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Abstract

Background: Key to the control of pandemic influenza are surveillance systems that raise alarms rapidly and
sensitively. In addition, they must minimise false alarms during a normal influenza season. We develop a method
that uses historical syndromic influenza data from the existing surveillance system ‘SERVIS’ (Scottish Enhanced
Respiratory Virus Infection Surveillance) for influenza-like illness (ILI) in Scotland.

Methods: We develop an algorithm based on the weekly case ratio (WCR) of reported ILI cases to generate an alarm
for pandemic influenza. From the seasonal influenza data from 13 Scottish health boards, we estimate the joint
probability distribution of the country-level WCR and the number of health boards showing synchronous increases in
reported influenza cases over the previous week. Pandemic cases are sampled with various case reporting rates from
simulated pandemic influenza infections and overlaid with seasonal SERVIS data from 2001 to 2007. Using this
combined time series we test our method for speed of detection, sensitivity and specificity. Also, the 2008-09 SERVIS
ILI cases are used for testing detection performances of the three methods with a real pandemic data.

Results: We compare our method, based on our simulation study, to the moving-average Cumulative Sums (Mov-Avg
Cusum) and ILI rate threshold methods and find it to be more sensitive and rapid. For 1% case reporting and detection
specificity of 95%, our method is 100% sensitive and has median detection time (MDT) of 4 weeks while the Mov-Avg
Cusum and ILI rate threshold methods are, respectively, 97% and 100% sensitive with MDT of 5 weeks. At 99%
specificity, our method remains 100% sensitive with MDT of 5 weeks. Although the threshold method maintains its
sensitivity of 100% with MDT of 5 weeks, sensitivity of Mov-Avg Cusum declines to 92% with increased MDT of 6 weeks.
For a two-fold decrease in the case reporting rate (0.5%) and 99% specificity, the WCR and threshold methods,
respectively, have MDT of 5 and 6 weeks with both having sensitivity close to 100% while the Mov-Avg Cusum method
can only manage sensitivity of 77% with MDT of 6 weeks. However, the WCR and Mov-Avg Cusum methods
outperform the ILI threshold method by 1 week in retrospective detection of the 2009 pandemic in Scotland.

Conclusions: While computationally and statistically simple to implement, the WCR algorithm is capable of raising
alarms, rapidly and sensitively, for influenza pandemics against a background of seasonal influenza. Although the
algorithm was developed using the SERVIS data, it has the capacity to be used at other geographic scales and for
different disease systems where buying some early extra time is critical.

Background
Rapid detection of pandemic influenza at national or
regional level is a public health issue of critical importance
[1,2]. Huge excess mortality and morbidity have been asso-
ciated with the pandemics of influenza outbreaks in the
past [3]. In the aftermath of the highly pathogenic H5N1
avian influenza outbreaks worldwide [4,5], the growing

concern [3,4] of a virulent form of a possible human influ-
enza pandemic has led to the setting up of influenza sur-
veillance systems across the globe [6]. One of the main
purposes of such worldwide expansion of influenza sur-
veillance systems is the timely detection of influenza out-
breaks of pandemic potential [7]. The importance of
timely detection lies in buying some extra time for being
prepared to deal with a pandemic [3,8,9]. This has also
been corroborated by some recent mathematical model-
ling studies [10,11] of pandemic influenza outbreaks: a key
finding suggests that there would be a small window of
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opportunity for getting ahead of pandemic outbreak fronts
and thus helping early pandemic mitigation efforts if it
could be detected early on.
Most developed countries as well as many from the

developing world have some form of influenza surveil-
lance in place [6]. These surveillance systems are based
on the reporting of disease syndromes (e.g., reports of
Influenza-like illnesses (ILI)) and are generally designed
to monitor levels of seasonal influenza [12,13]. Although
the signature of pandemic influenza could be different
from that of seasonal ones [14], the traditional approach
(patients presenting with clinical signs of ILI, collection
of throat/nasal swab samples from some of these
patients and, finally, laboratory confirmation of influ-
enza) followed in influenza surveillance systems, in the
absence of any detection algorithm applied to syndromic
data, may not be able to pick it up early on. This is the
reason that public health surveillance systems are being
supplemented by the new state-of-the-art statistical
tools [1,2]. The development of these new statistical
tools has demonstrated the potential to automate syn-
dromic surveillance systems, to be able to raise specific
and sensitive early alerts of adverse disease outbreaks.
Indeed this is a fast growing and a very active area of
scientific research at the moment [6].
At present, a number of methods [12,13,15] exist to

establish the onset of peak activities in the epidemics of
seasonal influenza. These methods are mostly based on
regression [16,17] or time-series [12,13,15] analysis of
seasonal ILI data. One such method is the Moving-
Average Cumulative sums (Mov-Avg Cusum) method
[18-20]. Originally developed for the industrial quality
control [21], it is now frequently used for detecting the
outbreaks of seasonal and pandemic influenza [12,22].
Recently there has been a flurry of new detection meth-
ods based on sophisticated statistical approaches [1,2],
including those aimed at real-time monitoring and pro-
jecting of influenza cases [23,24]. However, challenges
remain in terms of how to use the ILI surveillance data
in a simple and efficient manner for timely detection of
influenza pandemics.
The basic reproduction ratio R0 (i.e., the average num-

ber of new infections produced by a single infection in a
totally naïve host population) plays a central role in our
understanding of infectious disease dynamics. It deter-
mines whether a new infection will successfully invade
the susceptible population [25,26]. In the case of an
ongoing epidemic, the effective reproduction ratio R
replaces R0 [25]. In the presence of disease tracing data,
R can be estimated and the in- or out-of-control status
of an ongoing epidemic can be established [27]. Where
there is no availability of disease tracing data, as in
influenza syndromic data, the weekly case ratio (WCR),
defined as the ratio of the number of reported cases in a

week to the number of cases reported in the previous
week, may function as an indirect measure of R and
may be suitable for raising public health alarms in the
early stages of an emerging infection. Although pan-
demic influenza infections may grow exponentially in
early invading stages (evident in the mortality data from
the past pandemics [28] or in the mathematical model-
ling [10,11,29] of influenza pandemic), the detection
algorithms so far employed in influenza surveillance sys-
tems largely ignore this natural behaviour as the basis
for generating early warning of influenza outbreaks of
pandemic potential.
The aim of this paper is to develop a detection algo-

rithm, based on the estimates of WCR for expected
influenza pandemics, to facilitate sensitive, specific and
rapid detection of a pandemic outbreak at a regional
level based on existing surveillance systems. Using the
influenza surveillance data from Scotland, we first sift
through the spatiotemporal patterns in the historical
data by calculating WCR and NHB, the number of health
boards (HBs) that show increases in the weekly ILI
cases. The joint probability distribution of WCR and
NHB is then contrasted with expected and observed pat-
terns in the presence of pandemic influenza. As
described in the next section, the expected patterns for
pandemic cases are obtained from a previously pub-
lished mathematical model [29]. Observed patterns for
pandemic cases are based on records from the 2008-09
season when influenza A(H1N1)v was circulating in
Scotland.
We compare the performance of our detection algo-

rithm, using simulated influenza pandemics as well as
data from the 2009 influenza A(H1N1v) epidemic in
Scotland, with that of the Mov-Avg Cusum method and
with the ILI rate threshold method, a slightly modified
form of the baseline ILI activity indicator used by the
Health Protection Agency (HPA) in the monitoring of
seasonal influenza in the UK.

Methods
Seasonal ILI data from SERVIS
In developing our pandemic detection algorithm, we
used historical seasonal ILI data, collected and compiled
under the Scottish Enhanced Respiratory Virus Infection
Surveillance (SERVIS) system. The data set spans from
the 2001-02 season through to the 2008-09 season. Sea-
sonal ILI cases are normally reported weekly over a per-
iod of 33 weeks (from the first week of October to the
third week of May) in different age- and sex-classes, by
sentinel general practices (GPs) across Scotland. The
SERVIS sentinel GPs are drawn from 13 Scottish health
boards. (There are currently 14 HBs in Scotland; all HBs
except the Western Isles HB have participated in the
SERVIS network of the sentinel GPs.) The Scottish
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health boards widely vary in their population sizes from
20,000 to 1,360,000. The total number of the sentinel
GPs varied from 20 to 44 across the influenza seasons
considered, with a minimum of 1 GP in a HB to a maxi-
mum of 9 GPs in a HB. Altogether, the numbers of peo-
ple registered with sentinel GPs represent 2.7% to 4.9%
of the Scottish population of around 5.15 million. This
system was designed as a national surveillance scheme
with regional coverage. It was not designed to be used
as a surveillance system in each health board separately.
The weekly reported ILI cases at the national level are

shown in Figure 1a. In our analysis we used the weekly
ILI cases, aggregated at the HB level. An example of
weekly HB-level ILI cases is shown for the 2004-05
influenza season in Figure 1b. Sentinel GPs are often
recorded as reporting zero cases in a week in the SER-
VIS data. It is unknown whether this represents true
zeroes or non-reporting. However, we believe that cer-
tainly, in the data for the 2008-09 season, a blank means
that no report was made by the practice and a zero
means a report was made but no cases occurred.
The historical influenza data from 6 influenza seasons

from 2001-02 through 2006-07 were used in estimating
the background pattern of the seasonal ILI cases. The
ILI data for the season 2007-08 from 23 sentinel GPs
recorded just 93 cases compared with over 300 cases for
the other seasons. The whole of the UK reported influ-
enza cases below the HPA baseline activity threshold in
this season [30]. We therefore excluded the 2007-08
data from our analysis. (As we checked this and will be
clear later, the inclusion of the historical ILI data of this
season increases the detection efficiency of the WCR
method. The exclusion of the data of this season, there-
fore, ensures conservative estimate for the WCR method
in the performance testing.) The 2008-09 data-set con-
tains the 2009 influenza A(H1N1)v pandemic cases, so
it was used for performance testing of our detection
algorithm with real pandemic data. The SERVIS ILI data
used in the study is freely available from Health Protec-
tion Scotland on request (NSS.hpsflu@nhs.net) to any-
one wishing to use them for any non-commercial
research purposes.

Simulated pandemic ILI cases
For our main analysis, we use simulated pandemic influ-
enza data for Scotland. In brief, the pandemic model
[29] is a stochastic, spatially structured, individual-based
discrete time simulation. For the analyses carried out in
this paper, the model pandemic outbreaks were run
with a basic reproduction rate R0 of 1.7 and a genera-
tion time of 3 days. (The R0 value used here is slightly
higher than what has been reported from various ana-
lyses [31] of the 2008-09 influenza A(H1N1)v outbreak
data. But we have used a range of pandemic case

reporting rates as discussed below.) Full model details
are given in the Supplementary Information of [10,29].
The pandemic model was simulated 10 times for the

whole of Great Britain, starting on day 1 seeded with a
single infection at a randomly chosen location. In our
analysis, however, we define the pandemic start week as
the week when the first influenza infections occur in
Scotland, which may or may not be reported. From the
simulated pandemic infections, we sample ILI cases at
case reporting rate of a as if they would have been
reported by sentinel GPs to SERVIS (see Additional file
1). In this work we have used three values of a: 0.5, 1
and 5%. The sampled sentinel pandemic cases were then
converted to the HB-level daily reported influenza cases
by summing across all participating sentinel GPs of the
HBs, which in turn were converted into weekly reported
ILI cases to match the temporal resolution of the SER-
VIS data. The first wave of pandemic influenza cases
could occur in the presence of seasonal cases at any
time of the year. To take this into account, we add the
simulated pandemic ILI cases to the seasonal ILI cases
from each of the six seasons and use the resultant ILI
time series for detecting pandemic, sliding the pandemic
start week across the entire influenza season. We pre-
sent our results using 300 (30 samples times 10 simu-
lated pandemics) sampled time series of pandemic cases.
Here we use 10 simulated pandemics each sampled 30
times. (Note that the results are invariant with other
sampling schemes, e.g., 300 time series, each sampled
from 300 different simulated pandemics. The sampling
is carried out after the first Scottish cases are reported,
during the exponential growth phase of the epidemic.
All simulated pandemics are therefore observed to have
very similar temporal dynamics.) Each of these 300 time
series were, in turn, overlaid with seasonal ILI time ser-
ies from each of the 6 seasons, making a total of 1800
time series to be analysed for 33 (from week 1 to week
33) pandemic start weeks in a typical influenza season.

Pandemic detection algorithm
Joint probability distribution of (WCR, NHB)
Our pandemic detection algorithm uses two metrics
obtained from weekly reported ILI cases: the weekly
case ratio (WCR) for cases aggregated across the region
and NHB, the number of health boards reporting
increases in the cases over the previous week.
The weekly WCR is defined as

W CR = total ILI cases reported to all SERVIS sentinel GPs in  week w
total ILI cases reported to all SERVIS sentinel GPss in week w − 1

Note that WCR is not defined for week 1 and, also,
not defined for any week where in the previous week all
sentinel GPs did report zero ILI cases. (In the historical

Singh et al. BMC Public Health 2010, 10:726
http://www.biomedcentral.com/1471-2458/10/726

Page 3 of 11



data we have one instance (out of the total 214 weeks
from all the 6 seasons) that for a week, which was not a
start week but well within the influenza season, there
were no ILI cases reported. In this situation we simply
replace zero in the denominator by 1.) Since WCR is a

continuous variable, in order to create a joint distribu-
tion, it is binned with a bin size of 0.1. We then con-
struct a joint probability distribution of the two metrics
using the historical ILI data from all the 6 seasons (see
Figure 2).
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Figure 1 Historical SERVIS ILI data. (a) Weekly ILI cases reported by the SERVIS sentinel GPs aggregated at the national level. Week 1 is the
first week of October, and week 33 is the third week of May. In the 2002-03 season, the influenza surveillance was continued for another 15
weeks because of the SARS epidemic. (b) The weekly reported ILI cases of the influenza season 2004-05 aggregated at the health board level.
(Health boards are represented by the following letter codes. AA: Ayrshire & Arran; BDS: Borders; DG: Dumfries & Galloway; FF: Fife; FV: Forth
Valley; GMP: Grampian; GGC: Greater Glasgow & Clyde; HG: Highland; LN: Lanarkshire; LO: Lothian; OR: Orkney; SH: Shetland; and TA: Tayside). In
that season, only 10 out of 13 participating HBs had one or more sentinel GPs that reported ILI cases.
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Smoothing of the joint probability
The historical seasonal ILI data are temporally heteroge-
neous, with substantial week-to-week variability (Figure 1).
For making any useful and robust statistical inference the
probability distribution requires smoothing. The smooth-
ing was done assuming that the weekly reported ILI cases
in a HB have a Poisson distribution with rate parameter
equal to the reported total weekly ILI cases in the HB. The
Poisson distribution is preferred to a binomial distribution
as the numbers of weekly reported cases are very much
smaller than the total population of a health board. We
simulated the Poisson model to generate weekly ILI cases
at the HB level (see Additional file 2). The model-gener-
ated ILI counts from individual runs for each season were
then used, as described above, to calculate the joint distri-
bution of WCR and NHB. A set of 10,000 model runs per
season’s data were used in the estimation of this joint dis-
tribution. A smaller (1,000) or larger (100,000) number of
runs were also tested for the robustness of the results.
Specificity (Sp) of the detection algorithm
We tested our algorithm for its specificity (i.e., not
detecting a pandemic when no pandemic is occurring).
To do this, we first calculate WCR and NHB for each
week from a given seasonal HB-level ILI time series. We
obtain the probability values of weekly pairs of (WCR,
NHB) from the joint probability distribution (the plots of
the weekly probability values are given in Figure 3). In
the second step, for a chosen threshold probability value
δ, we count the number of weeks in which the probabil-
ity of (WCR, NHB) falls below the threshold. The total

counts represent the number of false alarms (Fas(δ)) in
season s. The theoretical maximum number of false

alarms ( FAs
max ) in any given season is the total weeks

minus 1 because WCR cannot be calculated for the first
week. Finally, this leads us to calculate the specificity of
the detection algorithm for a given threshold probability
as follows:
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A detection threshold is defined as the threshold
probability δ that gives rise to a pre-set specificity of our
detection method. We adjust δ in order to achieve spe-
cificities of 95% and 99%. This allows us to compare our
method to other algorithms which also have the same
constant specificity.
Detecting a pandemic
Figure 4 shows an example of how our WCR detection
algorithm works when applied to a simulated pandemic
starting on week 1 and week 15. In the case of a pan-
demic starting on week 1 (week 15), the probability
value of WCR and NHB falls below the threshold values
for the first time on week 7 (week 21) triggering an
alarm that week. We note here that the probability
value is the probability mass function, i.e. P(WCR = xx
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Figure 2 The joint probability distribution of (WCR, NHB). The
joint probability distribution of weekly case ratio (WCR), calculated
from seasonal ILI cases aggregated over Scotland, and the number
of health boards (NHB) reporting increases in the ILI cases over the
previous week. This probability diagram was constructed using
SERVIS data from six seasons, 2001-02 to 2006-07. WCR is binned
with bin size 0.1. The inset plot zooms in on the left corner of the
main plot.
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Figure 3 Detection specificity of the WCR method . An
illustration of how we calculate the specificity (Sp) of the WCR
algorithm as a function of the detection threshold δ. The straight-
line plots show two values of δ: 0.000059 (dashed line) and 0.0008
(dot-dash line) which give specificity of 99% and 95% respectively.
The other plots are probability values of (WCR, NHB) in any given
week for different seasons. If the probability in any given week dips
below one of the threshold probabilities, then a false positive alert
for a pandemic outbreak is generated.
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and NHB = y), and not the more usual statistical signifi-
cance level of P(WCR > = xx and NHB > = y).

Comparison of our detection algorithm
We compared the performance (in terms of median
detection time and sensitivity) of our detection algo-
rithm with that of the Mov-Avg Cusum method. This
method was recently used by Cowling et al. [12] as a
statistically robust automation tool for generating early
alerts for the onset of peak activity of ILI cases. We also
compare the performance of an ILI rate threshold
method, similar to the HPA baseline influenza activity
level. The detection thresholds used by these methods
were adjusted so that all three methods had the same
detection specificity described earlier.
Moving-Average Cusum method
The d-week upper Cusum at time t is defined as follows:
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where Cusumt d≤ +
+ =7 0 . X t and s t are the 7-week

moving average and standard deviation of ILI cases in
weeks t-d-1 to t-d-7 Note that d stands for a delay per-
iod and this method will only be informative from the
(d+8)th week onwards. An alarm is triggered using this

method when Cusumt
+ on a week t crosses a pre-set

threshold [21]. Using the SERVIS ILI data for six sea-
sons we preset the threshold values for this method for
all 16 combinations of d Î{0,1,2,3}, k Î {1,2} and Sp Î
{95%, 99%} (Figure of Additional file 3). The Mov-Avg
Cusum method with d = 0 and k = 1 at Sp = 99% per-
forms better than any other combination of (d, k) (Table
in Additional file 3). Therefore, this combination is used
to make comparisons with other methods.
ILI rate threshold method
The HPA set ILI consultation rates as proxies for influ-
enza activity in the United Kingdom. The threshold rate
for baseline- and epidemic-level ILI activities has recently
been revised: the baseline threshold is lower from 50 to
30 consultations per 100,000 population while the epi-
demic threshold has been decreased from 400 to 200
consultations per 100,000 population [32]. These thresh-
olds are derived from the time series analysis of historical
seasonal data, and serve the purpose of establishing when
and/or whether the community ILI activity warrants
some intervention of the public health departments. In
the SERVIS data set (2001 - 2007) considered, the epi-
demic threshold rate was never crossed [30]. Here the ILI
rate threshold is denoted by h cases per 100,000 popula-
tion per week and an alarm is generated when the aggre-
gated ILI cases in any week crosses this threshold. In
order to compare this method with alternatives we adjust
h to obtain the pre-set specificity of 95% and 99%. The
two respective values of h are 24 and 34.

Results
Sensitivity and median detection time
Performances of the three methods are summarised in
terms of sensitivity and median detection time (MDT) in
Table 1. Our algorithm is almost 100% sensitive (the low-
est being 98% for a very low case reporting rate of 0.5%).
Its MDT ranges from 3 to 5 weeks compared to 4 to 6
weeks for the Mov-Avg Cusum and threshold methods.
While the threshold method is 100% sensitive, Mov-Avg
Cusum is the worst performing method with sensitivity of
77% to 97%. Note that time to pandemic detection is
counted from the start week of the first infections in simu-
lated pandemics. There is a lag of about 3 to 5 weeks
between the first infections arising in simulated pandemics
and the first cases which get reported by sentinel GPs to
SERVIS. If, therefore, the reference point is changed to the
week of the first reported cases, then MDT of the WCR
method will not be more than 2 weeks.

Background seasonal ILI cases and pandemic detection
times
The distribution of detection times (Figure 5) is to show
whether the temporal pattern in the background

Figure 4 Detection of a pandemic by the WCR method .
Probability values of weekly (WCR, NHB) pairs for the model
pandemic cases are obtained from the distribution shown in Figure
2. Two examples, one each for pandemic starting weeks 1 (top) and
15 (bottom), are for a single run of the pandemic model. Pandemic
cases were sampled at the reporting rate of 0.5% from the weekly
infections and added to the 2004-05 seasonal data and WCR and
NHB were calculated from the resultant time series. The dashed lines
represent the two values of the detection threshold δ: 0.000059 (Sp
= 99%) and 0.0008 (Sp = 95%). The pandemic starting on week 1
was detected on week 7, while the one starting on week 15 was
detected on week 21.
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seasonal ILI cases will have any effect on pandemic
detection. The detection specificity (Sp) and the pan-
demic case reporting rate (a) were set for all methods at
the following values: Sp = 99% and a = 5%. Detection
times are typically within 5-6 weeks for our method
(Figure 5a). This compares favourably with the ILI rate
threshold method at h = 34 cases per 100000 population
(Figure 5b). The slightly longer detection times are pre-
sent for the starting weeks falling in the period of late-
November to mid-January (week 9 to week 15 in Figure
5a). This is the time period when the seasonal ILI inci-
dences show widespread and peak influenza activities
(Figure 1). In the case of simulated pandemics starting
during this period, the above two factors together mask
the probability of (WCR, NHB) as seasonal one in the
first few weeks of pandemic. This masking causes delay
in generating an alarm and the delay is more pro-
nounced at lower case reporting rates and a higher spe-
cificity and is, for example, responsible for reducing the
method’s sensitivity to 98% at a = 0.5% and Sp = 99%.
Conversely, during the same time-period the threshold
method produces its shortest detection times because
the peak-level seasonal cases having been added to the
pandemic cases help the weekly ILI rate quickly cross
the rate threshold h. However, our method outperforms
the ILI rate threshold method in the beginning and end
of an influenza season.
Mov-Avg Cusum performs poorly in terms of detection

times in the first few weeks of the season (Figure 5c).
This is because it requires 9 weeks to calculate the first
Mov-Avg Cusum statistic. This situation improves as we
move well within the seasonal period. But even for the
later starting weeks, the method takes comparatively

longer time to detect a pandemic. However, this method
also outperforms the ILI rate threshold method towards
the end of a season.

Rapid detection
Detection of pandemics in the early weeks of its start-
ing depends on the case reporting rate and specificity
(Figure 6). Our method outperforms the other two by
rapidly detecting pandemics in a large fraction of
model runs at specificity of 99% and case reporting
rate a of 0.5%. It detects pandemics in >50% of total
runs within the first 6 weeks of a pandemic starting
while the Mov-Avg Cusum and the threshold methods
detect pandemics, respectively, in <25% and <35% of
total runs (Figure 6a). The time to detection decreases
when the specificity was lowered from 99% to 95%
(Figure 6b). In this case, about 25% and a slightly
lower than 50% detection levels were achieved by the
WCR method within the first 4 and 5 weeks while the
Mov-Avg Cusum and the threshold methods still
trailed below the 25% detection level. The same trend
was observed when, for the fixed specificity of 99%, the
case reporting rate a was raised from 0.5% to 1% (Fig-
ure 6c) to 5% (Figure 6e). At the elevated reporting
rates, decrease in specificity further increases the
detection level for all methods. But the increase in
pandemic detection within the first few weeks of pan-
demic is more pronounced for our method than the
other two (Figs 6d & 6f).

Retrospective detection of 2009 pandemic in Scotland
As shown in Figure 7, our algorithm, retrospectively,
detects the 2008-09 pandemic outbreak 12 weeks (i.e.,

Table 1 Summary of the performances of the three methods

Case reporting rate WCR method Threshold method Mov-Avg Cusum method

Specificity = 95%

0.5% Sen 100 100 96

MDT 5 5 6

1% Sen 100 100 97

MDT 4 5 5

5% Sen 100 100 97

MDT 3 4 4

Specificity = 99%

0.5% Sen 98 100 77

MDT 5 6 6

1% Sen 100 100 92

MDT 5 5 6

5% Sen 100 100 95

MDT 4 4 5

The performances of the three methods compared in terms of sensitivity (Sen) and median detection time (MDT) for different values of pandemic case reporting
rates and detection specificities of 95% and 99%. Sen is given as percentage (%) of the model runs summed across all 33 weeks, i.e. calculated from a set of
1800 overlaid time series times 33 weeks. MDT is in weeks and calculated from those of (1800 × 33) runs in which a given method was able to generate a
detection alarm.
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on week 41) after the first cases were reported on week
29 in Scotland (Figure 7a). Clearly, here it does not per-
form as well as it does with the simulated pandemic
data. In the next section we discuss possible reasons for

this poor performance. The Mov-Avg Cusum method,
which was the worst performer among the three meth-
ods using simulated pandemic data, also detects the
pandemic in week 41 (Figure 7b). Both methods outper-
form the ILI rate threshold method by 1 week (Figure
7c).

Discussion
In this paper we compare three methods of detecting an
influenza pandemic using an existing surveillance system
in Scotland called SERVIS. The ILI rate threshold
method uses current ILI case data to detect pandemics.
This method is motivated by the current HPA’s thresh-
old levels [30,32] to monitor influenza activity at the
national scale. The HPA thresholds serve the purpose of
establishing whether seasonal influenza activity warrants
some intervention (e.g., the start of antiviral prescrip-
tion) of the public health departments. Mov-Avg Cusum
and other variants of Cusum are already being used in
public health surveillance systems [1,6,12,18]. The Mov-
Avg Cusum method detects a pandemic when the
cumulative number of current ILI cases is substantially
higher than the expected cumulative number. The Mov-
Avg Cusum statistic keeps accumulating the deviation
between observed and expected values over time and
when the accumulated value crosses a pre-set threshold,
an alarm is triggered [21]. It has three adjustable

Figure 5 Distribution of detection times. A comparison between the distributions of detection times of (a) WCR algorithm, (b) ILI rate
threshold, and (c) Mov-Avg Cusum method. Pandemic detection times are in terms of within n weeks of the first pandemic infections occurring;
different colours of the colour bar code different values of n. Individual stacked bars represent the distribution of detection times calculated for a
set of 1800 overlaid time series for different pandemic start weeks, as shown on the x-axis, from week 1 to week 33 of a typical influenza season.
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Figure 6 speed of detection in the early weeks of pandemics.
Cumulative probability of detection as a function of times taken in
pandemic detection (i.e., weeks within pandemic starting). These
plots are for different specificity (Sp) and pandemic case reporting
rate (a): (a) Sp = 99%, a = 0.5%; (b) Sp = 95%, a = 0.5%; (c) Sp =
99%, a = 1%; (d) Sp = 95%, a = 1%, (e) Sp = 99%, a = 5%; and (f)
Sp = 95%, a = 5%. The dashed line represents the 50%-level of
pandemic detections. (For each method in all subplots, the
detection data were pooled together from a set of 1800 overlaid
time series times 33 weeks.)
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parameters that require optimisation for specific surveil-
lance systems. Finally, the WCR algorithm introduced in
this paper is based upon a characteristic of epidemics,
their exponential growth in the early stages before con-
trol measures and depletion of susceptibles have
occurred. It also assumes that pandemic influenza
would occur synchronously across spatial units of influ-
enza surveillance system in a region (as is predicted by
the mathematical models [29] for pandemic influenza in
Scotland). It makes use of the joint probability distribu-
tion derived from the historical seasonal ILI data to
detect a pandemic influenza. The other methods do not
use any information from the data, other than to set
thresholds to achieve required specificities.
The WCR algorithm appears to provide a slightly

more rapid and sensitive tool for detecting of pandemic
influenza - median detection time for this method
ranges from 3 to 5 weeks in comparison to 4 to 6 weeks
for the other two methods. Although the WCR algo-
rithm seems to do the job more efficiently with the

simulated pandemics, it performed poorly with the
2008-09 pandemic data from SERVIS. There could be
several possible reasons for this poor performance. First,
the 2009 influenza A(H1N1)v epidemic happened out-
side the normal influenza season and, second, it was
mild in severity [33,34]. In addition, the number of SER-
VIS sentinel GPs in the season 2008-09 was at its spar-
sest level - only 20 practices, as the SERVIS system was
in the process of being phased out to be replaced by a
system which automatically collected data from GP sys-
tems on a daily basis. These three factors will have con-
tributed to poor reporting of the early pandemic cases,
notwithstanding the huge media coverage given to the
pandemic. This is consistent with the patchiness in the
reported ILI cases through SERVIS sentinel GPs
between weeks 29 and 41 (Additional file 4). No method
will detect a pandemic in its early weeks if the early syn-
dromic influenza data are not reported to the surveil-
lance system. Finally, the 2009 pandemic influenza cases
were more spatially heterogeneous than those predicted
by the pandemic model. (It is interesting to note that
during the period April to July 2009, when there was a
sentinel practice within an outbreak area, Greenock and
Govanhill in the GGC HB, there was no increased
reporting of ILI.) This might have contributed to the
observed patchiness in the sentinel reporting.
An important aspect of our algorithm is that the

detection threshold remains constant throughout. An
implementation of a time-varying detection threshold
could make this algorithm capable of using the seasonal
ILI pattern more efficiently. In principle, this could be
implemented by calculating the joint probability of
(WCR, NHB) either on a week-by-week basis, or on a
slightly more coarse temporal scale of the time-windows
of high/low ILI activities in the seasonal data. Clearly
increasing the number of sentinel GPs and the fre-
quency of ILI case reporting would improve the tem-
poral resolution of the WCR algorithm. In future work
we will explore how many sentinel GPs are required to
achieve this aim.
Furthermore, in outbreaks of a novel influenza strain,

generally children and young adults of the population,
who will have little or no prior immunity to the disease
[4], are disproportionately affected [28]. Implementing
our detection algorithm using these data attributes will
further improve the timeliness and specificity of the
detection of pandemic influenza. SERVIS data contain
age attributes which could be incorporated into our
algorithm, but this requires more sentinel GPs to be of
use.
The WCR algorithm could be applied to any syndro-

mic surveillance data structured by space and time. Syn-
dromic data-sets include, but are not limited to, the
triage nurse calls [35] (e.g., the NHS24/NHSdirect calls
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Figure 7 Retrospective detection of the current pandemic
using the 2009 SERVIS data. The retrospective detection of the
2009 influenza A(H1N1)v pandemic using SERVIS ILI data. The first
cases of the 2009 pandemic were reported in Scotland in the 29th

week of the season and our algorithm as well as the Mov-Avg
Cusum method detects the pandemic 12 weeks later in week 41.
The ILI threshold method detects it 1 week later in week 42.
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in the UK [36-38]), the over-the-counter medicine sales
data [39,40] available in most of the developed coun-
tries, or online web search queries [41]. These data sets
are highly useful in the early detection of unusual health
events [1,2]. Generally these data sets come with spatio-
temporal attributes and, therefore, could potentially be
integrated with the seasonal ILI data; this should
enhance the detection process (in terms of timeliness,
specificity and sensitivity) of pandemic influenza.

Conclusions
While computationally simple to implement, the WCR
algorithm is capable of raising alarms, rapidly and sensi-
tively, for influenza pandemics against a background of
seasonal influenza. That it has the potential to be more
specific in generating alarms for pandemic influenza
could be exploited for making it more cost-effective for
public health surveillance systems that collect the syn-
dromic data at a more finer spatial and/or temporal
resolution. Although the algorithm was developed using
the SERVIS data, it has the capacity to be used at other
geographic scales and for different disease systems
where buying some early extra time is critical.
More generally, we suggest that a combination of dif-

ferent statistical methods should be employed in gener-
ating alarms for infectious disease outbreaks. If carefully
implemented, this would provide two benefits: 1)
increased sensitivity; 2) different detection methods
would provide cross-checks on one another, boosting
confidence in the outputs of the surveillance system as a
whole.

Additional material

Additional file 1: Details of the sampling of reported pandemic ILI
cases. This details how the simulated pandemic cases were sampled at
the GP level from the model-generated daily influenza infections at the
postcode district level.

Additional file 2: Smoothing of seasonal ILI data. This figure shows
the outputs of the Poisson model for all the six influenza seasons from
2001-02 to 2006-07.

Additional file 3: Detection thresholds for different (d, k) pairs and
the selection of the best of the Mov-Avg Cusum (d, k) method. This
describes the finding of the detection threshold values of different Mov-
Avg Cusum models and the selection of the best among them to make
a comparison with the WCR method.

Additional file 4: Seasonal SERVIS ILI data for the influenza season
2008-09. This figure presents the weekly time series of seasonal SERVIS
ILI cases at the HB level for the season 2008-09.
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