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Abstract

Leptospirosis is one of the leading zoonotic infections worldwide. As with other infectious

diseases, report of antimicrobial resistance to existing therapeutic arsenal poses challenges

in the management of disease. Hence, identification of novel drug targets for the pathogen

deems essential. Present study used combined approach of comparative and subtractive

genomics to identify putative drug targets. Crucial genes of 16 pathogenic Leptospira strains

were filtered and subjected to homology search via target identification tool “TiD”. Thereaf-

ter, comparative analysis was performed for non-homologous, essential genes to accom-

plish the broad-spectrum drug target. Consequently, 37 essential genes were found to be

conserved in at least 10 strains of Leptospira. Further, prioritization of resultant set of genes

revealed 18 were hubs in protein–protein interaction network. Sixteen putative targets

among the hub genes were conserved in all strains of Leptospira. Out of sixteen, fourteen

were enzymes while 8 were novel and 4 were involved in virulence mechanism. In addition,

genome scale metabolic network reconstruction and choke point analysis revealed cobA

(porphyrin and chlorophyll metabolism) and thiL (thiamine metabolism) as chokepoints in

their respective metabolic pathways. The proposed hub genes could act as putative broad-

spectrum drug targets for Leptospira species, however, these putative targets should be val-

idated to ensure them as real one prior to utilizing them for target based lead discovery.

Introduction

The globally widespread occurrence of bacterial resistance to present drugs has stressed the

necessity to find novel targets [1]. Human leptospirosis is a zoonotic infection caused by path-

ogenic spirochete Leptospira with the prevalence of about one million cases per year of which

60,000 failed to survive annually [2–4]. It is an endemic, occupational as well as recreational

disease in tropical and rural areas [5–7]. Humans, who are exposed frequently to the diseased
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rodents, pet animals and polluted water, are at high risk of leptospirosis [8]. Clinical symptoms

of the disease range from mild fever, vomiting, flu like illness, headache, diarrhea and muscle

ache to multi-organ system complications which include kidney, liver, central nervous system

and lungs with death rates 5% to 40% [9–10].

Leptospira infection cases have been highly recorded from Indonesia, Thailand, India, Sri

Lanka and Maldives. India has been recognized as a major hub for Leptospira spp. to cause lep-

tospirosis since 20th century as it is a confluence of environmental, socio-economic and demo-

graphic factors [11]. Climate changes, population size, global warming, natural calamities

(cyclone, floods), lack of facilities, poor sanitary infrastructure and clinical suspicion etc.
increase the incidence of leptospirosis in coastal and rainy states of India like Gujarat, Kerala,

Tamil Nadu, Maharashtra and Andaman-Nicobar islands [8,11–13].Various studies con-

ducted in past few years confirmed higher prevalence of leptospirosis. Most substantial out-

breaks have been observed in Chennai floods in 2015, spontaneous eruptions in Gujarat in

2011, flash floods in Mumbai in 2005 and cyclone in Orissa in 1999.

Taylor & Goyal et al., 1931, isolated L. andamans and L. grippotyphosa from diseased

patients [14]. In 1960, Dalal P. M. provided the evidence of L. icterohaemorrhagiae antigen in

jaundice patients. Similar report was submitted by Joseph K. M. in 1983 who found Leptospira
infection in patients of jaundice. Muthusethupathi and Shivkumar observed renal failure in

patients of Madras due to Leptospirosis. In 1996, Saravanan & Rajendran isolated L. javanica
from urine sample of renal failure, cases of Chennai. Gujarat reported 130 deaths in 2011

within a span of two months due to leptospirosis. Recently, Kochi and Kerala reported 209

cases with 12 deaths. In October 2012, Gujarat reported 16 deaths. These reports highlights the

continuous alarming jeopardy the disease presents at this hour.

Presently, treatment of severe leptospirosis is still unclear [15]. Antibiotics (penicillin, ceph-

alosporins, azithromycin, doxycycline) and vaccines were relatively unsuccessful against Lep-
tospira spp. This emphasizes the need of a new drug targets for evolution of competent drug

that kill the pathogen [16–18]. In the last two decades, classical research approach was being

used to classify protein targets towards the expansion of subunit and recombinant vaccines

against leptospirosis. In 2005, whole genome analysis was carried out to classify potential vac-

cine against L. Interrogans [19]. Amineni et al., 2010 proposed 88 putative drug targets for two

serovars of L. interrogans [20]. Lack of data, information as well as methodology, restrict the

development of novel potent targets. Previous studies lack the gaps or information that would

be useful in revealing of potent target like (1) coverage of all pathogenic strains, (2) metabolic

reconstruction and system biology analysis, (3) exploration of hub genes that are analogous for

endurance and virulence of pathogen, (4) recognition of choke point enzymes or reactions and

(5) common target among the pathogenic strains.

In this study, we have tried to design a protocol to overcome the limitations of previous

studies. Our protocol includes complete genome analysis, subtractive approach, comparative

approach, and protein-protein interaction analysis that ultimately link to metabolomics. Vari-

ous bioinformatics tools and cheminformatics techniques represent an attractive source of

alternative method for target identification. The drug targets could be used, sequentially, for

optimization and new lead recognition through free energy calculation, molecular modeling,

molecular dynamics simulations, multiple docking strategies and drug-likeliness determina-

tion to establish new antibacterial agent against leptospirosis.

Materials and methods

Pathogenic strains of Leptospira were subjected to a broad-spectrum anti-leptospiral target

identification strategy that involves subtractive and comparative genomics approach along
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with protein-protein interaction network analysis. The complete protocol of the target identifi-

cation is shown in Fig 1.

Classification of Leptospira strains

Up to 2016, global character was lacking in classification of Leptospira. Fouts et al (2016) and

Caimi et al (2017) have established the classification of Leptospira by wide range inter-species

genomic comparison of all known infectious and non-infectious species of the bacterium [21–

22]. In the present study, we have followed the systems established by Fouts and Caimi to clas-

sify various species of Leptospira as pathogenic, intermediate and saprophytic to humans. List

of classified Leptospira strains was prepared and target mining using subtractive genomics,

comparative genomics along with protein-protein interaction network analysis was restricted

to pathogenic strains only.

Fig 1. The complete protocol of the target identification and prioritization of pathogenic strains of Leptospira.

https://doi.org/10.1371/journal.pone.0221446.g001
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Mining of potential drug targets

Whole genome of pathogenic strains was retrieved and processed using target identification

software called TiD developed by our team [23]. TiD is a standalone program. It consists of

modules for paralog analysis, non-homolog analysis and essentiality analysis that exclude

duplicates proteins, homolog of human and its gut flora proteins from the essential protein

dataset [24–26]. Target prioritization module annotates the screened essential protein dataset

on druggability and virulence which is essential for pathogen survival as well as pathogenicity

[27].

Target identification and prioritization parameters were adapted from our previously pub-

lished paper [23]. The standard protocol for target identification was used to remove paralogs

from pathogenic leptospiral proteome and, then, define the list of essential genes that are

homologs to entries present in Database of Essential Genes (DEG) with e-value� 10−10, bit

score� 100. Further, the proteins homology was checked with human and gut microbes. The

resulting dataset was compiled as putative drug targets and annotated for virulence, drug likeli-

ness and mapped with UniProt identifiers (http://www.uniprot.org/).

Metabolic pathway analysis

The mapped dataset of putative targets was prioritized at the KAAS (KEGG Automatic Anno-

tation Server) to know the involvement of these proteins in metabolic pathways. Functional

annotation of these targets was also acquired through BLAST comparisons against KEGG

database [28]. KAAS server has programmed procedure that depends on sequence similarities

and bi-directional best hit data to assign K numbers that permits recreation of KEGG

pathways.

Subcellular localization

Subcellular localization along with the biological significance of inimitable drug targets was

analyzed in CELLO v.2.5. It is a multi-class support vector machine sorting method. This iden-

tifies targets as membrane proteins, cellular proteins or surface protein [29]. Results obtained

were further analyzed in subcellular localization prediction tool pSORTb v.3.0. It is first stand-

alone software that predicts the location of proteins for all prokaryotes including archaea and

bacteria with atypical membrane/cell wall topologies with high accuracy [30].

Genome scale metabolic network reconstruction

The metabolic network reconstruction of L. borgpetersenii serovar Hardjo-bovis str. L550 and

L. interrogans serovar Copenhageni str. Fiocruz L1-130 were performed using ‘PathoLogic’

plugins of pathway tools [31]. GenBank file format of each chromosome of organism were

used as input in ‘Build’ section that involved ‘Replicon Editor’, ‘Trial Parse’, ‘Automated Build’

and Refine. Pathway hole filler was used to fill the gaps of reconstructed network and then,

save the database for choke point analysis.

Choke-point analysis

"Chokepoint responses" are the reactions which exclusively catalyze a particular substrate or

preferentially deliver a particular product [32–33]. To distinguish potential drug targets, we

searched choke points reactions using Pathway tool. Choke point analysis includes all reac-

tions that raise several pathways while excludes those reactions catalyzed by more than one

enzyme and found in human. Result of choke point analysis was compared with putative tar-

gets. Results of Pathway tools were also validated with BioCyc webserver [34]. It is an online
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server that comprised of 13075 pathway genome databases and provides unified data on the

genomes and metabolic pathways of thousands of sequenced organisms which are built via
metabolic network reconstruction software(s).

Sequence-structure relationship

A multiple sequence alignment was created for cobA and thiL sequences of Leptospira strains

using clustalX and UniProt. Structurally conserved elements were identified and formatted

with ESPript 3.0 to obtain the conserved and semi conserved residues of both the chokepoints

[35]. The secondary structure of cobA and thiL were determined by using PsiPred server. Fur-

ther, a three dimensional structure model of a target sequences were built by Modeller 9.17

[36]. Energy minimization of best modelled structure having least DOPE score was performed

using YASARA server [37]. Validation of energy minimized structures was performed through

SAVES server ((http://services.mbi.ucla.edu/SAVES/), QMEAN and ProSA [38–39]. The cata-

lytic pocket and active site residues of validated model were defined using CASTp and

PyMOL-2.3.2 [40–41].

Protein-protein network analysis

Protein-protein interaction data is available for two strains of Leptospira in string database.

Therefore, network analysis was restricted to these two strains. PPI network of putative drug

targets of both strains were constructed in STRING app of Cytoscape v3.7.1 with confidence

score�0.4 [42]. Network interaction data was figured through network analyzer module [43].

Putative drug targets with interacting partners’�30 in Leptospira proteome were subjected to

MCODE plugin for the functional module detection [44]. The cutoff parameters used for

molecular complex detection were degree cutoff = 2, node score cutoff = 0.2, k-core = 2, and

maximum depth = 100. The highest ranked module was chosen for gene ontology and func-

tionality. Gene enrichment analysis of interacting nodes was also carried in STRING app. The

results of two strains were checked for conservancy among the pathogenic strains using multi-

ple sequence alignment tool ClustalX2 [45].

Results and discussion

The current study is an adoption of advanced subtractive and comparative genomic approach

and further augmented to protein-protein interaction network and metabolomics analysis.

The unique and essential proteins are significant for Leptospira growth, survival and pathoge-

nicity. A search for the hub proteins and choke enzymes in the unique and essential pathways

is therefore considered as a promising approach to deal with the challenging leptospirosis

infection.

Classification of Leptospira strain

In silico and in vitro target identification research to cure leptospirosis, till date, have been

more focused towards most pathogenic L. interrogans serovars named Lai and Copenhagani

[20,46–47]. The present study tried to cover all pathogenic strains of Leptospira which are

responsible for causing infectious disease. We grouped Leptospira strains based on their patho-

genicity. Out of 27 retrieved strains from NCBI FTP server, 16 are observed to be pathogenic

in nature, 5 are intermediate and 6 are saprophytic in nature (Table 1). Sixteen pathogenic

strains of Leptospira were selected for putative drug target mining [21–22,48].
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Sequence retrieval and putative drug targets mining

Complete amino acid sequence (�.faa) of sixteen serovars were successfully retrieved from

NCBI-FTP server and subjected to TiD software. Nascimento et al., 2004 and Ren et al., 2003

reported the genomic size of L. interrogans i.e. to be 4.33-Mb chromosome I and 350-kb chro-

mosome [49–50]. In the present study, L. weilii serovar Topaz str. LT2116 proteome consists

of most elevated number of proteins while L. borgpetersenii serovar Hardjo-bovis str. L550 has

smallest proteome of 2945 proteins. About 13 pathogenic Leptospira strains have larger prote-

ome than L. interrogans. Size of each proteome is mentioned in Fig 2A and 2B. Amineni et al.,
2010 mentioned 158 essential genes of Lai and 218 genes of Copenhagni as human non homo-

log [20]. In our study, 736 proteins of L. kmetyi serovar Malaysia str. Bejo-Iso9 followed by 732

proteins of L. alstonii are identified as essential proteins. L. borgpetersenii serovar Hardjo-bovis

str. L550 has lowest number of essential proteins (Fig 2A and 2B). L. kmetyi serovar Malaysia

str. Bejo-Iso9 has uppermost whereas L. santarosai serovar Shermani str. LT 821 has minimum

number of human non-homolog as well as gut flora non homolog protein. All strains of Lep-
tospira have more than 36 novel drug targets and 31 virulent proteins. Results of drug target

mining of each pathogenic strain are reported in Fig 2A and 2B.

Table 1. List of Leptospira strains and their pathogenicity.

S. No. Leptospira strain Accession ID Pathogenicity

1 Leptospira alexanderi serovar Manhao 3 str. L 60 GCA_000243815.3_gls454062v02 Pathogen

2 Leptospira alstonii GCA_001729245.1_ASM172924v1 Pathogen

3 Leptospira borgpetersenii serovar Hardjo-bovis str. L550 GCA_000013945.1_ASM1394v1 Pathogen

4 Leptospira interrogans serovar Copenhageni str. Fiocruz L1-130 GCA_000007685.1_ASM768v1 Pathogen

5 Leptospira kirschneri serovar Cynopteri str. 3522 CT GCA_000243695.3_gls454049v02 Pathogen

6 Leptospira kmetyi serovar Malaysia str. Bejo-Iso9 GCA_000243735.3_gls454052v1.0 Pathogen

7 Leptospira mayottensis 200901122 GCA_000306335.2_gls454125v02 Pathogen

8 Leptospira noguchii serovar Panama str. CZ214 GCA_000306255.2_gls454059v02 Pathogen

9 Leptospira santarosai serovar Shermani str. LT 821 GCA_000313175.2_ASM31317v2 Pathogen

10 Leptospira sp. B5-022 GCA_000347035.1_gls454192v01 Pathogen

11 Leptospira sp. Fiocruz LV3954 GCA_000306435.2_gls454068v2.0 Pathogen

12 Leptospira sp. Fiocruz LV4135 GCA_000346675.1_gls454076v02 Pathogen

13 Leptospira sp. P2653 GCA_000346955.1_gls454051v01 Pathogen

14 Leptospira sp. ZV016 GCA_001584255.1_ASM158425v1 Pathogen

15 Leptospira sp. serovar Kenya str. Sh9 GCA_000347195.1_gls454066v01 Pathogen

16 Leptospira weilii serovar Topaz str. LT2116 GCA_000244815.3_gls454188v02 Pathogen

17 Leptospira sp. CLM-U50 GCA_002150035.1_ASM215003v1 Pathogenic

18 Leptospira meyeri GCA_000304275.1_gls454017v1.0 Saprophytic

19 Leptospira terpstrae GCA_000332495.2_gls454203v02 Saprophytic

20 Leptospira vanthielii GCA_000332455.2_gls454199v02 Saprophytic

21 Leptospira wolbachii GCA_000332515.2_gls454195v02 Saprophytic

22 Leptospira yanagawae GCA_000332475.2_gls454202v02 Saprophytic

23 Leptospira biflexa GCA_000017685.1_ASM1768v1 Saprophytic

24 Leptospira fainiei GCA_000306235.2_gls454058v2.0 Intermediate

25 Leptospira inadai GCA_000243675.3_gls454047v02 Intermediate

26 Leptospira licerasiae GCA_000244755.3_ASM24475v3 Intermediate

27 Leptospira wolfii GCA_000306115.2_gls454061v02 Intermediate

28 Leptospira bromii GCA_000243715.3_gls454050v02 Intermediate

https://doi.org/10.1371/journal.pone.0221446.t001
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Metabolic pathway analysis

Metabolic pathway analysis of the host-pathogen highlighted sixteen pathogen specific path-

ways such as biosynthesis of antibiotics, biosynthesis of secondary metabolites, degradation of

aromatic compounds, microbial metabolism in diverse environments, sulfur metabolism, cys-

teine and methionine metabolism, seleno compound metabolism, lysine degradation, beta-ala-

nine metabolism, glutathione metabolism, folate biosynthesis, lipopolysaccharide biosynthesis,

ubiquinone and other terpenoid-quinone biosynthesis, phenylpropanoid biosynthesis, bacte-

rial chemotaxis and flagellar assembly. These pathways were observed to have 34 communal

drug targets (Fig 3, Table 2). In addition, common drug targets were also identified from 8

pathways which are unique to the survival of 15 strains of Leptospira. The findings of our study

are in same line with the Amineni et al., 2010 and Anisetty et al. 2005 [20,51]. Among these

common drug targets three are non enzyme and 31 are enzymes (Table 2).

Subcellular localization

Localization of 34 common drug targets in current study exposed that 29 drug targets are cyto-

plasmic and 5 are transmembrane proteins (Table 2). The membrane proteins have the capa-

bility to act as useful vaccine drug targets against all strains of Leptospira. However, these

transmembrane proteins are involved in lipid polysaccharide synthesis (kdtA), ubiquinone-

terpenoid-quinone biosynthesis (ubiA), bacterial chemotaxis (fliN, cheA, mcp)as well as part

of flagellar assembly (fliN) and two component system (mcp, cheA). These play an essential

role in the survival and pathogenesis of Leptospira. Location of these drug targets is required in

future to design drug or vaccine accordingly. Subcellular localization information of a drug

target should complement with the pharmacological properties of lead molecules targeted to

it, therefore, it is an important aspect in rational drug design.

Genome scale metabolic network reconstruction

Genome scale metabolic network of L. borgpetersenii serovar Hardjo-bovis str. L550 and L.

interrogans serovar Copenhageni str. Fiocruz L1-130 were constructed successfully using Path-

way Tools Software. Model of L. interrogans serovar Copenhageni str. Fiocruz L1-130 com-

prised 673 enzymes, 988 enzymatic reactions, 6 transport reactions, 133 pathways, 957

compounds, 37 tRNAs, 6 transporter and 3684 polypeptides (S1 SBML). Likewise, model of L.

Fig 2. Sequence retrieval and putative drug targets mining. The plot of detailed protein products of L. alexandari, L.

alstonii, L. borgpetersenii, L. interrogans, L. kirschneri, L. kmetyi, L. mayottensis, L. noguchii is represented in Fig 2A.

The plot of detailed protein products of L. sp. B5-022, L. sp. Fiocruz LV3954, L. sp. Fiocruz LV4135, L. sp. P2653, L. sp.

ZV016, L. sp. serovar Kenya str. Sh9, L. santarosai serovar Shermani str. LT 821, L. weilii serovar Topaz str. LT2116 is

represented in Fig 2B. The resulted drug targets in each step represented using bar graph.

https://doi.org/10.1371/journal.pone.0221446.g002
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Fig 3. Metabolic pathways of the host and pathogen. Sixteen pathways are unique to all strains of Leptospira to which 34 common genes were retrieved as putative

drug targets. Red color denotes presence while Green color denotes absence of pathways from which common genes were retrieved for further analysis.

https://doi.org/10.1371/journal.pone.0221446.g003
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borgpetersenii serovar Hardjo-bovis str. L550 constructed with 141 pathways, 613 enzymes,

1099 enzymatic reactions, 5 transport reactions, 3290 polypeptides, 12 transporters and 1075

metabolites (S2 SBML). From the set of 34 drug target, 20 and 23 were shaped in reconstructed

model of L. borgpetersenii serovar Hardjo-bovis str. L550 and L. interrogans serovar Copenha-

geni str. Fiocruz L1-130 respectively. These reconstructed models were used for choke point

analysis.

Choke point analysis

Chokepoint enzymes are enzymes that catalyze a reaction which either uniquely consume a

substrate or interestingly deliver a precise product. If an enzyme catalyzes at least one choke-

point reaction, it is classified as a promising drug target. Accordingly, we expect the hindrance

Table 2. List of common drug target extracted from the shared pathways of 16 Leptospira strains.

S. No Gene Product Description Enzyme/Non-Enzyme Subcellular Localization Choke Point

1 pdxA Pyridoxal phosphate biosynthesis Enzyme Cytoplasmic NA

2 cysH Phosphodenosine phosphosulphate reductase Enzyme Cytoplasmic NA

3 Sir2 NAD-dependent protein deacylase Enzyme Cytoplasmic NA

4 panB 3-methyl-2-oxobutanoate hydoxymethyltranferase Enzyme Cytoplasmic NA

5 metX Homoserine O-acetyltransferase Enzyme Cytoplasmic NA

6 lpxA acyl-[acyl-carrier-protein]—UDP-N-acetylglucosamine O-acyltransferase Enzyme Cytoplasmic NA

7 lpxB Lipid-A-disaccharide synthase Enzyme Outer membrane NA

8 ribE 6,7-dimethyl-8-ribityllumazine synthase Enzyme Cytoplasmic NA

9 lpxK Tetraacyldisaccharide 4’-kinase Enzyme Outer membrane NA

10 thiL thiamine-phosphate kinase Enzyme Cytoplasmic Choke Point

11 cysD Sulfate adenylyltransferase subunit 2 Enzyme Cytoplasmic NA

12 kdsB 3-deoxy-manno-octulosonate cytidylyltransferase Enzyme Cytoplasmic NA

13 panD aspartate alpha-decarboxylase Enzyme Cytoplasmic NA

14 wecB UDP-N-acetylglucosamine2-epimerase Enzyme Cytoplasmic NA

15 manA Mannose-6-phosphate isomerase Enzyme Cytoplasmic NA

16 trpF N-(5’-phosphoribosyl)anthranilate isomerase Enzyme Cytoplasmic NA

17 panC Pantoate-beta-alanine ligase Enzyme Cytoplasmic NA

18 gshA Glutamate-cysteine ligase Enzyme Cytoplasmic NA

19 kdtA 3-deoxy-D-manno-octulosonic-acid transferase Enzyme Transmembrane NA

20 lpxC UDP-3-O-[3-hydroxymyristoyl]N-acetylglucosamine deacetylase Enzyme Cytoplasmic NA

21 lpxD UDP-3-O-(3-hydroxymyristoyl)glucosamine N-acyltransferase Enzyme Cytoplasmic NA

22 ubiA 4-hydroxybenzoate octaprenyltransferase Enzyme Transmembrane NA

23 ubiX 3-polyprenyl-4-hydroxybenzoate decarboxylase Enzyme Cytoplasmic NA

24 gmhA Phosphoheptose isomerase Enzyme Cytoplasmic NA

25 pdxJ pyridoxine 5’-phosphate synthase Enzyme Cytoplasmic NA

26 glmU UDP-N-acetylglucosamine diphosphorylase Enzyme Cytoplasmic NA

27 queF NADPH-dependent 7-cyano-7-deazaguanine reductase Enzyme Cytoplasmic NA

28 cobA Cob(l)alaminadenosyltransferase Enzyme Cytoplasmic Choke Point

29 mqnC Dehypoxanthinefutalosinecyclase Enzyme Cytoplasmic NA

30 kamA L-lysine 2,3-aminomutase Enzyme Cytoplasmic NA

31 cheR Methylase of chemotaxis methyl-accepting protein Enzyme Cytoplasmic NA

32 fliN Flagellar motor switch protein Non- Enzyme Transmembrane NA

33 mcp MCP methylation inhibitor Non- Enzyme Transmembrane NA

34 cheA Two-component system sensor histidine kinase Non- Enzyme Transmembrane NA

https://doi.org/10.1371/journal.pone.0221446.t002
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of a protein that expends an exceptional substrate brings aggregation in the remarkable sub-

strate. This may be conceivably harmful to the cell and restraint the compound that delivers

one of a kind item which further leads to the starvation of special product [32–33].

Pathway tool generated the report of choke point reactions for reconstructed model of L.

interrogans serovar Copenhageni str. Fiocruz L1-130 and L. borgpetersenii serovar Hardjo-

bovis str. L550. The report consists of choke point reactions on the consuming side as well as

producing side. Target cobA (cob(I)yrinic acid a) and thiL (thiamine-phosphate kinase) is

found as a choke enzyme in both the reconstructed genome scale metabolic model of Lepto-

spiral strains (Table 2). The cobA with an EC: 2.5.1.17 participated in cobalamin biosynthesis

pathway. Pathogenic strains of Leptospira can’t grow in the absence of cobalamin that’s why it

is an essential component of the Ellinghausen-McCullough-Johnson-Harris (EMJH) semi-

synthetic selective medium [49–50]. In contrast, gene thiL found to be important in conver-

sion of thiamine monophosphate to thiamine pyrophosphate which is essential for pathogen

survival [52]. Results of pathway tool were also validated with BioCyc server that shows cobA

as choke point in most of the Leptospiral strain and thiL in L. mayottensis 200901122 and L.

kmetyi serovar Malaysia str. Bejo-Iso9.

Sequence alignment, homology modelling and validation

Multiple sequence alignment was performed for cobA and thiL gene within the pathogenic

Leptospira strain (Table 1). The result showed conserved, semi conserved and dispersed amino

acid residues. The semi-conserved residues were showen with dot and conserved with red star

(S1 and S2 Files). ESPript defined MSA of cobA showed the 10 αhelix (9α + η), 10 β-sheets

and 6 turns (TT) while 9 αhelix (8α + η), 12 β-sheets and 7 turns (TT) were found in thiL. In

addition, psiPred server validated the ESPript report for both the chokepoints. All these results

were in agreement with each other for the secondary structure elements of cobA and thiL.

Afterwards, 3D structure of thiL and cobA were modelled using 2YBQ_A (Query Coverage:

88%, Identity: 39.36%) and 3C9R_A (Query Coverage: 88%, Identity: 30.32%) as template

respectively (Fig 4). The quality of the modelled structures after energy minimization was eval-

uated on the UCLA SAVES server shown in Table 3. CastP predicted the largest binding

pocket of both modelled structures. Surface view of cobA is showing a deep binding pocket

while thiL represented Gln23, Thr24, Asp25, Asp26, Asp39, Asp68, Arg140, Asp207, Thr209

and Asp210 as key residues in their binding pocket (Fig 4).

Prioritization of drug targets

Putative drug targets were subjected for prioritization through network analysis, molecular

complex detection and gene enrichment analysis (Fig 1). As mentioned, string app is restricted

to generate protein-protein interaction network of L. borgpetersenii serovar Hardjo-bovis str.

L550 and L. interrogans serovar Copenhageni str. Fiocruz L1-130. Network of L. borgpetersenii
comprised of 38 nodes with 41 edges. Gene lpxD-2, kdsB-2 and lpxK demonstrated the most

noteworthy degree followed by kdtA, lpxD-1, lpxB and lpxC with degree 6 (Table 4; Fig 5A).

Similarly, L. interrogans Copenhageni L1-130 had 41 nodes with 40 edges. Most astounding

degree hub is observed for kdtA and lpxK followed by lpxD, lpxB, lpxC and lpxA (Table 5; Fig

5C). Extension of these two networks, with all proteins of pathogen, stretched the estimation

of best genes of the system and predicts with assurance the essential role of these genes for

pathogen (Tables 4 and 5). After network extension, degree of cheR increased from 0 to 91,

fliN from 0 to 68, cobA from 0 to 35 and metX from 0 to 38 in case of L. borgpetersenii Hardjo-

bovis L550 while degree of cheR increased from 4 to 76, fliN from 0 to 66, cob A from 4 to 47

and metX from 2 to 39 in case L. interrogans Copenhageni L1-130.
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Fig 4. Active site prediction of thiL and cobA. (A) Largest binding site of modelled structure of thiL (magenta color) showing the active site cleft (grey

color). Key residues of binding pocket are highlighted with blue color while rests are shown in a box. (B) Likewise, surface view of binding pocket of cobA

(green color) is very deep in comparison with thiL. Binding residues present in largest pocket of modelled protein is presented in orange color.

https://doi.org/10.1371/journal.pone.0221446.g004
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Molecular code detection produces one significant cluster with MCODE score = 15.733 for

L. borgpetersenii Hardjo-bovis L550. It comprised 16 hubs associated through 118 edges. All 16

hubs are similarly connecting with one another with the degree of 13 to 15. Gene kdtA is

found to be the seed protein of PPI network (Fig 5B). Gene enrichment analysis displayed

lpxD-2, kdsB2, lpxC, lpxB, kdtA, lpxK, lpxD-1 and manA. These are markedly enriched in pos-

itive regulation of lipopolysaccharide biosynthesis while most of the genes are involved in met-

abolic pathways. Similarly, L. interrogans Copenhageni Fiocruz L1-130 module 1 obtained

MCODE score = 14.857 with 15 nodes that interconnected with 104 edges. Gene kdsB is the

seed of network which is connected to 13 other genes of the network (Fig 5D). Gene enrich-

ment displayed 4 genes fliN, cheR, mcp and aer. These genes are part of two component sys-

tem and involved in bacterial chemotaxis. The gene ontology analysis indicated that selected

essential genes of both the pathogens are important part of metabolic pathways and lipopoly-

saccharide biosynthesis (Fig 5). Extended network added ribB, ribC, cysl, cysH, cysD, cobA

and cysG genes which are responsible for riboflavin biosynthesis, microbial metabolism in

diverse environment, sulfur metabolism porhyrin and cholorophyll metabolism (Tables 4

and 5).

Comparative analysis

Comparison between both the networks showed 37 putative targets having the degree�30

among which 18 hubs are observed to be common in both pathogens. Among the hub pro-

teins, 16 are also shortlisted from the set of 34 common putative drug targets. Multiple

sequence alignment revealed that these hub targets are conserved in at least 10 strains of patho-

gen. Among these common hub proteins, 8 are novel in at least 10 strains, 5 are virulent while

2 are novel as well as common drug targets (Figs 6 and 7). Hence, these 8 proteins lpxB, lpxK,

kdtA, fliN, cobA, metX, thiL and ubiA are proposed as putative drug targets in the present

study, as absence of these proteins would affect the survival and pathogenicity of pathogen.

However, target proteins lpxB, lpxK, kdtA, cobA, metX and ubiA were previously reported in

the study of Amineni et al., 2010 for 2 pathogenic strains of Leptospira through subtractive

genomic analysis but fliN and thiL are novel targets which are reported first time in our study

[20] (Fig 8).

The functional importance of the target candidates and the pathways involved are discussed

here. As mentioned, proposed 8 drug targets majorly belong to 7 essential pathogen specific

pathways. Amphipathic lipopolysaccharides are outer cell wall surface antigen of Leptospira
and actively participate in virulence and antibiotic sensitivity [53–54]. Lipopolysaccharides

also act as primary barrier of pathogen and maintain the osmolarity of the gram negative cell.

Inhibitor targeting lpxB, lpxK and kdtA proteins of outer membrane would affect the forma-

tion of primary barrier and alter the osmotic environment of pathogenic strains. This could be

helpful to cure the leptospiral infections successfully. Taylor et al., 2008 and Raetz et al., 2002

Table 3. Refinement and quality assessment of modelled structure of thiL and cobA.

Verify3D ERRAT PROVE PROCHECK Prosa

Z Score

QMEAN

Favoured Allowed Disallowed

thiL 86.38% of the residues have

averaged 3D-1D score > = 0.2

Pass

84.1549 55 buried outlier protein atoms, 5.3% (Error) 289 (94.8%) 13 (4.3%) 3

(1.0%)

-7.8 -2.26

cobA 85.02% of the residues have

averaged 3D-1D score > = 0.2

Pass

95.935 2 7 buried outlier protein atoms, 3.4% (Error) 269 (97.1%) 7 (2.5%) 3

(1.0%)

1 (0.4%) -1.24

https://doi.org/10.1371/journal.pone.0221446.t003
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also reported the proteins of this pathway as an efficient drug targets in other bacterial patho-

gens [20,55–56].

One of the central and defining reasons of increasing prevalence rate of Leptospirosis is the

capability of the pathogenic strains to switch their flagellar motility for highly effective translo-

cation via viscous substrates and tissues that permits access to far-away host niches [57]. Fla-

gellar motor protein consists of three proteins among which fliN is one of major protein of

flagellar motor switch system present in the basal body and interacts with chemotaxis proteins

to define the translational and rotational motion of flagella [49,50]. Liao et al., 2009 showed

Table 4. List of Interacting partners within selected proteins as well as within all proteins of L. borgpetersenii serovar Hardjo-bovis str. L550.

Proteins Description Interaction_selected Proteins Interaction_All Proteins of Pathogen

lpxK Tetraacyldisaccharide 4’-kinase 7 79

kdsB-2 3-deoxy-manno-octulosonate cytidylyltransferase 7 55

lpxD-2 UDP-3-O-[3-hydroxymyristoyl] glucosamine N-acyltransferase 7 51

lpxC UDP-3-O-[3-hydroxymyristoyl] N-acetylglucosamine deacetylase 6 60

lpxB Lipid-A-disaccharide synthase 6 76

lpxD-1 UDP-3-O-[3-hydroxymyristoyl] glucosamine N-acyltransferase 6 73

kdtA 3-deoxy-D-manno-octulosonic-acid (KDO) transferase 6 79

ubiA Prenyltransferase 4 46

ubiX 3-polyprenyl-4-hydroxybenzoate decarboxylase 4 51

ubiD 3-polyprenyl-4-hydroxybenzoate decarboxylase 3 34

ribC Riboflavin synthase subunit alpha 3 17

rpoN DNA-directed RNA polymerase sigma-54 subunit 3 71

thiH Thiamine biosynthesis enzyme 3 41

thiL Thiamine monophosphate kinase 3 23

panD Aspartate alpha-decarboxylase 2 44

panC Pantoate—beta-alanine ligase 2 27

panB 3-methyl-2-oxobutanoate hydroxymethyltransferase 2 60

ribD pyrimidine deaminase, riboflavin biosynthesis 2 56

hprK HPr kinase/phosphorylase 2 39

pdxA 4-hydroxythreonine-4-phosphate dehydrogenase 2 66

pssA CDP-diacylglycerol—serine O-phosphatidyltransferase 2 41

LBL_4236 Lysine 2,3-aminomutase 1 39

LBL_1044 Lysine 2,3-aminomutase 1 39

pdxJ Pyridoxine 5’-phosphate synthase 1 50

trpF Phosphoribosylanthranilate isomerase 1 42

cysH-2 Sulfate adenylyltransferase subunit 2 1 14

cysH-1 Phosphoadenylyl-sulfate reductase (thioredoxin) 1 13

sufE Fe-S metabolism protein 0 38

ccmF Cytochrome c biogenesis protein 0 49

gshA Gamma-glutamylcysteinesynthetase 0 25

gspF Type II secretory pathway component, protein F 0 21

fliN-1 Endoflagellar motor switch protein 0 91

cobA Cob(I)yrinic acid a,c-diamideadenosyltransferase 0 35

cheR Methyltransferase of chemotaxis protein 0 68

aat Leucyl/phenylalanyl-tRNA—protein transferase 0 18

manA Mannose-6-phosphate isomerase 0 18

gmhA Phosphoheptose isomerase 0 17

metX Homoserine O-acetyltransferase 0 11

https://doi.org/10.1371/journal.pone.0221446.t004
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inactivation of fliN gene that affects the rotative motion and migration in liquid and semi-

solid medium respectively [58]. Hence, these complex set of genes involved in endoflagellum

and its basal rotor system formation play critical role in the motility and virulence to cause

Leptospirosis.

Target metX involved in methionine biosynthesis is found to be essential in all strains [59].

It is a proteinogenic as well as a component of S-adenosyl methionine which acts as a main

methyl group carrier in cell. In most of the organisms including bacteria, it plays an important

role in initiation of translation. Saint-Macary et al., 2015 reported that biosynthesis of methio-

nine is essential for infection of M. oryzae [60]. Target cobA of cobalamin biosynthesis is pres-

ent in chromosome I and also plays an essential role in the synthesis of vitamin-B12. Previous

Fig 5. Network analysis and molecular function detection. (A) & (B) present the protein-protein interaction within the selected proteins of L.

borgpetersenii serovar Hardjo-bovis str. L550 whereas (C) & (D) denote the interacting partners of L. interrogans serovar Copenhageni str. Fiocruz L1-130.

In PPI network, nodes denote protein and interaction between the 2 nodes denotes the edge. Significant MCODE cluster (B) and (D) denotes the genes

which are involved in polysaccharide biosynthesis pathway.

https://doi.org/10.1371/journal.pone.0221446.g005
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experimental evidence showed that vitamin B12 lacking growth medium was unable to grow

the L. interrogans [50]. Thiamine monophosphate kinase (thiL) is an enzyme that catalyzes the

thiamine monophosphate and converts it into thiamine pyrophosphate which is an essential

cofactor in all living organism including Leptospira spp. Bian et al., 2011 discovered that to reg-

ulate the ABC transporters, riboswitches restricted to interact first with thiamine

Table 5. List of Interacting partners within selected proteins as well as within all proteins of L. interrogans serovar Copenhageni str. Fiocruz L1-130.

Proteins Description Interaction_selected Proteins Interaction_All Proteins of Pathogen

kdtA 3-deoxy-d-manno-octulosonic acid transferase 6 109

lpxK Tetraacyldisaccharide 4’-kinase 6 57

lpxD UDP-3-O-[3-hydroxymyristoyl] glucosamine N-acyltransferase 5 70

lpxB Lipid-a-disaccharide synthase protein 5 66

lpxC UDP-3-O-[3-hydroxymyristoyl] N-acetylglucosamine deacetylase 5 70

lpxA UDP-N-acetylglucosamine acyltransferase 5 76

cysI Sulfite reductase subunit beta 4 40

cheR Chemotaxis protein methyltransferase 4 76

cobA Uroporphyrinogen-III C-methyltransferase 4 47

pssA Phosphatidylserine synthase 3 37

cysH Phosphoadenosine phosphosulphate reductase 3 32

cysD Sulfate adenylyltransferase subunit 2 3 32

panD Aspartate alpha-decarboxylase 3 36

aer Chemotaxis protein 2 9

metX Homoserine O-acetyltransferase 2 39

mcp Chemotaxis protein 2 84

wecG UDP-n-acetyl-d-mannosamine transferase 2 48

panB 3-methyl-2-oxobutanoate hydroxymethyltransferase 2 39

panC Pantoate—beta-alanine ligase 2 66

ubiA Prenyltransferase 2 50

thiL Thiamine-monophosphate kinase protein 1 33

rpoN RNA polymerase sigma-54 factor 1 119

pdxA Pyridoxal phosphate biosynthesis protein 1 28

glnD Protein-PII uridylyltransferase 1 28

mviN hHypothetical protein 1 52

trpF N-(5’-phosphoribosyl)anthranilate isomerase 1 44

rffE UDP-N-acetylglucosamine 2-epimerase 1 106

ubiX 3-octaprenyl-4-hydroxybenzoate carboxy-lyase 1 30

yoaA ATP-dependent helicase 1 58

pdxJ Pyridoxine 5’-phosphate synthase 1 37

manA Mannose-6-phosphate isomerase 0 24

sanA Vancomycin resistance protein 0 3

aat Leucyl/phenylalanyl-tRNA—protein transferase 0 24

kdpA Potassium-transporting ATPase subunit A 0 21

tag 3-methyl-adenine DNA glycosylase I 0 4

helA Heavy metal efflux pump 0 8

gspF General secretory pathway protein F 0 20

gshA Gamma-glutamylcysteine synthetase 0 11

ccmF Cytochrome C biogenesis protein 0 18

kamA L-lysine 2,3-aminomutase 0 12

fliN Flagellar motor switch protein 0 66

https://doi.org/10.1371/journal.pone.0221446.t005
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pyrophosphates due to which pathogen failed to grow in insufficient environment of thiamine

pyrophosphate [52].

Thus, the proposed hub genes through the computational approach herein, support to find

out broad spectrum drug targets that would be effective against pathogenic strain of Leptospira
species. Although, the significance level of these putative targets need to be validated through

experimental approach to ensure them as real one and can be the best against pathogenic

strains of Leptospira.

Conclusion

In the post genomic era, drug designing and discovery method is changing earlier established

viewpoints. It routinely reorganizes the drug discovery method by incorporating vast data

encrypted in our genome. We have performed subtractive genomic and comparative genomics

analyses with network analysis of 16 pathogenic strains of Leptospira and identified 8 common

drug targets that can be potential targets for drug designing and vaccine development. More-

over, many of the recognized drug targets have been observed to play a key role in the essential

metabolic pathways, lipid biosynthesis, flagellar motor protein system and Bacterial chemo-

taxis. Among these targets, cobA and thiL also found as potent drug targets during genome

scale metabolic reconstruction and choke point analysis. An efficient way to develop drugs

against these targets would be substantially positive to diminish the threats of serious leptospi-

rosis. However, these targets should be corroborated by further laboratory research for their

Fig 6. Druggability analysis of proteins of Leptospira strains. X axis consists of number of strains and Y axis contains

non-homolog gut flora proteins present in Leptospira strains. Right mark denotes the presence of novel target in each

strain. Gene product lpxK, lpxB and cysD found to be novel in all strains of pathogen whereas in 16 out of 15 strains, kdtA,

fliN, rpoN and queF are seen to be novel.

https://doi.org/10.1371/journal.pone.0221446.g006

Fig 7. Virulent analysis of proteins of Leptospira strains. X axis consists of number of strains and Y axis contains non-homolog

gut flora proteins present in Leptospira strains. Right mark denotes the presence of virulent target in each strain. Gene product

lpxK and lpxB found to be virulent in all strains of pathogen whereas in 16 out of 15 strains, kdtA and rpoN are seen to be

virulent. Protein fliN is important for virulence in 14 strains of Leptospira.

https://doi.org/10.1371/journal.pone.0221446.g007

Identification of novel drug targets against pathogenic strains of Leptospira

PLOS ONE | https://doi.org/10.1371/journal.pone.0221446 August 20, 2019 17 / 22

https://doi.org/10.1371/journal.pone.0221446.g006
https://doi.org/10.1371/journal.pone.0221446.g007
https://doi.org/10.1371/journal.pone.0221446


Fig 8. Comparative analysis of essential proteins. Comparative analysis revealed 37 genes are essential. Among these, 16 are common

in all strains of Leptospira from which 8 are found to be novel. From novel targets of Leptospira, 2 are acting as choke points and fliN

protein is virulent in nature.

https://doi.org/10.1371/journal.pone.0221446.g008
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role in inhibiting the growth and affecting the virulence of pathogens. Genome scale metabolic

model of Leptospira would be useful in future for the basis of in silico gene knockout studies.

Determination of qualitative tertiary structure and acknowledgment of functionally critical

residues of these putative drug targets would be more effective in future for identification of

novel leads and its optimization through in silico approaches like protein-ligand docking, free

energy calculation and molecular dynamic simulations to design new anti-leptospiral drug

against leptospirosis.
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