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Abstract: In the current cancer treatment, various combination therapies have been widely used,
such as photodynamic therapy (PDT) combined with chemokinetic therapy (CDT). However, due to
the complexity of the tumor microenvironment (TME) and the limitations of treatment, the efficacy
of current treatment options for some cancers is unsatisfactory. Nowadays, cascade technology has
been used in cancer treatment and achieved good therapeutic effect. Cascade technology based on
nanotechnology can trigger cascade reactions under specific tumor conditions to achieve precise
positioning and controlled release, or amplify the efficacy of each drug to improve anticancer
efficacy and reduce side effects. Compared with the traditional treatment, the application of cascade
technology has achieved the controllability, specificity, and effectiveness of cancer treatment. This
paper reviews the application of cascade technology in drug delivery, targeting, and release via
nano-drug delivery systems in recent years, and introduces their application in reactive oxygen
species (ROS)-induced cancer treatment. Finally, we briefly describe the current challenges and
prospects of cascade technology in cancer treatment in the future.

Keywords: combination therapy; cascade technology; multidrug resistance; tumor microenviron-
ment response

1. Introduction

In recent years, nanotechnology has been widely used in the field of pharmaceutics as
a method to overcome multidrug resistance (MDR), improve biodistribution and limit toxi-
city [1–4]. The prognosis based on the conventional combination method is unsatisfactory,
mainly due to the poor specificity of chemotherapeutic drugs and the biological complexity
of the tumor. The complexity, diversity, and heterogeneity of tumors have severely de-
stroyed the therapeutic potential of treatment [5]. The complex drug resistance mechanisms
of tumor cells include changes in apoptosis pathways, DNA repair and damage responses,
changes in metabolic conversion of drug targets, and self-factors such as higher interstitial
fluid pressure (IFP) and dense extracellular matrix (ECM) [6]. These are obstacles to the
treatment. Fortunately, nanocarriers have outstanding performance in improving tumor
targeting, controlled release, and pharmacokinetics [7]. The use of nanocarriers to deliver
small-molecular chemotherapeutic drugs is a commonly used method in the clinical treat-
ment of cancer. At present, the commonly used nanocarriers in clinical research mainly
include liposomes, micelles, hydrogels and peptides, etc. These nanocarriers provide
chemotherapeutic drugs for targeted treatment of cancer and improve the pharmacokinet-
ics and biodistribution. In addition, new treatment methods based on functional materials
with unique physicochemical properties have emerged in large numbers to achieve more
accurate, efficient, and non-invasive cancer treatment. For example, photosensitizers (PSs)
have excellent light absorption and conversion abilities, which can convert exogenous light
energy into hyperthermia for photothermal therapy (PTT) or catalyze the production of
reactive oxygen species (ROS) for photodynamic therapy (PDT) [8–10]. More interestingly,
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the tumor microenvironment (TME) responsive nano-drug delivery systems (DDS) based
on the complex characteristics of TME, such as acidic pH, reduction conditions, hypoxia,
hydrogen peroxide (H2O2) overexpression, have been used in tumor specific therapy. For
instance, smart upconversion nanoparticles (UCNPs) can make use of various biophysical
and chemical characteristics of TME to achieve precise tumor targeting [11,12].

In recent years, drug combination therapy or drug cocktail therapy has been ex-
tensively exploited and is increasingly becoming the standard practice for combatting
cancer [13]. Combination therapy can be sorted into different categories, such as the combi-
nation of two chemotherapeutic drugs, the combination of chemotherapeutic drugs and
nucleic acid drugs, and the combination of near-infrared light (NIR)-responsive drugs and
photothermal therapy. These combined methods can effectively overcome the drug resis-
tance of tumors, and they achieve better anticancer effects than single therapy. However, in
combination therapy, different modes of administration will affect the effect of combination
therapy. Although the combination of two or more drugs can usually produce synergistic
therapeutic effect, the simultaneous administration of drugs may bring new problems.
The possibility of drug interactions makes it difficult to deliver two or more drugs at the
same time. Multiple drugs administered at the same time may aggravate adverse reactions
and limit the maximum therapeutic effect of one or more drugs [14,15]. In addition, the
poor correlation and synergy between different treatment methods may make the effect of
combination therapy worse in magnifying the treatment results.

In this regard, cascade design is introduced into cancer treatment through nanoplat-
form, which can reduce adverse reactions and show great potential in cancer treatment.
Cascade technology refers to a series of events that occur in sequence, or to a case in which
the previous event has a promoting effect or amplification effect on the subsequent events.
At present, cascade technology has been widely used in biomedicine and has achieved
good performance in cancer treatment. For example, the PS, phophorbid A (PhA), was
conjugated to water-soluble glycol chitosan (GC) via a ROS-sensitive thioketone (TK) linker.
When nanoparticles (NPs) reach the ROS-rich hypoxia core of tumor tissue, they release PS
in the photoactive form, through effective and ROS-sensitive TK bond cleavage, resulting
in strong phototoxicity. After irradiation with NIR, the local ROS level increased, which
promoted PS release subsequently [16]. These cascade reactions lead to a significant reduc-
tion in tumor volume. Additionally, cascade delivery refers to the nanosystem transporting
across multiple biobarriers via the transition of its characteristics. Under specific TME con-
ditions and/or external stimulation, cascade responsive nanocarriers can realize multi-step
localization or multi-stage trigger release of the load of therapeutic drugs in tumor cells
(even in specific organelles), minimize side effects and enhance their bioavailability. Up
to now, substantial progress has been made in the study of nanoformulations for cascade
anticancer therapy. Compared with the control nano-preparation, integrating targeted
nanomedicines with cascade therapy further enhances tumor accumulation/penetration,
facilitates cell internalization and lysosomal escape, controls intracellular drug release,
protects instable therapeutics, induces synergistic effect, ameliorates therapeutic efficacy,
diminishes the drug resistance and mitigates the side effects.

In the following, we first described the mechanism of drug resistance. Then, we
summarize the application of cascade technology in cancer treatment which can be divided
into cascade delivery and cascade reaction from the different forms and uses of cascade
reaction. Finally, we discuss the challenges and application prospects of cascade technology
in cancer treatment, in order to stimulate more innovative thinking and promote the rapid
development of anticancer treatment.

2. Multidrug Resistance of the Tumor Microenvironment

MDR is the biggest obstacle facing cancer treatment, which greatly impacts and
limits the therapeutic efficacies and outcomes. Tumor cell interactions with TME are
crucial in epithelial-mesenchymal transition (EMT) and MDR [17]. Intracellular resis-
tance includes the overexpression of drug efflux pumps, the induction of cell survival
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pathways, and the inability to induce apoptosis [18]. ATP-binding cassette (ABC) trans-
porter proteins are mainly responsible for the drug efflux. Multidrug-resistance protein 1
(MDR1)/permeability-glycoprotein (P-pg)/ABCB1, MDR-associated protein 1 (MRP1) and
breast cancer resistance protein (BCRP)/ABCG2 are the most studied ABC transporters [19].

The constant interactions between tumor cells and the TME play decisive roles in tu-
mor initiation, progression, metastasis, and response to therapies [20]. The composition of
the TME varies between tumor types, but hallmark features include immune cells, stromal
cells, blood vessels, and the extracellular matrix [21]. TME is not just a silent bystander, but
rather an active promoter of cancer progression [22]. MDR not only presents at the cellular
level, but also at the level of TME [18]. The environment-mediated drug resistance is a
result of continuous crosstalk between the tumor cells and their surrounding stroma [23].
TME plays an important role in effective drug delivery, so its drug resistance cannot be
ignored when aiming to develop better treatments for resistant cancers. Abnormal vas-
cular system and cell adhesion are the culprits of microenvironmental MDR mechanism.
Among them, the abnormal vascular system causes fewer nutrients and less oxygen to
be transported to cancer cells. Hypoxia can lead to the upregulation and activation of
the heterodimeric transcription factor hypoxia-inducible factor-1 (HIF-1), which triggers
multiple signaling pathways and leads to the occurrence of the MDR phenotype [18]. Cell
adhesion-mediated drug resistance (CAM-DR) is mainly due to the attachment of tumor
cells to the stroma, which may trigger several signal transduction pathways, resulting in
reduced sensitivity to anticancer therapies [23]. Clinical studies have shown that the three
families of cell–cell interaction molecules are selectins, Siglecs, and integrins, and they
have been extensively studied in the research of inhibiting cell adhesion as a therapeutic
target [24]. Selectins are C-type lectins that bind to properly modified glycan ligands, such
as CD44, Eselectin ligand-1, CD43, CD34, or addresses with a variable specificity. For
example, the study by Hao et al. showed that both CD147 and CD44 are involved in cancer
drug resistance [25]. CD44 is a multifunctional protein involved in cell adhesion, migration
and drug resistance, with a critical role in cell signaling and cell-ECM interactions in cancer.
EMMPRIN (CD147) can modify the TME by activating proteases, inducing angiogenic
factors in tumor and stromal cells, regulating tumor cell growth and survival and MDR.
Sun et al. found that t MGr1-Ag/37LRP ligation-induced adhesion participated in protect-
ing gastric cancer cells from a number of apoptotic stimuli caused by chemotherapeutic
drugs [26]. MGr1-Ag can prompt CAM-DR through interaction with laminin while MGr1-
Ag/37LRP, as a receptor for ECM components, may interact with phosphorylated FAK to
activate downstream signaling pathways PI3K/AKT and MAPK/ERK. They also found
that inhibiting the expression of MGr1-Ag/37LRP by monoclonal antibodies, siRNA and
antisense oligonucleotides can significantly increase the sensitivity of chemotherapeutic
drugs and reverse MDR.

3. Cascade Response Nano-Delivery System

It is the ultimate goal of the drug delivery system (DDS) to deliver anticancer drugs
and release them into the tumor effectively. This goal remains challenging due to the
complexity of biological barriers. The typical drug delivery of nanocarriers from the intra-
venous injection site to the cytosol of a tumor cell requires a five-step cascade, including:
(1) circulation, (2) accumulation, (3) penetration, (4) internalization, (5) drug release, or a
CAPIR cascade [27]. The overall delivery efficiency (Q) of the system is a product of the
five-step efficiencies (QC, QA, QP, QI and QR). Therefore, to obtain high delivery efficiency,
it is necessary to balance the efficiencies of all the steps and ensure that none of them is too
low. The tumor’s enhanced permeability and retention (EPR) effect or physical targeting
effect greatly promotes the accumulation of nanocarriers at the tumor site [28]. In addition,
some unique characteristics of the TME, such as slight acidity (pH 6.5–7.2), overexpres-
sion of proteins and enzymes, and hypoxia, make nanocarriers responsive to internal and
external stimuli more effective [29]. Responsive nanocarriers can overcome a variety of
biological barriers in cascade delivery, as well as multi-targeted and multi-stage responsive
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release of cancer therapeutic drugs, making drug release selective and controllable. Here
we mainly discuss the superiority of cascade delivery from two aspects: cascade targeting
and cascade release.

3.1. Accurate Cascade Targeting

Nanocarriers with cascade targeting ability can accurately locate tumor cells or spe-
cific organelles, greatly reducing the effect on normal cells of the body and improving
the efficacy of tumor treatment. These modified nanocarriers can actively or passively
target tumor cells through biological barriers. Some nanocarriers with cascade targeting
capabilities can respond to stimuli in TME or external stimuli. This allows nanocar-
riers to be better designed to suit various changes in tumors. For example, Liu et al.
designed a stealthy, sequentially-responsive doxorubicin (DOX) delivery nanosystem
(RCMSNs), which was composed of extracellular-tumor-acidity responsive polymer shell
(PEG-b-PLLDA), pH/redox-dual responsive mesoporous silica nanoparticles-based carri-
ers (MSNs-SS-Py), and cationic β-cyclodextrin-PEI (CD-PEI) gatekeepers (Figure 1) [30].
Therefore, PEG-b-PLLDA corona makes RCMSN invisible and prolongs blood circulation
time. When it reaches the tumor, the extracellular acidity will degrade PEG-b-PLLDA
and reverse the surface charge of the nanosystem to positive, thereby greatly improving
the tumor accumulation, penetration and internalization of RCMSNs. In cancer cells,
CD-PEI gatekeepers unload DOX in response to intracellular acidity and glutathione, and
functionally act as a P-gp inhibitor, inhibiting the efflux activity of P-gp by weakening the
production of ATP to synergistically reverse MDR. This sequence-responsive nanosystem
with stealth ability, charge conversion ability and convenient P-gp inhibitory activity is an
effective biological barrier breakthrough drug carrier, which can effectively carry DOX into
the cell without causing systemic toxicity. In addition, some cascade-modified nanocarriers
can break under the acidic conditions of the TME or the tumor endosome. For example,
Liu’s group prepared a TME cascade pH-responsive DDS (HMSNs-bCD/Ada-PEG@DOX)
for tumor therapy [31]. Under the weak acid conditions of the TME (pH 6.8), the ben-
zoicimine bonds between PEG and Ada was cleaved to promote cell uptake. Subsequently,
the boronic acid-catechol ester bonds linkers were further hydrolyzed under the condition
of a lower endosomal pH (4.5–6.5) for intracellular drug delivery, resulting in effective cell
apoptosis. Therefore, rational use of TME and intracellular characteristics can construct an
efficient DDS.

The strategy of combining of drug delivery with external stimulation also has con-
siderable advantages in the enhancement of drug positioning for effective cancer therapy.
For example, Zhao et al. designed and constructed a transferrin (Tf)-conjugated pho-
tothermal nanoplatform composed of gold nanoshell-coated rod-like mesoporous silica NP
(Tf-GNRS) for the delivery of the chemotherapeutic drug gemcitabine (GEM) to treat pan-
creas cancer [32]. This nanoplatform provides cascade tumor targeting methods, namely
photothermal targeting and molecular targeting, and the combined photothermal and
chemotherapy. After inducing the tumor site-specific photothermal effect, the local blood
perfusion and vascular permeability of the tumor are enhanced, which improves the accu-
mulation and penetration of Tf-GNRS in the TME. In the in vivo pancreatic tumor model,
the cascade targeting effect of the plasma nanoplatform is confirmed, and it has positive
feedback amplification of the antitumor efficacy. Compared with the photothermal effect or
the Tf-targeting effect, this cascade targeting effect has stronger tumor cell positioning. In
addition, cascade nanocarriers with multi-targeting molecular modification have positive
positioning capabilities. In the research of multiple targeting nanocarriers, the CD44 recep-
tor is a frequently studied target [33–35]. Ding et al. used rattle mesoporous silica (rmSiO2)
coating and modifying HA and PEGA-PVEC peptides as siRNA and DOX delivery carriers
for the treatment of breast cancer [36]. The nanoplatform is capable of targeting vascular
markers and CD44 overexpressed on the surface of cancer cells through peptides and
HA, allowing access to breast cancer cells through multiple barriers and achieving high
selectivity for breast cancer cells (Figure 2). These cascaded targeting nanocarriers provide
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a nanomedical platform for highly precise transportation of multiple therapeutic agents in
a synergistic treatment and strategy to overcome the drug resistance in specific cancers.

Figure 1. (A) Schematic showing the synthetic procedure of the sequentially responsive nanosystem
(DOX@RCMSNs). (B) Schematic illustration of DOX@RCMSNs overcoming the cascaded bio-barriers
and the mechanism of action in tumor cells. Adapted from [30].
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Figure 2. (A) Schematic diagram of the construction of HACT NPs with the cascade of two targeting agents (HA and
peptide) and two cancer therapeutic agents (siRNA and Dox). (B) Schematic illustration of HACT NPs for the treatment of
CTGF-overexpressing breast cancer. Adapted from [36].

Accurate delivery of therapeutic molecules to target organelles in cells can improve
the therapeutic effect and achieve precise treatment. Compared with traditional treat-
ments, this precise targeted treatment can reduce drug dosage and side effects, and avoid
multidrug resistance [37–39]. Therefore, many works have been committed to designing
active tumor targeting and specific organelle positioning functions, which can achieve
cascade delivery of cargos into intracellular specific organelles [40,41]. Therefore, in order
to improve the anticancer effect, the cascade targeted organelles mainly target the nucleus
and mitochondria [37,41–44]. For example, Cao et al. used thioketal crosslinked polyphos-
phoester (PPE) NPs decorated with a pHe-sensitive transactivator of transcription (TAT) to
rationally prepare a pHe/photo dual-sensitive nanocarrier (DA-masked TAT-decorating
reactive oxygen species (ROS)-sensitive Ce6/DOX-loaded hyperbranched NPs (DTRCD)),
(Figure 3) [45]. DTRCD prolongs circulation by masking the targeting effect of its TAT
peptide, and then reactivates the TAT peptide due to its response to pHe, which further
enhances tumor cell uptake and promotes transport to the perinuclear region. Next, under
660 nm laser irradiation, DTRCD can generate ROS through the encapsulated chlorin e6
(Ce6), which not only disrupts the nuclear membrane to allow entry into the nuclei, but also
triggers the release of DOX in the nucleus. This cascade nuclear targeted DDS can greatly
improve the efficiency of drug treatment, and reduce side effects and multidrug resistance.
In addition, targeting mitochondria and nucleus double key sites has been increasingly
used in order to achieve a greater anti-proliferation effect [46]. This specific DDS can
not only effectively deliver drugs to the site of action, but also activate the intracellular
apoptotic cascade through multiple mechanisms, thereby potentiating the antineoplastic
effect. It was reported that mitochondria-to-nucleus cascade dual organelle targeted PSs
have been developed to combat cancer with good effect [47]. This strategy allows the same
number of PSs to be used twice, and the genes in the mitochondria and the nucleus are
damaged by photosensitization. This will allow us to use limited amounts of PSs for a
maximized killing effect, which is also beneficial for the overall biocompatibility of the PSs
when a low amount is needed.
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Figure 3. (A) Schematic diagram of the pHe/photosensitive decomposition of DTRCD. (B) Schematic
illustration of the cascade nucleus-targeted drug delivery strategy of DTRCD. Adapted from [45].

3.2. Cascading Response Release

Poor cell uptake of drugs, the inability to release adequate drugs at tumor sites, and
inherent MDR are the main obstacles limiting the efficacy of tumor therapy. Due to the
microenvironment limiting the delivery and penetration of particles into the tumor, the
nanocarriers with TME-responsive capacities guarantee tumor-selective treatments with
improved biosafety. In particular, a cascaded multi-stage DDS can ensure accurate and
selective delivery of goods to targeted sites and effective release. A variety of cascaded
release nanoplatforms have been designed to deliver drugs to specific sites using internal
or external stimuli such as decreased pH in TME [31] or laser irradiation [48] to obtain
anticancer effects.

3.2.1. Internal Stimulus-Triggered Cascade Release

The complex nature of the TME allows the nanoplatform to be a cascaded release
with these stimuli, which are primarily decreased pH, ROS and enzyme sensitivity. For
example, Zhang et al. designed a macrophage-membrane-coated vesicle-loaded chemother-
apeutic drug paclitaxel (PTX) for tumor targeting therapy with controllable release in
an acidic TME [49]. During systemic circulation, the vesicle membrane served as a con-
cealing cloak against opsonization and reticuloendothelial system (RES) clearance and
as a tumor-homing navigator to enhance tumor accumulation. In the first release stage,
after the macrophage membrane completes the tumor targeting, the interstitial pH would
cause the membrane-coated formulation to undergo expansion and eruption, removing
the coat. Under the action of the surface-targeting peptide, the released NPs can be bet-
ter absorbed by the tumor. In the second release stage, the encapsulated PTX would be
released from the NPs in response to the intracellular pH of the tumor cells. This cas-
cade step-by-step release strategy can optimize the drug release kinetics in the TME and
improve drug delivery efficiency and biocompatibility. Furthermore, tumor cells have
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higher levels of ROS than normal cells, which is commonly used as a condition for cas-
cade release. Various ROS-responsive copolymers comprising of oxidation-labile groups
such as thioketal, alkylene sulfide, and boronic ester have been extensively investigated
to construct DDS for tumor therapy [50,51]. For example, Dai et al. constructed a self-
amplifiable drug release system with charge reversal ability by loading β-lapachone in a
pH/ROS cascade-responsive polymeric prodrug micelle polyethylene glycol (PEG)-P(2-
aminoethyl methacrylate hydrochloride (AA)-DA)-camptothecin conjugated hydroxyethyl
methacrylate-oxalyl chloride (CPTMA) (denoted as PPDC@β-Lap) [52]. In the weak acidic
TME, the surface charge of the micellar system will reverse, which can increase the up-
take of tumor cells. Subsequently, the cascade-responsive micellar system can dissociate
and induce the release of β-lapachone and camptothecin (CPT) in ROS-rich intracellular
environments (Figure 4A). In addition, released β-lapachone can produce ROS under
the catalysis of nicotinamide adenine dinucleotide (NAD)(P)H:quinone oxidoreductase-1
(NQO1) and consume ATP, induce self-amplifiable disassembly of the micelles and drug
release and suppress drug efflux, and finally overcome MDR (Figure 4B–D). Interestingly,
this study can not only exert the synergistic effect of oxidation-chemotherapy, but also
shows the characteristics of pH-responsive charge-reversal, upregulation of tumoral ROS
level, self-amplifying ROS-responsive drug release and so on, which can achieve potent
antitumor efficacy.

Figure 4. (A) Schematic illustration of cascade self-amplifiable drug release and charge reversal PPDC system for tumor
therapy. (B) Intracellular ATP level in MCF-7 ADR cells treated with different formulations for 4 h. (C) Quantitative analysis
of P-gp expression after incubation of different formulations for 48 h. (D) Western blotting images of P-gp expression in
MCF-7 ADR cells after incubation of different formulations for 48 h. β-actin was used as control. (E) Volume of tumor
treated with different dosage forms after 21 days. (** p < 0.01 (t-test)) Adapted from [52].

Certain enzyme overexpressions in tumor cells were detected. It has become a new
method to use enzymes as stimuli for intelligent cascade drug release in site of action [53].
Enzymes can trigger the release of drugs and biosensors through special enzyme reaction
materials. Enzyme-triggered cascade drug release mechanism is mainly involved in hydro-
lases [54–56] and oxidoreductase enzyme [57]. Among them, NQO1 is overexpressed in
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some tumors, which maintains redox homeostasis and inhibits oxidative stress by detoxi-
fying highly active quinones [58]. In particular, the activity of NQO1 in lung cancer and
liver cancer cells increased 50 times compared with normal cells. NQO1 overexpressed in
tumor tissue has been widely used in the development of stimuli-responsive DDS [59–61].
For example, Park et al. synthesized an amphiphilic block copolymer (QPA-P), which
was triggered by NQO1 to depolymerize QPA-locked polycaprolactone (PCL) and poly
(ethylene glycol) (PEG) as hydrophobic and hydrophilic components, respectively [62]. The
QPA-P formed self-assembled micelles in aqueous conditions to deliver DOX. The results
showed that NQO1 catalyzed the depolymerization of QPA-locked PCL through a cascade
two-step cyclization process, that is, NQO1 enzyme reduced the quinone group of QPA-P
to hydroquinone and then the generated hydroxyl group undergoes nucleophilic attack at
the carbonyl group of the amide bond, triggering the first cyclization process and releasing
the pendant group as a lactone moiety. Secondly, the exposed amino groups initiated the
second cyclization process by nucleophilic attack on the ester bond in the main chain of
PCL, and eliminated the lactam part of PCL (Figure 5A). This cascade two-step cyclization
depolymerization process can remove the hydrophobic blocking segment, eventually in-
duce the micelle structure dissociation, and trigger the release of DOX on target cancer
cells (Figure 5B,C). In addition, in situ glucose oxidase (GOx)-catalyzed glucose oxidation
can increase intracellular H2O2 concentration, which is also used to design tumor specific
carrier cascade release. For example, Cheng’s group built a biomimetic cascade nanoreactor
(named Mem@GOx@ZIF-8@BDOX) [63]. The nanoreactor assembled tumor cell membrane
and GOx onto zeolitic imidazolate framework (ZIF-8) and loaded H2O2-sensitive BDOX.
Therefore, biomimetic membrane camouflage affords superior immune evasion and ho-
motypic binding capacities, which significantly enhances the preferential accumulation
and absorption of tumor targeted drug delivery. Moreover, cascade catalysis can enhance
glycolysis of GOx starvation therapy by controlling the disintegration of acid responsive
ZIF-8 and the release and activation of H2O2 responsive BDOX. GOx can immobilize intra-
cellular glycolysis, cut off glucose supply and metabolic pathways for starvation therapy,
increase H2O2 concentration, and achieve TME regulation. This kind of bionic nanoreactor
has the advantages of efficient drug delivery and long-term accumulation, significantly
improving the therapeutic effect and reducing adverse drug reactions.

3.2.2. External Stimulus-Triggered Cascade Release

Light is the main stimulus to study the cascade drug release controlled by external
stimuli. At present, many studies have applied light-activated nanomaterials to DDS,
which would respond to drug release under light stimulation [64–66]. Cascaded nano
delivery systems initiated by light stimulation often combine with other stimuli to improve
tumor selectivity. For example, He et al. reported a cancer-targeting vehicle in response
to cascaded external (light) and internal (hypoxia) dual triggers [48]. The nanoplatform
was self-assembled by polyethyleneimine nitroimidazole (PEI-NI) into micelles, which
were further loaded with hyaluronic acid-Ce6 (HC) and DOX. The NPs can accumulate
in the tumor site through EPR effect, and can be endocytosed by tumor cells through HA
binding to over-expressed CD44 on cancer cells surfaces. Under 660 nm light irradiation,
high levels of ROS were generated in the tumor, which greatly enhanced the hypoxic levels,
induced NPs dissociation and, accordingly, DOX release. This dual trigger DDS improves
the selectivity of drugs, reduces the side effects, and renders promising applications for
the programmed combination of chemotherapy and PDT. Similarly, the self-destructive
polymeric nanomicelles were synthesized by connecting polycarbonate with thioketone
bond which was sensitive to ROS to load PS Ce6, and DOX was loaded by π-π superposition
(Figure 6A) [4]. Light given in PDT treatment not only excites Ce6 to produce cytotoxic
ROS, but also spatiotemporally activates a cascade reaction to release the loaded DOX
(Figure 6B,C). This self-degrading system can facilitate cellular uptake, endosomal escape,
and nuclear distribution of the DOX, as well as reduce the side effects and improve the
anticancer effect (Figure 6D,E).
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Figure 5. (A) Schematic representation of NQO1-responsive drug delivery system and drug release. (B) TEM images of
the micelles after enzyme-mediated disassembly (scale bar: 200 nm) and time-dependent DLS size distribution of QPA-P
micelles upon incubation with NQO1 enzymes. (C) Intracellular DOX release from QPA-PM-DOX and Bz-PMDOX in A549
(NQO1 positive) and H596 (NQO1 negative) observed by CLSM (scale bar: 50 µm). Adapted from [62].

4. Activated Cascade Reactions to Enhance ROS-Induced Cancer Therapy

ROS comprise of a family of short-lived molecules such as singlet oxygen (1O2),
hydroxyl radical (•OH), and superoxide anion (O2

•−) [67]. ROS production has been
implicated in mediating chemotherapy or radiotherapy responses via its effects on down-
stream cell survival or death signaling cascades. The mechanism of ROS on tumor cells
is complex. It not only plays a role in destroying redox homeostasis, but also destroys
macromolecules that maintain cell life. There has been plenty of research on ROS-induced
cancer therapies [16,68]. However, in the treatment of ROS-induced cancer, due to the
lack of endogenous resources or specific microenvironment, the internal tumor is facing
the dilemma of treatment deterioration. Therefore, by centralizing TME and triggering
specific cascade reactions with external stimuli, we can make full use of internal resources
to produce ROS, so as to achieve good therapeutic effect. Compared with traditional
therapy, this method can make full use of the existing conditions to produce ROS in specific
parts of the tumor and improve the therapeutic effect. At present, a large number of
cascade reactions using different mechanisms have been used in cancer treatment. Most of
these mechanisms revolve around two aspects; inducing the increase of ROS content and
reducing the consumption of ROS.

4.1. Enzyme-Based Cascade Enhances ROS-Induced Cancer Therapy

Chemodynamic therapy (CDT) is a therapeutic method that can induce ROS in tumor
cells and break the balance of intracellular redox/oxidation state [69–71]. However, the
progress of CDT excessively depends on the reaction conditions, such as the content of
H2O2, which is limited in TME [72,73]. This fact has been recognized as one of crucial obsta-
cles for ensuring the anticancer efficacy of current CDT. Nanozyme-based CDT has become
an effective anticancer method because of its small side effects and lack of requirement for
exogenous energy [74]. Constructing a therapeutic system with enzyme delivery ability
and triggering cascade reaction in tumor cells can significantly improve the efficacy of CDT.
For example, Fang et al. synthesized a nanoscale Co–ferrocene metal–organic framework
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(Co-Fc NMOF) with high Fenton activity, and combined it with glucose oxidase (GOx)
to construct a cascade enzymatic/Fenton catalytic platform (Co-Fc@GOx) for enhanced
tumor treatment [75]. In this system, Co-Fc NMOF not only acts as a versatile and effective
delivery cargo of GOx molecules to modulate the reaction conditions, but also possesses
excellent Fenton effect for the generation of highly toxic •OH. In addition, Co-Fc NMOF
can transfer GOx to catalyze endogenous glucose to produce gluconic acid and H2O2,
which, in turn, favors the Fenton reaction of Co-Fc NMOF, and enhances the generation of
ROS. This study provides an effective method for cancer prevention, which can effectively
regulate the microenvironment of tumors and synergetic treatment of cancer. Liu et al.
Modified GOx to the surface of Fe-based metal organic framework (MOF(Fe)) and reacted
with CPT cascade loaded into MOF(Fe) cavity to form a synergistic cancer starvation/ROS-
mediated/chemotherapy (Figure 7) [76]. This cascade three-mode combination therapy
utilizes TME, such as over expressed glucose transporters and acidic environments, to kill
cancer cells without external intervention, and has potential tumor specificity.

Figure 6. (A) Schematic of the cascade reaction of self-destructive polymeric nanomicelles. (B) zeta-
potential of Ce6-loaded PEG-PBCTKDOX nanomicelles. (C) Penetration of DOX in MCF7/ADR 3D
cell spheroids. (D) Tumor images of H&E staining, Ki67 immunohistochemistry, and TUNEL assay
after the treatment depicting morphology, proliferation, and apoptosis, respectively. (E) Final tumor
volume images after different drug treatment. Adapted from [4].
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Figure 7. (A) Synthetic procedure of CPT@MOF(Fe)-GOX. (B) Schematic illustration of CPT@MOF(Fe)-GOX via a cascade
reaction (1–3) in cancer cells. Adapted from [76].

4.2. Glutathione Cascade for Enhancing Cancer Therapy

GSH is an important antioxidant in cells, which protects cells from various oxidative
damages. When GSH is overexpressed in tumor, it will limit the rise of ROS level to
maintain redox homeostasis, resulting in resistance to ROS-induced cancer therapy [77].
Therefore, the reduction of GSH in TME is of great significance for promoting ROS pro-
duction and ROS-induced tumor treatment. In recent years, a large number of studies
have reported a variety of cascade reactions involving GSH-eliminating and catalytic ROS-
generating cascade process for enhancing ROS-induced cancer treatments [78–82]. GSH
is involved in the cascade of ROS-induced tumor therapy through various exhaustion
ways. For example, GSH can be reduced into glutathione disulfide (GSSG) by metal oxides.
Zhen et al. developed a new iridium oxide (IrOx) nanozyme with intrinsic multienzyme
mimetic activities similar to natural catalase, peroxidase, and oxidase [83]. IrOx could
continuously consume GSH through self-cyclic valence alternation of IrIV and IrIII to break
the antioxidation defense system of the tumor. In addition, GSH can be absorbed by the
binding of active metal sites with GSH. For example, Zhang et al. reported a nano-metal–
organic framework CuII-metalated porphyrinic MOF (MOF-2) based on CuII as the active
center for PDT [84]. Under light irradiation, MOF-2 can produce a high level of ROS, and
absorb GSH in cells, which can further increase the concentration of ROS and accelerate the
apoptosis of cells, thus enhancing the effect of PDT. Yang et al. synthesized seven types of
bimetallic nanoparticles using metal organic framework (MOF) as stable host [85]. Among
them, Cu-Pd@MIL-101, with an alloy loading of 9.5 wt% modified by PEG (9.5% CPMP),
is found to exhibit high GSH depletion. This work has provided a credible strategy for
constructing nanozymes with an excellent activity, and may pave a new way for the design
of enhanced tumor CDT treatment. The integration of ROS-involved PDT and CDT holds
great promise for enhanced anticancer effects. Liu et al. reported that biodegradable cancer
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cell membrane-coated mesoporous copper/manganese silicate nanospheres (mCMSNs)
have the abilities of homotype targeting cancer cell lines, and they enhance the production
of ROS through 1O2 production and GSH-activated Fenton reaction (Figure 8) [86]. Under
635 nm laser irradiation, mCMSNs can alleviate the tumor hypoxia microenvironment by
catalyzing the decomposition of H2O2 into O2 and further reacting with O2 to produce toxic
1O2. GSH-mediated biodegradation of mCMSNs can simultaneously produce Fenton-like
Cu+ and Mn2+ ions, and deplete GSH to produce effective •OH. In tumor, the destruction
of hypoxic environment and the consumption of GSH can destroy TME and cell antioxidant
defense system, which has a good anticancer effect.

Figure 8. (A) Synthetic procedure of mCMSNs. (B) Schematic illustration of therapeutic mechanism of mCMSNs for PDT
under Laser. (C) Chemical mechanism of GSH-triggered CDT and MRI. Adapted from [86].

4.3. Other Cascade Mechanisms Enhance ROS-Induced Cancer Therapy

It’s a common method to increase ROS content with chemotherapeutic drugs. For ex-
ample, DOX and platinum drugs can activate nicotinamide adenine dinucleotide phosphate
oxidases, generating superoxide radicals (O2

•−) [87]. Polyphenol superoxide dismutase
can catalyze O2

•− to H2O2. Finally, highly toxic HO• radicals were generated by Fenton
reaction. The ROS HO• can synergize the chemotherapy by a cascade of bioreactions
(Figure 9). In addition, PDT is a promising clinical cancer treatment strategy, and it is
also a common means of increasing ROS content and enhancing ROS-induced anticancer
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strategy [88–92]. PDT converts O2 into ROS by light-activated PSs, while CDT generates cy-
totoxic •OH by an in situ Fenton or Fenton-like reaction between H2O2 and catalysts [93,94].
The PDT/CDT combination therapy can amplify the oxidative stress of tumor and achieve
better anticancer effects than single therapy [95]. However, the effect of the TME char-
acteristics of hypoxia and GSH depletion on ROS limits the efficiency of ROS. Therefore,
expanding the production of endogenous O2/H2O2 or directly transporting exogenous
O2/H2O2 into cells are two important strategies for alleviating PDT hypoxia. For example,
Liu et al. reported a H2O2/O2 self-supplying nanoagent, (MSNs@CaO2-ICG)@LA, which
was composed of manganese silicate (MSN)-supported calcium peroxide (CaO2) and in-
docyanine green (ICG) with further surface modification of phase-change material lauric
acid (LA) [96]. Under laser irradiation, ICG produces 1O2 and releases heat to melt LA.
Subsequently, the exposed CaO2 reacts with water to produce O2 and H2O2, which are
used to alleviate hypoxia ICG mediated PDT and H2O2 supplied MSN-based CDT, acting
as an open source strategy for ROS production (Figure 10). In addition, MSN-induced
glutathione depletion protects ROS from scavenging, termed reduce expenditure. This
strategy can effectively inhibit tumor growth both in vitro and in vivo, and significantly
improve the multi-level production efficiency of ROS in cancer treatment involving ROS.
ROS-sensitive nanocarriers responsive to TME can maintain the activity of PS in vivo, and
then release or activate PS effectively under specific TME conditions. In addition, these
kinds of nanocarriers often have the characteristics of self-amplification, that is, the ROS
produced by itself can in turn break the ROS-sensitive chemical bonds to release more PS
or drugs [97]. Wu et al. explored a nanocarrier based on oxidation sensitive polyphosphate
(PPE) to co-encapsulate Ce6 and docetaxel (Dtxl) for synergistic treatment of laryngeal
cancer [98]. In the process of PDT, ROS not only induces apoptosis, but also triggers the
release of Dtxl through the hydrophobic to hydrophilic transition of PPE core, which leads
to PDT/CDT cascade and produces synergistic anticancer effects. Additionally, the cascade
PDT/CDT mediated by the oxidation sensitive nanocarrier can induce an effective anti-
tumor immune response through the immunogenic cell death effect (ICD), and enhance
the effectiveness of immune checkpoint blockade (ICB) antibody in inhibiting the growth
of distant tumors.

Figure 9. Formulation of nanoparticles and the ROS-enhanced chemotherapy mechanism. (A) Schematic of the DPPF NPs
self-assembly process. (B) Schematic illustration of the DPPF NPs treating cancer mechanism. Adapted from [87].



Int. J. Mol. Sci. 2021, 22, 5698 15 of 20

Figure 10. The scheme of fabrication process and therapeutic mechanism of thermo-responsive (MSNs@CaO2-ICG)@LA
NPs for synergistic CDT/PDT with H2O2/O2 self-supply and GSH depletion. Adapted from [96].

5. Conclusions

In recent years, the cascade reaction based on nanoplatform has been increasingly
applied in cancer therapy and has achieved a good therapeutic effect [99–101]. This review
summarizes and discusses the important progress of nanotechnology in triggering specific
cascade processes at tumor sites for the effective and safe treatment of cancer. The cascade
reaction based on nanotechnology shows its feasibility and high efficiency in anticancer
treatment. Therapeutic modalities based on cascade technology can offer advantages
over conventional therapies, with selectivity and controllability in tumor targeting and
drug delivery.

The recently proposed cancer treatment cascades mainly rely on endogenous char-
acteristics (e.g., acid pH and GSH), or exogenous characteristics (e.g., light and magnetic
field), so the triggered cascades depend on the availability of endogenous or exogenous
characteristics. Although the cancer therapy based on the nano-drug delivery system has a
good in vitro anticancer effect, the clinical research is not enough. In addition, the cascade
system of TME response depends on tumor-specific triggering, but the heterogeneity of
tumor interior and microenvironment, the mutation of tumor in the process, and individual
differences are all factors limiting the therapeutic effect. Therefore, it means that it is neces-
sary to design a more secure and efficient cascade system and enhance the controllability
of the cascade triggering process. As a promising anticancer method, the cascade system
has shown excellent performance in the field of nanomedicine, but it may still lead to
tumor recurrence and metastasis. More in-depth exploration is needed to meet the needs
of personalized therapy in the future.
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