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A B S T R A C T

Avian infectious bronchitis virus (IBV) is the etiological agent of a highly contagious disease, which results in
severe economic losses to the poultry industry. The spike protein (S1 subunit) is responsible for the molecular
diversity of the virus and many sero/genotypes are described around the world. Recently a new standardized
classification of the IBV molecular diversity was conducted, based on phylogenetic analysis of the S1 gene
sequences sampled worldwide. Brazil is one of the biggest poultry producers in the world and the present study
aimed to review the molecular diversity and reconstruct the evolutionary history of IBV in the country. All IBV
S1 gene sequences, with local and year of collection information available on GenBank, were retrieved.
Phylogenetic analyses were carried out based on a maximum likelihood method for the classification of geno-
types occurring in Brazil, according to the new classification. Bayesian phylogenetic analyses were performed
with the Brazilian clade and related international sequences to determine the evolutionary history of IBV in
Brazil. A total of 143 Brazilian sequences were classified as GI-11 and 46 as GI-1 (Mass). Within the GI-11 clade,
we have identified a potential recombinant strain circulating in Brazil. Phylodynamic analysis demonstrated that
IBV GI-11 lineage was introduced in Brazil in the 1950s (1951, 1917–1975 95% HPD) and population dynamics
was mostly constant throughout the time. Despite the national vaccination protocols, our results show the
widespread dissemination and maintenance of the IBV GI-11 lineage in Brazil and highlight the importance of
continuous surveillance to evaluate the impact of currently used vaccine strains on the observed viral diversity of
the country.

1. Introduction

Infectious bronchitis (IB) is an acute and highly contagious viral
disease that affects domestic fowl (Gallus gallus) worldwide (Cavanagh,
2007). The etiological agent is the avian infectious bronchitis virus
(IBV), a Gammacoronavirus from the family Coronaviridae (ICTV, 2016).
IBV genome is a single positive sense RNA strand with approximately
27.6 Kb in length that encodes four structural proteins - nucleocapsid
(N), membrane (M), envelope (E), and spike (S) - in addition to an RNA-
dependent RNA polymerase and numerous accessory proteins
(Jackwood, 2012). Among all the structural proteins, S is the most
important for antigenic and immunogenic reasons. It is cleaved into the
subunits S1 and S2 with approximately 535 and 625 amino acids, re-
spectively. S1 glycoprotein is important in adsorption to the cellular

receptor and virus entry into the host cell, besides inducing neutralizing
antibodies. S1 gene is highly variable among the different viral strains
and is directly related to the diversity of IBV antigenic and genetic
groups (Cavanagh, 2007; Toro et al., 2012).

IBV genetic diversity, mainly in the S1 gene, was demonstrated in
different poultry-producing regions of the world. Historically,
Massachusetts (Mass) and Connecticut (Conn) serotypes were the first
isolates in the 1940s and 1950s, respectively (Schalk and Hawn, 1931;
Jungherr et al., 1956). Since then, several new IBV sero/genotypes have
been identified and associated with the disease around the world (Cook
et al., 2012; De Wit et al., 2011). However, for decades, the identifi-
cation and classification of IBV genetic types were mostly performed
without clear criteria regarding the nomenclature, methods to compare
viral molecular data and exact genetic region to be analyzed.
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Consequently, subclades of the closely related virus, sometimes circu-
lating in small geographical regions, have been assigned as new geno-
types and more than 50 genetic groups were already reported (De Wit
et al., 2011). Recently, a more definitive phylogeny-based classification
system was proposed for the assignment of IBV strains. This study
classified IBV in six genotypes, which are further divided into 32 ge-
netic lineages, and provides reliable reference sequences (lineage pro-
totypes) to guide the viral classification (Valastro et al., 2016).

Currently, Brazil is the main exporter and second-biggest producer
of chicken meat in the world (USDA, 2016). In 2016, more than 13
million tons of chicken was produced and over 4 million tons of chicken
products were exported to all continents. This high production is ob-
tained in intensive raising systems, favoring the dissemination of re-
spiratory infections (Bermudez, 2008) such as IBV, which causes great
economic losses in Brazilian poultry flocks (broilers, breeders and
layers) (Balestrin et al., 2014; Carranza et al., 2017; Colvero et al.,
2015).

IB has been described in Brazil since the 1950s. However, a better
genetic characterization of the field IBV isolates has started to be per-
formed only in the last decade. It is known that a Brazilian variant (BR-
I) is widely disseminated in the main poultry-producing regions of the
country. Similar strains were also observed to circulate in Argentina
and Uruguay and the whole genetic cluster was also identified as South
America I (SA-I) (Marandino et al., 2015) and recently renamed as GI-
11 (Valastro et al., 2016). Moreover, subclades of GI-11 were reported
by distinct studies (Fraga et al., 2013; Villarreal et al., 2010) but the
origin of these lineages and the role of recombination are still to be
investigated.

Moreover, IBV molecular diversity in Brazil has been investigated
by using diverse methods on different regions of S1 gene, making it
difficult to compare results from different studies and impairing epi-
demiological surveillance efforts to track down IB outbreaks. In the
view of the recently proposed system of IBV classification, the present
study investigated the lineages circulating in Brazil and the role of re-
combination for the current observed genetic diversity. This study also
applied phylodynamic methods to estimate the time of the most
common recent ancestor and demographic history of the IBV field
variants in Brazil and related sequences from South America.

2. Material and methods

2.1. Sequence dataset compilation and maximum likelihood (ML) analysis

All available IBV S1 gene sequences from Brazil were downloaded
from GenBank. Alignment was performed with Mafft (Katoh and
Standley, 2013) and visually inspected in AliView (Larsson, 2014). A
reference sequence dataset for the genotypic classification of IBV was
used as provided by Valastro et al. (2016). Due to different sizes in
length and sequences that cover distinct and not overlapping regions of
S1 gene, the genotyping of Brazilian sequences was performed in se-
parate datasets when necessary.

To further analyze the global circulation of IBV strains isolated in
Brazil, all international IBV S1 sequences with information for country
and date of sampling were downloaded from GenBank. Alignment was
performed with Mafft and trimmed aiming to keep the highest number
of sequences from Brazil. RAxML (Stamatakis, 2014) was used to re-
move identical sequences and construct maximum likelihood (ML)
trees. The general time reversible model (GTR) with gamma-distributed
rate heterogeneity plus a proportion of invariable sites (GTR+G+I)
was used as the optimal nucleotide substitution model as identified in
the jModelTest program (Posada, 2008).

2.2. Recombination analyses

Analyses of recombination were performed for sequences grouped
within the GI-11 lineage. The S1 gene fragment analyzed corresponds to

nucleotide positions 8 to 550, according to the H120 reference strain
(M21970 - accession code). Simplot software (Lole et al., 1999) was
used applying the bootscanning method. Neighbor-Joining (NJ) trees
were constructed under Kimura two-parameter model with sliding
windows of 100, 160 and 200 base pairs (bp) with incremental steps of
20 bases. Query sequences were compared against reference sequences
for each lineage defined by Valastro et al. (2016). S1 gene regions
showing patterns of recombination were used as a query in a BLAST
search to identify the source of potential recombination fragments. The
top 10 hits for each query were downloaded and added to the sequence
dataset in case they had not been yet analyzed.

2.3. Phylodynamic analyses

The temporal signal of the sequences to be submitted to phylody-
namic analysis was investigated with TempEst software (Rambaut
et al., 2016). Sequences outliers in the regression of root-to-tip diver-
gence versus sampling time were excluded. Time-scaled phylogenetic
tree estimation was performed using BEAST/BEAGLE software (Ayres
et al., 2012; Drummond et al., 2012) through the Cipres Science
Gateway (https://www.phylo.org). BEAST software allows for the
combination of different clock, substitution, and demographic models,
demanding an appropriate model test approach. In the current study,
marginal likelihood estimation (MLE) (Baele et al., 2012, 2013) was
applied to compare alternative models in a Bayesian framework. Trees
were reconstructed using SRD06 substitution model (Shapiro et al.,
2005) and the uncorrelated gamma distributed (ucgd) relaxed mole-
cular clock (Drummond et al., 2006), which outperformed alternative
models. IBV demographic history in Brazil was investigated by applying
the non-parametric Bayesian Skygrid coalescent model, which esti-
mates the product of viral effective population size (Ne) and generation
time throughout evolutionary history (Gill et al., 2013). To avoid
making assumptions regarding IBV generation time, here we refer to
estimates of effective population size as relative genetic diversity. In
addition, we tested with MLE the best demographic parameter that
described the IBV population history.

Monte Carlo Markov Chains (MCMC) were run sufficiently long to
ensure stationary and adequate effective sample size (ESS) for the main
parameters. Tracer software (available at: http://beast.bio.ed.ac.uk/
Tracer) was used to diagnose MCMC, adjust initial burn-in and to
perform the Skygrid demographic reconstruction. TreeAnnotator was
used to summarize the maximum clade credibility (MCC) tree from the
posterior distribution of trees and the MCC tree was visualized and
edited in FigTree (available at: http://tree.bio.ed.ac.uk/software/
figtree/).

3. Results

3.1. The molecular diversity of IBV in Brazil

In order to classify the IBV lineages circulating in Brazil, a pre-
liminary analysis was performed including all Brazilian IBV sequences
available in GenBank and the reference dataset provided by Valastro
et al. (2016). A total of 192 IBV Brazilian sequences for S1 gene was
obtained. These sequences varied in size and covered different regions
of S1 gene. A total of 140 sequences (73%) covered the first portion of
S1 region, approximately between positions 190 and 700 (including
hypervariable regions 1 and 2 located between nucleotides 112 and
423); 27 sequences (14%) covered the middle of the gene between
positions 740 and 1090 (including hypervariable region 3 located be-
tween nucleotides 820 and 1161); and 25 sequences (13%) spanned the
whole S1 gene. ML tree reconstruction using Valastro et al. (2016) re-
ference sequences classified 143 (74.5%) Brazilian sequences as GI-11
lineage (former SA-I group), 46 (24%) as GI-1 (former Mass serotype), 2
(1%) as GI-13 (former 4/91 serotype) and 1 (0.5%) as GI-9 (former Ark
serotype).
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Phylogenetic analyses with sequences from worldwide were per-
formed for the first portion of S1 gene, which was observed to be the
most common sequenced region. After excluding sequences too short or
identical, a ML phylogenetic tree with 1634 taxa (199 reference se-
quences and 1435 worldwide) was constructed (Fig. 1). GI-11 clade was
composed by Brazilian, Argentinian and Uruguayan sequences and
basal to that, a group of sequences from Argentina was observed
(Fig. 2). These sequences did not group with other reference lineages
and were analyzed together with GI-11 lineage aiming to assess the role
of recombination in this basal group.

3.2. Recombination analyses

Bootscanning analyses were applied to all sequences that belonged
to the GI-11 lineage as well as for the six Argentinian sequences that
were grouped basally to it. A possible recombination was observed in
the six sequences from Argentina. However, it was not possible to de-
termine which lineage gave rise to it. Analyses showed that this basal
group has some similarities to the GI-11 lineage, but the sequences

mostly did not resemble with high support (above 70% bootstrap) any
of the lineages already described (Fig. 2).

Two other divergent clusters of sequences within GI-11 lineage
showed distinct patterns in the bootscanning analysis. The first group is
composed of sequences isolated in Mato Grosso state (MT) in Brazil,
previously described as a subcluster of the Brazilian lineage (Fraga
et al., 2013). Our analyses showed that these sequences are mostly GI-
11 but have a fragment of around 250 bp that does not match with any
other described lineage. Aiming to identify the origin of this fragment, a
BLAST search was performed using the unassigned portion of S1 gene as
a query. This procedure gave rise to two sequences that were not pre-
sent in our compiled dataset and although these sequences were iso-
lated in a distinct state, they also clustered with the group isolated in
MT state and showed the same recombination pattern (Fig. 2). The
second group with high divergence within GI-11 lineage is composed
only of sequences from Argentina and Uruguay. Bootscanning revealed
that the analyzed S1 region was mostly related to GI-11 cluster, with a
small region with very low similarity to any of the described lineages.
Analysis performed with bigger window sizes (Supplementary Fig. 1),
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however, shows small support for recombination in this region. BLAST
search using the fragment between 100 and 150 bp did not reveal any
new sequences that could indicate the source of this potential re-
combinant fragment.

3.3. Phylodynamic analyses

In order to understand the origin of the GI-11 cluster and its onset in
Brazil and South America, Bayesian analyses were performed with GI-
11 clade sequences. TempEst analysis showed that good temporal signal
(R2= 0.48) was only present in the GI-11 dataset when the subclusters
of potential recombinant sequences were removed. Phylodynamic
analysis of the “pure” GI-11 lineage sequences estimated the time of the
most recent common ancestor (tMRCA) of this group to 1951 (1917 to
1975, 95% highest posterior density [HPD]) (Fig. 3). The mean rate of
evolution of the analyzed fragment of S1 gene was 4.1×10−3 sub-
stitutions/site/year (2.3× 10−3 to 6.1× 10−3, 95% HPD). Skygrid
plot reconstructed a relative genetic diversity trajectory with a small
variation since the introduction of IBV GI-11 lineage in Brazil in the
beginning of the 1950s (Fig. 3). Among the parametric demographic
models, the constant population was estimated as the best-fitted para-
meter. Bayes Factor (BF) calculations supported this model over ex-
pansion or exponential growth with BF=2.4 and 3.7 (respectively),

revealing a weak support. The analysis testing the logistic growth
model could not be completed due to very poor model fit.

4. Discussion

IB is an endemic disease in Brazil and it is responsible for significant
and measurable economic losses in Brazilian poultry flocks (Colvero
et al., 2015). Despite the massive use of a vaccine derived from the Mass
IBV serotype, outbreaks have occurred frequently in Brazil (Carranza
et al., 2017; Fernando et al., 2017; Mendonça et al., 2009), as well as in
some neighboring countries (Alvarado et al., 2005; Marandino et al.,
2015; Rimondi et al., 2009). Due to the wide range of antigenically and
genetically different viral types of IBV, the control and prevention of
these outbreaks are challenging, making necessary a constant surveil-
lance of the lineages circulating in the country.

In the present study, we have re-assessed the IBV molecular di-
versity in Brazilian isolates based on a recent update of the genetic
classification for this virus (Valastro et al., 2016). Our analyses showed
that 46 sequences (24%) isolated in Brazil were classified as GI-1
lineage, which corresponds to the Mass serotype. Since the end of the
1970s, a vaccine derived from this serotype has been extensively used
in the field in Brazil. The Mass vaccine is available as inactivated or
attenuated-live, but the second one is commonly used in the field
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poultry flocks. Previous studies reported that this vaccine strain could
spread in the flock for few weeks, due to the intermittent shedding of
virions from trachea and cloaca (Matthijs et al., 2008; Naqi et al.,
2003). This ability of the vaccine strain to disseminate could be thought
as risk to turn it into a new field strain. However, different studies
demonstrated a very high identity among all GI-1 lineage sequences
obtained from field flocks and Mass commercial vaccines distributed in
Brazil suggesting they are the vaccine strains (Balestrin et al., 2014;
Chacón et al., 2011; Fraga et al., 2013; Villarreal et al., 2010). There-
fore, the high frequency of Mass serotype observed might be due to a
local viral spread after the intensive vaccination practices.

A small percentage of Brazilian sequences were also identified as
being GI-9 (0.5%) and GI-13 (1%) lineages, corresponding to the
Arkansas and 4/91 (also known as 793B and CR88) serotypes, respec-
tively. 4/91 strain is spread worldwide and was first reported in the
United Kingdom in 1991 (Gough et al., 1992; Parsons et al., 1992),
while Arkansas strain has been reported in the United States since 1972
(Johnson et al., 1973). In Brazil, the lineages Ark and 4/91 were iso-
lated from vaccinated flocks (Mass serotype vaccine) in 1999 and 2007,
2008, respectively (Montassier et al., 2008; Villarreal et al., 2010). The
Mass serotype was the only licensed attenuated strain to be used in field
vaccination programs in Brazil until 2016 when the Brazilian GI-11
strain started to be used as an attenuated-live vaccine. However, both
lineages Ark and 4/91 are used in vaccination protocols in other
countries and the frequencies observed in our study could be related to
the use of imported vaccines or for the importation of birds from places
where those strains are present (Felippe et al., 2010; Villarreal et al.,
2010). On the other hand, the fact that these strains were not found in
samples isolated recently suggests that these are self-limiting cases of
less epidemiological importance.

Most of the Brazilian sequences analyzed here (74.5%) were clas-
sified as GI-11 lineage. These findings are similar to the previous studies
performed in order to classify the field isolates (Carranza et al., 2017;
Chacón et al., 2011; Fraga et al., 2013). Our study also observed that a
subclade in the GI-11 lineage presented possible recombination
breakpoints in the bootscanning plots. This subclade is composed only
of sequences from Brazil and was first named as BR-II (Fraga et al.,
2013). The current study suggests it also belongs to GI-11 lineage. The
bootscanning procedure also revealed that a subclade of sequences from
Argentina and Uruguay might present recombinant fragments, how-
ever, in this case, the support of 160 and 200 bp window sizes were
weak and new analyses with longer sequences should be performed to
confirm our findings. A third potential recombinant group of sequences
grouped basally to the GI-11 lineage and our results show that these
sequences have indeed a fragment or two of GI-11 lineage in their

genome. The backbone genome of these sequences was mostly un-
classified, or at least not represented among the list of reference se-
quences used in this study.

Mutation and recombination events are very common in cor-
onaviruses, such as IBV. These events could be responsible for the
emergence of this diverse number of variant strains in the field
(Jackwood, 2012). Due to the advance of the bioinformatics programs
for recombination screening, several studies have been performed in
order to evaluate if the recombinant events could be the source of these
variant isolates described worldwide (Kiss et al., 2016; Naguib et al.,
2016; Quinteros et al., 2016). Moreover, the high prevalence of avian
coronaviruses circulating in birds other than chicken suggests that wild
and synanthropic birds are potential disseminators and could play a
role in the emergence of recombinant strains and the dissemination of
IBV among distant regions (Durães-Carvalho et al., 2015). Therefore, it
might be possible that wild birds are the source of the unclassified se-
quence fragments observed in the recombinant strains identified in the
current study. Notwithstanding, our BLAST search approach would be
able to identify the recombinant parental strains if their sequences were
present in the public databases. Lastly, is important to note that regions
in the bootscanning plots that do not resemble any of the reference IBV
lineages might be simply originated by single nucleotide mutations and
are not necessarily resulted from events of recombination.

The phylodynamic analysis estimated the introduction of IBV GI-11
lineage in Brazil in the beginning of the 1950s. The first reported case of
IB in poultry flocks in the country was performed by Hipólito in 1956
(Hipólito, 1957). According to this author, the introduction of the IBV
in Brazil, and probably into South America, could be explained by the
importation of chickens from North American and European countries,
where the disease was endemic in that time. The poultry production
underwent major changes during the 1950s in Brazil, with the begin-
ning of the industrial and intensive broiler rearing systems, which al-
lowed an important expansion of the poultry production (Belusso and
Hespanhol, 2010; Sorj et al., 2008). On the other hand, the intensive
rearing systems and the high population of the flocks may allow the
quick dissemination of respiratory diseases, which was common at the
time (Hipólito, 1957).

The MLE analysis revealed a constant model as best describing the
demographic history of IBV GI-11 lineage in Brazil. However, BF sup-
port was only moderate (BF=3.7) over the exponential model and
weak (BF=2.4) over the expansion model, that might suggest a more
complex scenario where fluctuations in the population size do not
follow any of the tested parameters. By using the non-parametric coa-
lescent Skygrid model, a smooth increase in relative genetic diversity
can be observed since its introduction in Brazil until the late 1970s,
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when the vaccination based on the Mass serotype started. From this
point onward, the Skygrid plot fluctuates around the same value, but
we cannot observe a trend of fall in relative genetic diversity, sug-
gesting a partially effective vaccination program. It is not uncommon
for some IBV vaccines to induce poor protection against different ser-
otypes of the virus (Ladman et al., 2006), which allows some viruses to
scape of the immune system response provided by vaccination proto-
cols. Most of the sequences analyzed here were originated from samples
collected from vaccinated birds, that might support the idea that the
Mass serotype has none or poor efficiency to control the GI-11 re-
plication in the field, as indicated by studies of IBV experimental in-
fection (Fernando et al., 2013, 2017). Moreover, the oldest available
Brazilian GI-11 sequence was originated from a sample collected in
1975. This, together with the GI-11 lineage estimated tMRCA (1951
[1917 to 1975, 95% HPD]), indicates that this lineage was already
circulating in the country by the time when vaccination started. A very
limited or no protection of Mass vaccine against these field variants
may have allowed the spread and maintained of GI-11 lineage in Bra-
zilian flocks, reflecting in an approximately constant viral population
from 1980 to 2014. The constant viral population scenario revealed by
our analyses, however with not strong BF support, also provide evi-
dence that the vaccination based on the Mass serotype did not impact
the GI-11 clade demographic history in Brazil. Franzo et al. (2016) have
reported that a vaccination program based in a combination of Mass
and 4/91 strains was more effective in controlling the spread of the GI-
19 lineage when compared to protocols using only Mass vaccines. In
this sense, since 2016, a new attenuated vaccine based on GI-11 (BR-I)
lineage is available to be used in Brazilian commercial flocks and future
studies are needed to evaluate changes in the viral molecular diversity
and demographic dynamics of IBV in Brazil. It is important to highlight
that the changes in viral relative genetic diversity estimated by the
Skygrid model are subtle and the confidence interval of the analysis is
wide, so only studies with more sequences could precisely describe the
Brazilian IBV demographics' history and whether it is in expansion or
controlled.

5. Conclusions

In summary, our study brings new insights about IBV genetic di-
versity in Brazil and unveils the evolutionary history of the GI-11
lineage in the country. Our bootscanning analysis highlights the im-
portance of the recombination process in creating new variants of IBV
in the region and the phylodynamic analyses reveal, for the first time,
the virus demographic history in Brazil, which broadly agree with the
country's history of poultry production and vaccination programs.
Finally, a continuous surveillance of IBV infection would be valuable to
ascertain long-term effects of GI-11 lineage vaccine introduction.
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