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Abstract: Background: Classification of colorectal neoplasms during colonoscopic examination
is important to avoid unnecessary endoscopic biopsy or resection. This study aimed to develop
and validate deep learning models that automatically classify colorectal lesions histologically on
white-light colonoscopy images. Methods: White-light colonoscopy images of colorectal lesions
exhibiting pathological results were collected and classified into seven categories: stages T1-4
colorectal cancer (CRC), high-grade dysplasia (HGD), tubular adenoma (TA), and non-neoplasms.
The images were then re-classified into four categories including advanced CRC, early CRC/HGD, TA,
and non-neoplasms. Two convolutional neural network models were trained, and the performances
were evaluated in an internal test dataset and an external validation dataset. Results: In total,
3828 images were collected from 1339 patients. The mean accuracies of ResNet-152 model for the
seven-category and four-category classification were 60.2% and 67.3% in the internal test dataset,
and 74.7% and 79.2% in the external validation dataset, respectively, including 240 images. In the
external validation, ResNet-152 outperformed two endoscopists for four-category classification,
and showed a higher mean area under the curve (AUC) for detecting TA+ lesions (0.818) compared
to the worst-performing endoscopist. The mean AUC for detecting HGD+ lesions reached 0.876 by
Inception-ResNet-v2. Conclusions: A deep learning model presented promising performance in
classifying colorectal lesions on white-light colonoscopy images; this model could help endoscopists
build optimal treatment strategies.

Keywords: colonoscopy; colorectal neoplasm; artificial intelligence; deep learning; convolutional
neural network

1. Introduction

Colorectal cancer (CRC) is one of the leading causes of death in the world, and the third most
common malignancy in Korea [1,2]. Colonoscopy is an effective screening tool for the early identification
and removal of colorectal neoplasms, and thus have been adopted in many countries to reduce the CRC
mortality [3–5]. However, superfluous endoscopic resection or biopsy of diminutive non-neoplastic
lesions increases unnecessary colorectal mucosal injury and medical economic burden [6–8]. On the
contrary, underestimating colorectal cancers may lead to unsuitable treatment and the increase in
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mortality [4]. Therefore, it is essential to discriminate colorectal lesions accurately during colonoscopy,
in order to choose an optimal treatment strategy.

For the optical diagnosis of colorectal lesions, several advanced endoscopic imaging technologies,
including narrow-band imaging (NBI) with or without magnifying techniques, flexible spectral imaging
color enhancement, or i-Scan digital contrast have been introduced and validated for efficacy [9–11].
Nevertheless, the diagnostic superiority of these advanced imaging technologies has not been proved
in clinical practice, and the inter-observer and intra-observer variability were major hurdles to the
generalization [12,13].

With the recent advancement of artificial intelligence (AI), automated diagnosis or classification of
diseases on medical images such as retinal fundus photographs or clinical skin photos has been achieved
in various fields of medicine [14,15], as well as in gastroenterology [16,17]. Some achieved promising
performances in the field of colonoscopy, not only for the detection of colorectal polyps [18–20],
but also for the classification of colorectal polyps [21–23]. However, most studies focused on
the differentiation of neoplastic lesions from non-neoplastic lesions using specific images from
magnifying NBI or endocytoscopy [21,22,24], which has limited the application in real-world practice.
Therefore, this study aimed to develop and assess convolutional neural network (CNN) models which
automatically categorize colorectal lesions into several stages ranging from non-neoplastic lesions to
advanced CRC with conventional white-light colonoscopy images.

2. Materials and Methods

2.1. Data Collection

Patients who were diagnosed and treated for CRC between 2008 and 2017 were retrospectively
included from three Hallym University-affiliated hospitals: Chuncheon Sacred Heart Hospital,
Dongtan Sacred Heart Hospital, and Hallym University Sacred Heart Hospital. Static white-light
colonoscopy images for any colorectal lesion of the patients were collected from the picture archiving
and communication system (PACS) of the involved hospitals in a resolution of 640 × 480 pixels. When a
patient had multiple colorectal lesions, each lesion was separately included. For one colorectal lesion,
one or two representative images having different directions or distances to the object were selected.
No annotations for the images were extracted from the PACS for training. The exclusion criteria were
as follows: (1) blurred or defocused images, (2) images from patients with inflammatory bowel disease,
infectious colitis, ischemic colitis, or poor bowel preparation, (3) images from chromoendoscopy
or image-enhanced endoscopies including NBI, (4) images of colorectal lesions without pathologic
results, (5) images of sessile serrated adenoma/polyps, or traditional serrated adenomas. Ultimately,
3828 white-light colonoscopy images from 1339 subjects were involved in this study, apart from the
external validation dataset. This study was approved by the Institutional Review Board of Chuncheon
Sacred Heart Hospital (IRB No. 2018-05) and was performed in accordance with the Declaration
of Helsinki.

2.2. Colonoscopy Procedure

Colonoscopy examinations at the three Hallym University-affiliated hospitals were performed by
expert faculty doctors having experience with >2000 cases of colonoscopy, after bowel preparation using
4 L of polyethylene glycol or 2 L of polyethylene glycol with ascorbic acid. The colonoscopy equipment
models used in this study were CF-HQ290L/I, CF-H290L/I, CF-Q260AL/I, and CF-H260AL (Olympus
Optical Co., Ltd., Tokyo, Japan) and EC-600WI, EC-590WM, EC-590ZW, EC-600WM, EC-760R-VM, and
EC-760ZP-VM (Fujinon Co., Saitama, Japan). All the colorectal lesions were entirely removed by forceps
biopsy, endoscopic mucosal resection, endoscopic submucosal dissection (ESD), or surgical resection.
The final pathologic results of the colorectal lesions in the collected images were all identified and
used as the reference standard. The pathologic results were (1) adenocarcinoma for CRC, (2) tubular
adenoma with high grade dysplasia, (3) tubular adenoma with or without low grade dysplasia,
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and (4) hyperplastic polyps, inflammatory polyps, lymphoid polyps, chronic inflammation, leiomyoma,
lipoma for non-neoplastic lesions.

2.3. Data Classification

All the static white-light colonoscopy images were reviewed by an experienced colonoscopist
(Y.J.Y.) and were identified as one of seven categories according to the final pathologic results: CRC
(stages T1, T2, T3, and T4), high-grade dysplasia (HGD), tubular adenoma with or without low grade
dysplasia (TA), and non-neoplastic lesions. HGD included not only tubular adenoma with high-grade
dysplasia but also carcinoma in situ and intramucosal cancer. The non-neoplastic lesions included
any form of hyperplastic polyps, inflammatory polyps, lymphoid polyps, chronic inflammation,
and submucosal tumors except neuroendocrine tumor. When the colonoscopy images and the
pathological readings were reviewed, the gross findings of colorectal lesions were consistent with the
pathologic results of the corresponding lesions in almost all cases of the original dataset. Ultimately,
among 3828 images, the majority class was TA lesions (1316 cases, 34.4%), followed by non-neoplastic
lesions (896 cases, 23.4%), and HGD (621 cases, 16.2%) (Supplementary Table S1).

Next, the images from the seven categories were reclassified into four categories combining
similar categories into one class: advanced CRC (stages T2, T3, and T4), early CRC/HGD (stage T1 and
HGD), TA, and non-neoplastic lesions. Apart from the above 4-category classification, the images were
also categorized into two groups: advanced colorectal lesions (HGD and T1, T2, T3, and T4 lesions)
and non-advanced colorectal lesions (TA and non-neoplastic lesions). Finally, the images were also
categorized into two groups from another standpoint: neoplastic lesions (TA, HGD, and stages T1, T2,
T3, and T4) vs. non-neoplastic lesions.

2.4. The Training, Test and External Validation Datasets

To build the classification models, the patients in the original dataset were divided into a
training dataset and a test dataset at ratio of 9:1 using random sampling in each lesion category.
Random sampling was performed using the patient ID number as the key, to prevent the same class
photographs of the same patient from entering into both the train and test datasets simultaneously
and thus to avoid the overestimation of the model performance [17]. The training dataset and the test
dataset were mutually exclusive and collectively exhaustive for the whole original dataset.

In addition, an external validation dataset was constructed including patients from another hospital
that did not participate in the collection of the original dataset. The static white-light colonoscopy
images were collected from the consecutive patients who underwent a colonoscopy for various
reasons at Kangnam Sacred Heart Hospital between April and May in 2019 (Figure 1). The exclusion
criteria were as same as mentioned above. The colonoscopy examinations were performed for routine
health check-ups, diagnosis of gastrointestinal symptoms, or treatment of neoplastic lesions. Of note,
the external validation dataset included only one representative image of the histologically most
advanced lesion from each patient. For example, if a patient had one tubular adenoma and one
hyperplastic polyp, only one representative image of the tubular adenoma was included. Finally,
240 images from 240 patients were included in the external validation dataset, which comprised
3 images of advanced CRC, 8 images of early CRC/HGD, 116 images of TA, and 113 images of
non-neoplastic lesions. Furthermore, of the 240 patients, 161 (67.1%) were male, and the mean age was
63 years (SD, 12.1 years).

2.5. Preprocessing of the Datasets

To increase the model performance, data augmentation was performed using horizontal flipping
and/or vertical flipping, amplifying the dataset four times. Afterwards, the images were normalized
for each RGB color channel.
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2.6. Construction of the CNN Models

To construct the deep learning models, two CNN architectures, namely, ResNet-152 and
Inception-ResNet-v2, were used. The models were pre-trained using the ImageNet Large Scale Visual
Recognition Challenge dataset. The details of the CNN architectures are described elsewhere [25,26].

The training process consisted of three stages, increasing the resolution of images from 400 × 400
to 450 × 450 pixels, and finally making the resolution 480 × 480 pixels. In each stage, the last few layers
were unfrozen first and trained, and then the entire layers were unfrozen and trained using different
learning rates for the first few, middle, and last layers.

In each training step, cyclic learning suggested by Huang et al. was used with cosine annealing
with stochastic gradient descent, but without adopting a snapshot ensemble [27]. The initial learning
rate was 1e-3, and the number of cycles was four. The initial cycle length was one, and the cycle length
multiplier was four. Early stopping was used to minimize the validation loss in one cycle.

To provide the region of interest, a class activation map (CAM) was implemented with a continuous
color spectrum. The last two layers of the CNN models were removed, and global average pooling
and softmax layers were added. The dropout rate was 0.5, and the batch size was 6. All training
was performed using NVIDIA GeForce GTX 1080ti graphics processing units with dual Xeon central
processing units and 128 GB RAM, based on the PyTorch platform.

2.7. Main Outcome Measures

The performances of the established CNN models were assessed using the test dataset and
the external validation dataset. Each prediction was based on test-time augmentations (TTA) using
the original, horizontally flipped, vertically flipped, and horizontally vertically flipped images.
To minimize the bias from random sampling the test dataset, a random split of the training/test dataset
was performed three times, and the mean accuracy was evaluated.

The primary outcomes were the discrimination performance of the established CNN models for
seven-category classification and four-category classification. The secondary outcomes were binary
discrimination performance of the established CNN for advanced colorectal lesions vs. non-advanced
colorectal lesions, and colorectal neoplastic lesions vs. non-neoplastic lesions.

For external validation, two endoscopists (C.S.B. and J.T.H.) with more than 5 years of colonoscopy
experience each and 1 novice endoscopist (H.M.J.) in the fellowship course in gastroenterology with
6 months of colonoscopy experience were asked to categorize the static white-light colonoscopy images
in the external validation dataset into four classes without knowing the pathologic results. They were
all from Chuncheon Sacred Heart Hospital which is different from the hospital where the external
validation dataset was collected (Kangnam Sacred Heart Hospital). They evaluated the colonoscopy
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images only for the purpose of the external validation of the present study. The number of annual
colonoscopies was about 900 and 1000 for the two experienced endoscopists, respectively. The novice
endoscopist performed about 260 full colonoscopy examinations without assistance of supervisor until
external validation test. The adenoma detection rate (ADR) of two experienced endoscopists was 40.4%
and 44.4%. The discrimination performances of these three endoscopists were compared to those of
the constructed CNN models.

2.8. Statistical Analysis

To evaluate the ability of the established CNN models, the area under the receiver operating
characteristic (ROC) curve (AUC) was estimated. In addition, the diagnostic accuracy, sensitivity,
specificity, positive predictive value, and negative predictive value were calculated. Continuous or
categorical variables were expressed as means or percentages with 95% confidence intervals (CIs),
respectively. Categorical variables were compared with Fisher’s exact test, and the AUC values were
compared with the DeLong test. A two-tailed p value <0.05 was considered statistically significant in
this study. All of the analyses were performed using SPSS version 24.0 (SPSS Inc., Chicago, IL, USA)
and MedCalc version 19.1 (MedCalc Software, Ostend, Belgium).

3. Results

3.1. Seven-Class Classification Performances

The mean accuracy for the seven-class classification in the test dataset was 60.2% (95% CI
55.9–64.5%) by the ResNet-152 model and 56.4% (95% CI 53.8–59.0%) by the Inception-ResNet-v2
model. The mean accuracy of the CNN model in the external validation dataset was 74.7% (95% CI
73.3–76.2%) by the ResNet-152 model and 74.3% (95% CI 72.1–76.5%) by the Inception-ResNet-v2
model. A heat map of the confusion matrix of the best-performing model (ResNet-152) is shown in
Figure 2. The per-class accuracy was highest for HGD (62%) in the test dataset and for T3 (100%) in the
external validation dataset.

J. Clin. Med. 2019, 8, x FOR PEER REVIEW 5 of 13 

For external validation, two endoscopists (C.S.B. and J.T.H.) with more than 5 years of 
colonoscopy experience each and 1 novice endoscopist (H.M.J.) in the fellowship course in 
gastroenterology with 6 months of colonoscopy experience were asked to categorize the static white-
light colonoscopy images in the external validation dataset into four classes without knowing the 
pathologic results. They were all from Chuncheon Sacred Heart Hospital which is different from the 
hospital where the external validation dataset was collected (Kangnam Sacred Heart Hospital). They 
evaluated the colonoscopy images only for the purpose of the external validation of the present study. 
The number of annual colonoscopies was about 900 and 1000 for the two experienced endoscopists, 
respectively. The novice endoscopist performed about 260 full colonoscopy examinations without 
assistance of supervisor until external validation test. The adenoma detection rate (ADR) of two 
experienced endoscopists was 40.4% and 44.4%. The discrimination performances of these three 
endoscopists were compared to those of the constructed CNN models. 

2.8. Statistical Analysis 

To evaluate the ability of the established CNN models, the area under the receiver operating 
characteristic (ROC) curve (AUC) was estimated. In addition, the diagnostic accuracy, sensitivity, 
specificity, positive predictive value, and negative predictive value were calculated. Continuous or 
categorical variables were expressed as means or percentages with 95% confidence intervals (CIs), 
respectively. Categorical variables were compared with Fisher’s exact test, and the AUC values were 
compared with the DeLong test. A two-tailed p value <0.05 was considered statistically significant in 
this study. All of the analyses were performed using SPSS version 24.0 (SPSS Inc., Chicago, IL, USA) 
and MedCalc version 19.1 (MedCalc Software, Ostend, Belgium). 

3. Results 

3.1. Seven-Class Classification Performances 

The mean accuracy for the seven-class classification in the test dataset was 60.2% (95% CI 55.9%–
64.5%) by the ResNet-152 model and 56.4% (95% CI 53.8%–59.0%) by the Inception-ResNet-v2 model. 
The mean accuracy of the CNN model in the external validation dataset was 74.7% (95% CI 73.3%–
76.2%) by the ResNet-152 model and 74.3% (95% CI 72.1%–76.5%) by the Inception-ResNet-v2 model. 
A heat map of the confusion matrix of the best-performing model (ResNet-152) is shown in Figure 2. 
The per-class accuracy was highest for HGD (62%) in the test dataset and for T3 (100%) in the external 
validation dataset. 

 
Figure 2. Heat maps of the ResNet-152 confusion matrices for seven-category classification scheme 
for colorectal lesions on colonoscopic photographs (A) in the test dataset and (B) in the external 
validation dataset. NON, non-neoplastic lesion; TA, tubular adenoma; HGD, high-grade dysplasia. 

Figure 2. Heat maps of the ResNet-152 confusion matrices for seven-category classification scheme for
colorectal lesions on colonoscopic photographs (A) in the test dataset and (B) in the external validation
dataset. NON, non-neoplastic lesion; TA, tubular adenoma; HGD, high-grade dysplasia.

3.2. Four-Class Classification Performances

The mean accuracy for the four-category prediction in the test dataset reached 67.3% (95% CI
62.7–71.8%) by the ResNet-152 model, and 67.7% (95% CI 63.2–72.1%) by the Inception-ResNet-v2
model. The mean accuracy of the CNN model in the external validation dataset was 79.2% (95% CI
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76.5–81.8%) by the ResNet-152 model and 76.0% (95% CI 73.6–78.4%) by the Inception-ResNet-v2
model. A heat map of the confusion matrix of the better-performing model (ResNet-152) is shown in
Figure 3. Advanced CRC and TA showed good accuracy in both test and external validation dataset.
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Figure 3. Heat maps of the ResNet-152 confusion matrices for four-category classification scheme
for colorectal lesions on colonoscopic photographs (A) in the test dataset and (B) in the external
validation dataset. NON, non-neoplastic lesion; TA, tubular adenoma; HGD, high-grade dysplasia;
CRC, colorectal cancer.

When three endoscopists categorized the external validation dataset into four classes, the accuracies
of the best- and worst-performing endoscopist were 85.5% (95% CI 81.0–89.9%) and 68.0% (95% CI
62.1–73.9%), respectively. The detailed per-class performance summary of endoscopists and the CNN
models for the four-class classification of colorectal lesions is presented in Supplementary Figure S1.
There was no significant difference in the performances of the best-performing endoscopist and
ResNet-152 (p = 0.46). However, the performance of ResNet-152 was significantly higher than those of
the two other endoscopists (p < 0.001, and 0.04, respectively).

3.3. Binary Classification Performances

The detailed diagnostic performances of the CNN models and human endoscopists for binary
classification in the test dataset are presented in Table 1. For the binary classification for neoplastic (TA
or higher grade) vs. non-neoplastic lesions in the test dataset, the mean AUC and the accuracy of the
better-performing model (Inception-ResNet-v2) was 0.832 (95% CI 0.810–0.854) and 79.5% (95% CI
77.6–81.4%), respectively. For external validation dataset, the mean AUC of Inception-ResNet-v2 (AUC
0.760 (95% CI 0.753–0.767)) was significantly higher than that of the worst-performing endoscopist
(AUC 0.691 (95% CI 0.628–0.749), p < 0.001), but significantly lower than that of the best-performing
endoscopist (AUC 0.853 (95% CI 0.802–0.896), p < 0.001) (Figure 4 and Supplementary Table S2).
And the accuracy of Inception-ResNet-v2 in external validation dataset was 71.5% (95% CI 68.0–75.0%)
similar to that of the worst-performing endoscopist (67.5% (95% CI 61.2–73.9%), p = 0.37).

The binary classification performances for advanced colorectal lesions (HGD or higher grade) vs.
non-advanced colorectal lesions in the test dataset, the Inception-ResNet-v2 model, showed better
performances with AUC of 0.935 (95% CI 0.929–0.941) and accuracy of 87.1% (95% CI 86.2–88.0%)
than those of ResNet-152. For external validation dataset, all the endoscopists and CNN models
showed high accuracy of more than 90% (Supplementary Table S2). The Inception-ResNet-v2 (94.6%
(95% CI 93.8–95.4%)) achieved similar accuracy to the two residual endoscopists (96.7% (95% CI
93.5–98.6%) and 94.2% (95% CI 90.4–96.8%)) excluding the best-performing endoscopist. The AUC
of the Inception-ResNet-v2 (AUC 0.876 (95% CI 0.873–0.879)) was higher than the AUC of the worst
performing endoscopist with a marginal significance (AUC 0.723 (95% CI 0.662–0.779), p = 0.05).
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Table 1. Diagnostic performance of deep-learning models for binary classification of colorectal lesions on colonoscopic photographs in the test dataset.

Model
Diagnostic Performance,% (95% CI)

AUC (95% CI)
Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Neoplastic lesions vs. non-neoplastic lesions

ResNet-152 79.4 (78.5–80.3) 95.4 (93.2–97.6) 30.1 (25.5–34.7) 80.8 (78.4–83.2) 68.8 (58.4–79.2) 0.821 (0.802–0.840)
Inception-ResNet-v2 79.5 (77.6–81.4) 94.1 (92.5–95.7) 34.1 (28.1–40.1) 81.6 (80.6–82.6) 65.0 (54.7–75.3) 0.832 (0.810–0.854)

Advanced colorectal lesions vs. non-advanced colorectal lesions
ResNet-152 86.7 (84.9–88.5) 80.0 (75.4–84.6) 91.3 (90.8–91.8) 86.0 (83.7–88.3) 87.1 (85.1–89.1) 0.929 (0.927–0.931)

Inception-ResNet-v2 87.1 (86.2–88.0) 83.2 (81.5–84.9) 89.7 (87.7–91.7) 84.5 (81.0–88.0) 88.7 (87.7–89.7) 0.935 (0.929–0.941)

CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve.
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3.4. Class Activation Map

Representative CAM images of the best performing Resnet-152 model for binary classification
detecting neoplastic lesions (TA or higher) are shown in Figure 5. The CNN model detected neoplastic
lesions well in the colonoscopy images. For TA and HGD lesions, the CAM localized the elevated
polyp lesions as the regions of interest. For the identification of CRC including T1 and T3, the CAM
suggested depressions or ulcerations with mucosal irregularities or spontaneous bleeding areas as the
regions of interest.
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4. Discussion

This study showed the promising performance of deep learning models in differentiating colorectal
lesions into multiclass categories as well as into binary categories. To the best of our knowledge,
this is the first study to use CNN models to classify the full spectrum of colorectal neoplasms using
static white-light colonoscopy images. Our CNN models have an advantage in that we extended the
discrimination ability for advanced colorectal lesions, including HGD and CRC, as well as non-neoplastic
lesions, which could guide the selection of an optimal treatment strategy for endoscopists. Additionally,
as conventional white-light colonoscopy images were used, our CNN models could be easily adopted
in current clinical practice without additional training. In addition, we used colonoscopy images
from multiple centers using various kinds of colonoscopes, which facilitated the generalizability of
our CNN models regardless of the type of colonoscope. Finally, we also compared the performances
of the established CNN models with those of three endoscopists. Our CNN models showed better
or similar performances than those of the worst-performing endoscopists in the external validation,
which supported the idea that the application of our CNN models could assist endoscopists in the
discrimination of colorectal lesions.

Accurate and reliable optical diagnosis of colorectal lesions, which is essential to determine the
best therapeutic strategy, has been challenged in clinical practice. Although several image-enhanced
endoscopic techniques have been applied in clinical practice with various classification systems using
NBI (such as NBI international colorectal endoscopic and Japanese NBI expert team classification to
enhance the characterization of colorectal lesions [10,28,29]), previous studies showed that training
and experience are prerequisites for achieving the accurate prediction of an optical diagnosis using
advanced imaging technologies [12,13]. There were also concerns about the effect of inter-observer
and intra-observer variability on interpretation and the inaccessibility in adopting these advanced
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technologies in the real world. To overcome these problems, various working groups have
developed computer-aided diagnosis (CAD) systems to improve the characterization of colorectal
lesions [21–23,30,31]. In early studies, the CAD system usually used the features extracted by human
efforts. However, with the technical progress, deep neural networks (especially CNN) were involved
in both feature extraction and classification, thus enhancing diagnostic accuracy [31]. Zhang et al.,
demonstrated better performance of a novel transfer learning algorithm using deep CNN than that
of endoscopists in terms of recall rate (87.6% vs. 77.0%), and accuracy (85.9% vs. 74.3%) for the
automatic detection and classification of colorectal polyps [30]. However, studies that explored a CAD
system for the histologic prediction of colorectal lesions beyond hyperplastic polyps are currently
limited [32–34]. Although Takeda et al. reported the substantial performance of a CAD system in
distinguishing adenoma from invasive cancer, they used images from ultrahigh magnification images
with an integrated-type endocytoscope, which is rarely available in current practice [33]. Recently,
Sanchez-Montes et al. reported on a CAD system to predict colorectal polyp histology with white-light
colonoscopy images [34]. However, they solely classified dysplastic and non-dysplastic groups using
support vector machines, which guided the identification of dysplastic lesions with surface patterns.
On the other hand, we developed a CNN model, which automatically classifies the full spectrum of
colorectal lesions, and we divided the prediction categories to identify HGD (including carcinoma
in situ and intramucosal cancer) and early CRC because they are crucial candidates for complete
endoscopic resection. Our CNN model showed promising performance in the four-category and
binary classification schemes for detecting advanced colorectal lesions; the model could be used to
avoid inappropriate invasive interventions such as ESD or surgical resection and intervention-related
adverse events in cases of tubular adenoma or non-neoplastic lesions by differentiating them from
HGD and early CRC and in terms of reducing unnecessary endoscopic treatment in cases of advanced
CRC by differentiating them from HGD and early CRC. Additionally, our CNN model led to more
careful and meticulous inspection to determine the best treatment strategy or to assist in referring to
high-volume, specialized hospitals for complete resection in the case of suspicious HGD or early CRC.

It is well known that non-neoplastic lesions have little potential for malignancy;
resection-and-discard strategy or diagnose-and-leave strategy for diminutive (≤5 mm) hyperplastic
polyps in the rectosigmoid colon, is suggested to save on costs associated with resection procedures
and pathologic evaluations [35]. Therefore, several previous studies reported CNN models for the
differentiation of neoplastic polyps from hyperplastic polyps. Byrne et al. proposed CNN models
with an accuracy of 94% for binary classification of adenomatous polyps and hyperplastic polyps [21].
Chen et al. demonstrated a CAD system with an accuracy of 90.1%, a sensitivity of 96.3% and a
specificity of 78.1% to identify neoplastic polyps including adenoma with HGD [22]. Although these
studies showed higher diagnostic performance than that of our CNN model for binary classification
of neoplastic and non-neoplastic lesion, they used the NBI images with or without magnifying,
or chromoendoscopy images, while our CAD system only used white-light colonoscopy images.
Moreover, our dataset included heterogeneous diseases in the non-neoplastic group involving not only
hyperplastic polyps but also inflammatory polyp, lymphoid polyp, and chronic inflammation, and this
could have influenced the performance of our models.

There were several limitations to be addressed in our study. First, the training and test datasets
were collected retrospectively, and the training data were collected from the patients who were
diagnosed with CRC, which could lead to selection bias. However, because the incidence of malignant
colorectal lesions was low compared to the incidence of benign colorectal lesions in routine colonoscopy
examinations, it is impossible to collect all colonoscopy images of benign neoplasms during the study
period, when the colonoscopy images of malignant neoplasms are also sufficient to train the CNN
models. Therefore, we had to collect colonoscopy images from patients with malignant colorectal
lesions. To overcome this issue, we used all the colonoscopy images from consecutive patients
regardless of the reason for examination as an external validation dataset. The prevalence rates of
overall and advanced adenoma from the external validation dataset were comparable to those from
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colonoscopy screenings in individuals over fifty years old in Korea [36]. Second, we excluded images
of sessile serrated adenoma/polyps and traditional serrated adenomas because the pathologic standard
of these lesions is currently inconsistent, and there was a possibility of inter-observer variations in
the histologic interpretation. However, because there is substantial malignancy potential in serrated
adenoma/polyps, further study of the CNN model to distinguish serrated colorectal lesions is warranted.
Third, our CNN models cannot be trained to differentiate superficial submucosal invasion from deep
submucosal invasion of CRC because the white-light colonoscopy images of T1 CRC were too small in
number and there was no mention of the invasion depth in the surgically resected specimens. However,
distinguishing superficial submucosal invasion in cancer from deep submucosal invasion in cancer is
difficult even for well-trained and experienced endoscopists, but it is an important ability to determine
resectable T1 CRC in clinical practice. Therefore, a CAD system from a qualified, large number of T1
CRC datasets will be required to identify optimal candidates for endoscopic resection.

Nevertheless, our CNN models provided a quite useful classification performance with class
activation maps enabling human endoscopists to see the region of interest. The first purpose of this
deep learning model was to assist endoscopists to classify colorectal lesions found during colonoscopy
examination on site by suggesting a secondary opinion. Endoscopists need to classify colorectal lesions
on site to determine treatment strategy, but the decision should be fast and mostly depends on the
experience of each endoscopist. This model would provide an additional opinion and help to reduce the
misdiagnosis rate. If this model is applied to the real-time colonoscopy examination videos, it would
help to reduce superfluous resection and to increase the sensitivity for defection of early lesions in the
clinical field. Therefore, another purpose of this algorithm may be to help endoscopists to not miss
small or negligible lesions in the examination, and possibly to analyze the videos automatically which
were recorded by a capsule endoscopy system. To meet this need, a randomized clinical trial would be
required in the future for the sound verification of this model.

In conclusion, our established CNN model showed promising performance in classifying colorectal
neoplasms from non-neoplastic lesions to advanced CRC based on standard white-light colonoscopy
images. Our CNN model could be adopted to assist in the accurate prediction of histology and in the
choice of the best therapeutic strategy in real-world practice.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/9/5/1593/s1,
Supplementary Table S1. Data composition of enrolled colonoscopic photographs in each dataset Supplementary
Table S2. Diagnostic performance of three endoscopists and deep-learning models for binary classification of
colorectal lesions on colonoscopic photographs in the external validation dataset Supplementary Figure S1.
Per-class diagnostic performances of three endoscopists and deep-learning models for four-class classifications of
colorectal lesions in the external validation dataset as for (A) advanced CRC or early CRC/HGD and (B) TA or
non-neoplastic lesions. CRC, colorectal cancer; HGD, high-grade dysplasia; TA, tubular adenoma.
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