to the restricting glass slide, the 
flux is set to zero, i.e., Jdif f(z = 0 m, t) = 0 s−1 m−2. In Fig. 4, 
these two conditions are visualized.

For the bound dye concentration cb , no boundary condi-
tion is necessary.

Material parameters

The material parameters used for the comparison and the 
validation of the model proposed with the experimental 
data were calibrated from two of five different staining 
times, with the exceptions of I0,i with i = R,G,B. With the 
assumption of white light passing through the slide, I0,i with 
i = R,G,B can be set to I0,i = 255.

A combination of Merck’s Mayer’s hemalum and SAV’s 
Mayer’s hemalum with a mixing ratio of 1:2 in favor of 
SAV’s hemalum recipe was used to stain the tissue sections 
attached to the slides. The hematin and the mordant form a 
bond in a ratio of 1:1 (Bettinger and Zimmermann 1991). 
Therefore, the concentration of the hematin and the same 
amount of the mordant were summed up. This is done for 
the recipe of Merck and SAV. From the calculated values, 
the weighted average is taken. The result is referred to as cf.

Because no rate constants were found in the literature 
concerning the binding and the release of hemalum to and 
from the tissue, two assumptions were made. The first 
assumption is that the diffusion is the time limiting process 
(Goldstein 1980; Winzek and Baumgärtel 1988) and the sec-
ond one that the dye release will be much slower than the 
binding (Siedel and Zimmermann 1995). For the determina-
tion of the rate constants, the inequation

following Fibich et al. (2005) was set up. For the binding 
time, the diffusion time and the dye release time the follow-
ing equations were used.

The combination of these equations and the inequa-
tion (13) leads to the used inequation

for the determination of the rate constants. In order to 
achieve that kon is much larger and koff much smaller than 
2D

h2cmax
b

 the resulting values are to be multiplied by a large 

(13)tbinding ≪ tdif fusion ≪ tdyerelease

tbinding =
(

konc
max
b

)−1
; tdif fusion =

h2

2D

tdyerelease = k−1
off

(14)
koff

cmax
b

≪
2D

h2cmax
b

≪ kon

Fig. 4   Top panel: Schematic representation of a histological section 
with the diffusional flux J

dif f
 . At the bottom, the tissue is situated on 

a glass slide which blocks the transport of the dye, represented by the 
hatching. Bottom panel: Representation of the discrete one-dimen-
sional FE mesh used to calculate dye transport
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value. In the present work, 2D

h2cmax
b

 was multiplied by 500 in 

order to be physically consistent.
Note that the rate constants are no longer variable param-

eters but depend on the diffusion coefficient D. The param-
eter kon also depends on the maximum number of binding 
sites cmax

b
.

The result of staining the nuclei in a histologic section 
can vary with some nuclei being more intensely stained 
than others. A possible explanation for this could be the 
difference in volume of the nuclei. If the number of binding 
sites per nucleus is the same, a change in volume results in 
a change in concentration. Another reason which is espe-
cially important when dealing with tumors is the fact that 
tumor cells in comparison to normal parental cells can have 
a different number of chromosomes or chromosome parts 
(Haroske et al. 2001). For the staining with hemalum, more 
chromosomes or more chromosome parts are equivalent to 
more binding sites and therefore a more intense staining is 
possible, depending on the used staining time. The amount 
of dye which each nucleus can bind determines how intense 
the virtual staining will be. To be able to consider this effect, 
each nucleus is assigned an individual maximal concentra-
tion of free binding sites cmax

b
 for the dye. Therefore, an 

approximation is needed for cmax
b

 . Thus, the assumption was 
made that the aluminum ions of the hemalum will bind to 
the phosphor atoms of the cell nuclei (Lang 2006; Prentø 
2001; Veuthey et al. 2014). The number of phosphor atoms 
were then estimated with the following consideration. In a 
nucleus are two sets of chromosomes. Each chromosome set 
is built up of 3.2 × 109 base pairs. A base pair consists of two 
nucleotides, which in turn consist, among other things, of a 
phosphate residue (Rassow et al. 2012). This results in 1.28 
× 1010 phosphor atoms in the DNA per nucleus and therefore 
1.28 × 1010 free binding sites for the hemalum per nucleus. 
In order to obtain a concentration, the number of particles 
must be related to a volume. In this paper, the assumption 

was made that the nucleus has the shape of a sphere and that 
due to the high aluminum concentration used in the recipe 
for the hemalum, the dye molecules can bind to all binding 
sites. For the diameter of the sphere, d = 6μm is chosen, 
which leads to a concentration of cmax

b
 = 187 mol m−3. Please 

note that the diameters can also be smaller than the thickness 
of the slide. However, to get a fix point, it was assumed that 
most of the nuclei have a diameter that is approximately 
the thickness of the section (Winzek and Baumgärtel 1988). 
Lang (2006) reported that the aluminum ions can bind to 
either one or two phosphor atoms. To take this into account, 
cmax
b

 was divided by the mean value, i.e., 1.5. Since a num-
ber of assumptions were made in determining cmax

b
 such as 

the shape and size of the nuclei or the number of binding 
sites, a range of values were used for the test calculations 
(Table 1). Due to the dependency of kon on cmax

b
 , kon is also 

specified through a value range. The diffusion coefficient 
was fitted using the mean RGB intensities of the slide from 
the experiments, which was stained for t = 25s . Please note 
that the determination of the parameters can also be done at 
a different time point. However, our preliminary studies have 
shown that the best results can be obtained at an early time 
point, i.e., when the diffusion process is not yet completed.

The extinction coefficients were fitted using the mean 
RGB intensities from the experiments for the slide, which 
was stained for t = 100 s. At this time point, the staining is 
completed (Fig. 6) and therefore, the assumption was made 
that the concentration of bound dye cb is equivalent to the 
maximum concentration of free binding sites cmax

b
 . Fol-

lowing that, the Beer–Lambert’s law was converted to the 
extinction coefficients εi for i = R,G,B. With the analytically 
determined cmax

b
 , the thickness of the section h and the mean 

RGB intensities, all unknowns are determined. Of note, the 
thereby determined values of ε are smaller than the values 
for ε according to Bettinger and Zimmermann (1991). They 
specify a maximal molar extinction coefficient as well as 
a curve for the extinction over the wavelength for multiple 

Table 1   Material parameters 
used in the simulation

Parameter Description Value Unit

Binding rate constant kon 0.34… 2.52 m3mol−1s−1

Dye release constant koff 0.013 s−1

Diffusion coefficient D 4.53 ⋅ 10
−12 m2s−1

Maximal dye concentration that the tissue can 
bind

cmax
b

50… 376 molm−3

Dye concentration in the dye basin cf 10.67 molm−3

Extinction coefficient hemalum red �R 1585 m2mol−1

Extinction coefficient hemalum green �G 2996 m2mol−1

Extinction coefficient hemalum blue �B 1111 m2mol−1

Intensity of the incoming light red I0,R 255 Wm−2

Intensity of the incoming light green I0,G 255 Wm−2

Intensity of the incoming light blue I0,B 255 Wm−2
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hemalum concentrations with different preparation steps. 
One explanation for the differences could lie in the fact that 
the maximal molar extinction coefficient was measured in 
a solution and not in a tissue section as it was done in the 
current work.

For the calibration of the material parameters, the data 
from two staining time points were used. At t = 25s, the 
equilibrium was not yet reached and the dynamic param-
eters could be fitted. In the current work, these parameters 
are the diffusion coefficient D and also to a certain extend 
the rate constants kon and koff via inequation (14). However, 
this procedure is only needed because we are not aware of 
any reliable sources for these parameters. The same applies 
for the extinction coefficients. If these parameters are all 
determined through independent experiments, the remain-
ing material parameter that has to be determined is cmax

b
 . It 

is important to perform this with a slide where the equilib-
rium (end state) of the staining is achieved. If the parameter 
is fitted at e.g., t = 25 s the resulting cmax

b
 would not be the 

actual maximal concentration of binding sites. This would 

only make sense if the staining would normally be ceased 
at this time point because the desired staining has reached 
saturation. The physical meaning of cmax

b
 would then change 

from the (total) maximal concentration of binding sites to 
the maximal concentration of binding sites needed to achieve 
the desired staining.

The maximal concentration of free binding sites cmax
b

 
together with the extinction coefficients εi for i = R,G,B are 
the parameters, which determine the resulting stain. While 
the extinction coefficients are the same for the whole slide, 
cmax
b

 can vary for the nuclei, depending on their size. The 
material parameters used for the numerical simulation are 
summarized in Table 1.

Finite element mesh from a scanned slide

The simulations are conducted on a one-dimensional mesh 
(Fig. 4). In Fig. 5, the workflow for the creation of a FE 
mesh based on a real slide is presented. This mesh is used 
only to record the projected simulation results to create a 

Fig. 5   Presentation of the important steps during the creation of an 
FE mesh based on a section of a scanned histological slide. The slide 
from which a section is shown in a was stained for 13 s with Mayer’s 
hemalum. In b, the binary mask for the cell nuclei is depicted. The 
geometry is shown in c. In d, the FE mesh for the projection is pre-

sented. Additionally, a single nucleus (red outlined) is shown at high 
magnification. The resulting mesh for this nucleus is shown at the 
bottom of the image of the “FE mesh for projection”. The scale bar 
is 50 µm
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two-dimensional image (Supplementary Fig. 5). Thus, no 
computations are carried out with this mesh. In Fig. 5a, a 
single nucleus is depicted at high magnification. Zooming 
in on a section of the image shows the nucleus approxi-
mated by finite elements (Fig. 5d).

The process starts with a scan of the histological section 
(Fig. 5a) for which the virtual staining is to be simulated. 
For the scanning of the slides, the scanner Pannoramic 
DESK from Sysmex© was used. Afterwards, a section of 
this image at a magnification of 100 × or 200 × was cut out 
for further evaluations. This image can then be opened 
with the program Fiji (Schindelin et al. 2012). The use 
of a sufficiently high magnification is necessary because 
otherwise the nuclei cannot be recognized unequivocally. 
Then, a binary mask was created with the “Trainable Weka 
Segmentation” plugin, generated by Arganda-Carreras 
et al. (2017), shown in Fig. 5b. The image is divided into 
nuclear areas and areas free of nuclei, e.g., cytoplasm or 
interstitium or void spaces with this mask. The binary 
mask can now be saved and loaded into MATLAB. With 
the MATLAB function isocontour (Kroon 2021), the iso-
contour lines were calculated and the information was 
saved in form of the isocontour lines and the points that 
make up those lines (Fig. 5c). For the creation of the actual 
FE mesh for the projection, the program Gmsh (Geuzaine 
and Remacle 2009) was used. Therefore, the information 
of the isocontour lines and points is exported from MAT-
LAB in a syntax, which Gmsh can read. After that, the 
meshing algorithm from Gmsh can be used to create the 
FE mesh (Fig. 5d). The different colors are just a visual 
presentation of (i) the different nuclei (multiple colors) 
and (ii) the non-nuclear components of the tissue (green).

Summary of the assumptions

The assumptions made to create the model can be summa-
rized as follows:

1.	 The concentration of the dye on the surface of the histo-
logical slide is constant for the time period under con-
sideration.

2.	 The reaction of the dye with the tissue is a reversible 
equilibrium reaction.

3.	 The diffusion in the xy-plane can be neglected.
4.	 The number of binding sites for the dye in the tissue is 

fixed ergo there is a cmax
b

.
5.	 The thickness of the section and the diameter of the cell 

nuclei inside the histological section are usually in the 
same range.

6.	 The cell nucleus has the shape of a sphere.
7.	 The temperature T inside the dye basin is constant.

8.	 The diffusion coefficient D inside the slide is isotropic 
and homogeneous.

9.	 There exists only one cell nucleus over the height of the 
slide.

These assumptions apply only to the staining of liver tis-
sue with hemalum. However, for tissues with similar struc-
ture, the basic procedure could be the same. The staining of 
other tissues or the use of other dyes and staining techniques 
will be part of future work.

Results

For validation and comparison of the proposed model, 
frozen sections of the liver were stained with Mayer’s 
hemalum for different periods of time. Sections from 
these slides are shown in Supplementary Fig. 4. Two indi-
vidual slides were prepared for each of the six staining 
times, t = 0s, 13s, 25s, 50s, 100s, 200s . For simplicity, it 
was assumed that the staining within a nucleus is evenly 
distributed. Therefore, it is sufficient to determine the RGB 
intensities for the central point of the nuclei. For each time, 
one of the two prepared slides was selected. Three different 
sections were selected from this slide and investigated at a 
200 × magnification to guarantee a sufficient pixel number 
per nucleus.

Preliminary studies have shown that the magnification 
should not be too small. With a lower magnification, more 
cell nuclei can be considered, but as a consequence the num-
ber of pixels per nucleus is too low. To counteract this, the 
200 × magnification is chosen. Additionally, multiple sec-
tions were selected to determine the mean values of the RGB 
intensities for each staining time point. For these sections, 
the geometry was approximated and the central point of each 
cell nuclei be determined. With the coordinates of the cen-
tral points, the RGB intensities from the sections could be 
computed.

The binary mask stores the information of whether pixels 
belong to a nucleus or not. However, this mask may also 
contain artifacts in which only part of a nucleus was detected 
or a certain part of the cytoplasm fell into the class of nuclei 
(Supplementary Fig. 3). In order to filter out incorrectly 
detected nuclei, the area of each nucleus was computed. 
Afterwards, only those “nuclei” whose area was larger than 
A = 12(μm)2 were processed. The exact value used for the 
threshold of the area is chosen arbitrarily. The main reason 
for the need of a threshold value is to filter out small artifacts 
that are clearly not nuclei (Supplementary Fig. 3).

Figure 6 shows the result of combining the two pro-
cedures: (i) filtering out the artifacts and (ii) determining 
the RGB intensities via the central points of the nuclei. 
Three different sections were evaluated per staining time 
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corresponding to total of approximately 2400 nuclei per 
staining time.

The error bars defined by the standard deviation are 
almost the same for each time and quite large. To give an 
overview of the variation in the RGB intensities that are 
computed by this method, box plots of the RGB intensities 
are shown in Supplementary Fig. 6. It can be seen that the 
number of outliers is quite different for the different sec-
tions. However, the number of outliers is small compared 
to the total values studied. Furthermore, the mean values 
were fairly similar for all three sections (of the respective 
histological slide) per staining time.

In Fig. 6 it can be seen that after a staining time of only 
13 s , the nuclei already exhibited a very intense staining. 
For longer staining times, the intensities increased much 

slower and after t = 100s they did not increase anymore 
(Fig. 6). Therefore, it can be concluded that between t = 50s 
and t = 100s an equilibrium has been reached. The mean 
RGB intensities determined depend on which of the two 
slides is used for each stain (Supplementary Fig. 2).

The quality of the data can be improved by choosing more 
similar tissue samples. Another possibility is to remove 
the same tissue sample at different staining times, which 
is experimentally demanding. However, it should be noted 
that this does not impact the simulation results, because 
only two individual slides are used for the fitting: the first 
one at t = 25s (in disequilibrium) is used for calculating the 
diffusion coefficient and the rate constants, the second one 
(in equilibrium) at t = 100s is used for the calculation of 

Fig. 6   Determination of mean 
RGB values for different time 
points of tissue section staining. 
Three histological slides from 
which sections were taken are 
depicted in the image. For each 
staining time point, a different 
histological section was evalu-
ated in the experiments

Fig. 7   Flowchart of the single steps needed to conduct the simulation for the virtual staining of a histological slide. According to the initial con-
ditions for c

b
 and c

f
 , both concentrations are set to 0 mol m−3 at t = 0 s, cf. Section “Initial conditions and boundary conditions”
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extinction coefficients as well as the maximal dye concentra-
tion, which the tissue can bind.

The typical workflow for performing a virtual staining 
is shown in Fig. 7. First, the parameters used for the crea-
tion of the histological slide, like the thickness of the tissue 
section and the dye used, should be written down. After 
that, the already-stained slide for which the staining with 
another dye or for another time span should be simulated is 
scanned. Based on this scanned slide, a FE mesh is created 
(see “Finite element mesh from a scanned slide”) with which 
the geometry is determined.

For each nuclei, an individual cmax
b

 is calculated. For 
that purpose, first the RGB intensities of each nucleus were 
determined. Subsequently, a series of test calculations were 
performed with the presented model, in which different val-
ues for cmax

b
 were given and the RGB intensities were calcu-

lated. This served as a calibration series for the relationship 
between the local cmax

b
 and the color intensity.

For the determination of the maximal number of binding 
sites, it is important to use a stained slide. This is also the 
reason why for this model the starting point is a stained slide 
and not an unstained one. Another requirement is that the 
dye with which the physical slide was stained and the dye 
with which the virtual staining has to be done, have the same 
binding sites. If a method is found to determine cmax

b
 purely 

by geometrical features, a virtual staining could also be done 
on the basis of an unstained slide.

The RGB intensities obtained by the test calculations are 
then combined with the respective concentration cmax

b
 used 

as the material parameter to form an interpolation table. This 
allows the definition of cmax

b
 based on a RGB intensity of a 

nucleus. Afterwards, the dye concentration can be computed 
with the Eqs. (2) and (3) and the resulting staining with 
the Eqs. (6), (7), and (8) for each cell nuclei individually. 
Finally, the calculated RGB intensities can be projected onto 
the FE mesh generated in step 3 (Fig. 5). Now, the three 
intensities are combined to form the respective color. The 
comparison between numerically simulated and scanned/
measured color is shown in Supplementary Fig. 5.

For the validation of the proposed model with the exper-
imental data, the steps described above in the workflow 
are performed for a tissue section which was stained for 
t = 100 s. With that, the geometry and cmax

b
 are fitted. The 

distribution of the free and bound dye concentration cf and 
cb is shown and described in Supplementary Information.

The RGB intensities were calculated for a staining time of 
200 s. For the real, physical slides, a different slide was used 
for each staining time (Supplementary Fig. 4). Therefore, it 
is not possible to directly compare point-wise (or nucleus-
wise) the results of the projected RGB intensities with the 
real, physical sections. A visual comparison can only be 
done qualitatively as will be reported below. For a quanti-
tative comparison of the simulation with the experimental 

results, only a global comparison is possible. The assump-
tion was made that if the global comparison, that is over all 
the nuclei, is good, the local comparison for the single nuclei 
would also be good. For a global comparison, the average 
of the RGB intensities of all nuclei was taken for each sim-
ulated second. The simulation results are plotted together 
with the mean values and error bars of the experimental 
data versus time in Fig. 8. The simulation results show a fast 
decrease of the RGB intensities in the first seconds followed 
by a plateau leading to the final steady-state value (equilib-
rium value) which is unique for each color. After a staining 
time of t = 50 s the equilibrium seems to be reached. After 
a staining time of t = 42s , 95% of the maximal staining is 
achieved for the simulated data. For t = 25s and t = 100s the 
simulation and the experimental data are in excellent agree-
ment. This was to be expected, as the data of the experiments 
for this time point was used to fit the material parameters 
used in the equations.

For the other time points investigated, the simulation 
results were always within the range spanned by the error 
bars with the exception of IG for t = 13s and IB for t = 50s . 
A possible factor for the deviation of the simulation from 
the experimental results could be the fact that the thickness 
of the experimental histological sections could be differ-
ent from the assumed thickness h = 6μm . Please note that 
h = 6μm is the height set on the microtome. Since this is 
a highly precise work step on inhomogeneous (biological) 
material, variations in the cutting result are quite typical. 
Estimating the actual section thickness would be one way of 
adding a correction factor. So far, this has not been possible 
in standardized applications.

Collectively, our results suggest that the proposed 
model is well suited to simulate the staining of histologi-
cal sections. In Supplementary Fig. 6, the box plots of the 

Fig. 8   Comparison of the mean values of the RGB intensities of the 
real, experimental investigated stained slides (exp) with the numeri-
cally simulated staining (sim). For the calibration of the geometry and 
cmax

b
 the used section is depicted in Supplementary Fig. 5
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simulated RGB intensities of the nuclei are depicted. The 
number of outliers and their value is much lower than for the 
experimental data. It can be observed that for longer stain-
ing times the distribution of the RGB intensities increases.

However, the goal of the proposed model is not to cre-
ate a diagram as seen in Fig. 8, but to create 2D images 
of virtually stained histological sections that can be evalu-
ated by an investigator or a machine learning algorithm for 
cancer detection. In Supplementary Fig. 5, a comparison 
of simulated staining with the experimental results for the 
different staining times is shown. It should be noted that 
only the staining of the nuclei was simulated in the present 
work. In addition to the stained nuclei (darker purple), the 
experimental data also include sections of stained cytoplasm 
(lighter purple), see Fig. 1.

For the staining time of t = 13s, many of the virtually 
stained nuclei were not as intensely stained as the experi-
mental one (see also Fig. 8). For the later time points, a 
better agreement between the results of the virtual and the 
actual staining was found. The variation in intensities of 
the virtually stained nuclei is larger than in the experimen-
tal data (Supplementary Fig. 5). This could be a sign that 
the process of choosing a cmax

b
 for each nucleus should be 

improved. Overall, the difference between the simulated 
staining of the nuclei and the experimental data is within a 
tolerable range.

Discussion and outlook

In the present work, a model capable of performing vir-
tual staining of cell nuclei in tissue sections is presented. 
With the proposed model, we lay the foundation for a histo-
logical analysis that can be adapted to the personal habits/
experiences of the histologists. It also allows the generation 
of a much wider variety of training data sets for machine 
learning methods due to the possibility to standardize the 
images. Thus, our method allows the application of machine 
learning-based cancer detection algorithms to slides that are 
stained with another procedure.

The transport and binding of the dye was computed using 
a one-dimensional FE simulation. Afterwards, the resulting 
RGB intensities were determined and the intensities were 
projected onto a two-dimensional mesh based on a scanned 
histological slide. When the used material parameters were 
fitted with the data from two different time points, the 
obtained curves were generally within the range spanned 
by the error bars. This means that the model is able to accu-
rately simulate the staining of the nuclei with hemalum over 
time. In a purely visual comparison, the two-dimensional 
simulation results are similar to the experimental data. How-
ever, there are still small differences, especially for shorter 
staining times.

With our model, a user can virtually (re-)stain cell 
nuclei of a histological section from liver tissue, or tissues 
with similar properties using the same or a different dye. 
A prerequisite for the applicability of the model is that 
the cell nuclei of the tissue under investigation form the 
same bonds with hemalum, which can be assumed at least 
for most human tissues. For tissue sections of interest, the 
progress of the RGB intensities at different time points 
can be visualized. For that, the geometry of the nuclei is 
approximated. Often a tumor cell is not or not only char-
acterized by a different staining intensity compared to a 
normal parental cell but also by a larger diameter, which 
can be detected by the described model. Thus, the inves-
tigator or the artificial intelligence model analyzing the 
virtual staining, perceives this and can make a decision.

An important aspect for further research concerning 
this topic is the experimental determination of the mate-
rial parameters like the diffusion coefficient D or the rate 
constants kon and koff . An expansion of the current model, 
which simulates the staining of nuclei, to include the stain-
ing of the cytoplasm is another important aspect. Only 
the combination of nuclear and cytoplasmic staining will 
potentially permit a truthful diagnosis.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00418-​022-​02118-9.
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