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Abstract: Three-dimensional measurement with fringe projection sensor has been commonly
researched. However, the measurement accuracy and efficiency of most fringe projection sensors are
still seriously affected by image saturation and the non-linear effects of the projector. In order to solve
the challenge, in conjunction with the advantages of stereo vision technology and fringe projection
technology, an adaptive binocular fringe dynamic projection method is proposed. The proposed
method can avoid image saturation by adaptively adjusting the projection intensity. Firstly,
the flowchart of the proposed method is explained. Then, an adaptive optimal projection intensity
method based on multi-threshold segmentation is introduced to adjust the projection illumination.
Finally, the mapping relationship of binocular saturation point and projection point is established
by binocular transformation and left camera–projector mapping. Experiments demonstrate that the
proposed method can achieve higher accuracy for high dynamic range measurement.

Keywords: three-dimensional measurement; high dynamic range; structured light sensor; adaptive
binocular fringe dynamic projection; binocular calibration

1. Introduction

Due to the advantages of high speed, high accuracy, and full light field, fringe projection
profilometry (FPP) based on structured light sensor [1–3] has become the most promising
three-dimensional (3D) data acquisition technique in many fields, such as quality control [4–6],
reverse engineering [7,8], and others [9–11]. Generally, the system of fringe projection profilometry
consists of one camera and one projector. There are three steps to obtain the 3D data of the object
measured by FPP. First, the designed fringe patterns are projected onto the surface of measured
object one by one and the deformed fringes are captured by the camera simultaneously. Secondly,
the phase information can be calculated by the deformed fringes. Finally, the 3D point cloud of the
measured object can be reconstructed accurately with the calibrated parameters of the system [1–3].
The 3D data can provide an effective evaluation mean for surface inspection, precision manufacturing,
automatic assembly, and other fields. The literature [1–3,6] shows that FPP is more suitable for diffuse
reflective surfaces and the surface reflectance changes little. However, when objects with high dynamic
range (HDR) were measured directly by FPP, some saturated regions will appear in fringe images,
which challenge the completeness of phase information and measurement accuracy.

Addressing that it is difficult to improve the dynamic range by hardware for the most camera
sensors [6], many experts have carried out a series of approaches to solve the HDR measurement problem.
The methods can be divided into several categories: multi-exposure method [12–14], light intensity
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adjustment method [15,16], color invariance method [17–19], polarization method [20–22], adaptive
fringe pattern method [23–27], and others [28,29]. Considering that the dark regions and bright regions
of the fringe image require different exposure times, multi-exposure method becomes a way for HDR
problem [12–14]. Zhang [12] proposed an HDR scanning technique. The brightest but not saturated
pixels were chosen from a set of fringe images with decreasing exposures to generate the new fringe
images. Song [13] proposed an active reflection suppression method by multiple exposure image fusion
to achieve high-precision 3D measurement. However, for the multi-exposure method, the required
number of exposures and each exposure time depend seriously on human experience, and there is
still a lack of quantitative way to choose an appropriate exposure time. The light intensity adjustment
method is another way applied for HDR problem [15,16]. Kofman [15] projected a series of fringe
patterns with decreasing maximum input gray value onto the object surface. The maximum gray value
but not saturated pixels were used to synthesize the fringe images. For improving the signal-to-noise
ratio for low reflective surface, Babaie [16] proposed a method to improve the dynamic range of fringe
projection system to measure the objects with varying surface reflectivity. Similar to the multi-exposure
method, this method needs to project a large number of different intensities, so the projection efficiency
is very low. Color invariance method has also been proposed to solve the HDR measurement [17–19].
Benveniste and Ünsalan [17] applied color invariant method to solve the problem of scanning bright
surfaces under different ambient illuminations. Chen [18] proposed a fringe pattern projection method
by fusing different color patterns from multi-viewpoints. However, the accuracy of color invariance
method is limited [29]. The polarization methods have been developed to handle the shiny surface
problem [20–22]. In [24], epipolar images with speckle patterns were utilized to eliminate the effects of
inter-reflections. The authors of [22] presented a specularity removal method based on polarization
imaging through global energy minimization. Obviously, polarization methods require additional
hardware and are time-consuming. The adaptive fringe pattern method is another solution, which
computes the optimal illuminations according to the correspondence of camera–projector [23–27].
For the problem of strong internal reflection, Xu and Aliaga developed an adaptive corresponding
algorithm [23], which may take hours to inspect an unknown scene. Li and Kofman [24] proposed an
adaptive fringe pattern projection method by adapting the maximum input gray level. Lin presented a
fast 3D shape measurement technique to improve the signal-to-noise ratio during the measurement [25].
Farahi [26] put forward an inverse projected-fringe technique for on-machine inspection, based on the
correspondence of projector-part-camera. Zhang [27] studied a method to calculate several groups of
fringe patterns with optimal light intensities generated based on the intensity response function of
camera. However, when calculating the optimal light intensity, the threshold of reflectivity component
must be set manually. From the perspective of projection efficiency, the adaptive fringe pattern method
can achieve better results for HDR problem.

However, most methods mentioned above belong to monocular fringe projection system, which are
sensitive to image saturation and projection non-linear gamma effect. In order to improve the projection
efficiency and reduce the influence of image saturation and gamma non-linear effect, combining with
the advantages of binocular vision and monocular fringe projection, we propose an adaptive binocular
fringe dynamic projection method by adjusting adaptively the pixel-to-pixel projection intensity. First,
the flowchart of adaptive binocular fringe dynamic projection method is presented in detail. Then,
an adaptive optimal projection intensity method based on multi-threshold segmentation is presented
to adjust the projection illumination. Finally, mapping correspondence of binocular saturation point
and projection point is established to modify the projection gray-level of saturation point.

The organization is as follows. Section 2 introduces the basic principle of FPP. In Section 3,
adaptive binocular fringe dynamic projection method is explained in detail. The experimental results
are given in Section 4. Conclusions are presented in the last section.
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2. Principle of Fringe Projection Profilometry

For higher accuracy, sinusoidal fringe pattern and phase-shifting method are adopted. For a fringe
projection sensor system, numerous-step phase-shifting algorithms have been developed and applied in
most researches, due to the excellent performances such as accuracy, point density, and efficiency [2,3].
The projected intensity can be represented as,

I(x, y) = IA(x, y) + IB(x, y) cos[ϕ(x, y) + δN], δN =
k∗2π

N
, N = 3, 4, 5 · · · , k = 0, 1, · · · , N − 1, (1)

where IA is the average intensity, IB is the intensity modulation, ϕ is the phase to be solved for and N is
the number of phase-shift steps. The phase value can be described as,

ϕ(x, y) = −arctan

∑N
n=1 In(x, y) sin δN∑N
n=1 In(x, y) cos δN

. (2)

As shown in Equation (2), the phase value is affected by higher harmonics, which is also an
important factor in the generation of phase error. Since the arctangent function is used, the phase value
solved for ranges (−π,π] with 2π discontinuities. Usually, the continuous phase needs to be unwrapped
for FPP by phase unwrapping algorithms [2]. Through the continuous phase obtained above, the
3D shape of object can be calculated by combining with calibration parameters discussed in [30,31].
Generally, three-step phase-shifting algorithm and four-step phase-shifting algorithm with equal
phase-shifting are widely used in 3D shape measurement [2]. Considering the measurement accuracy
and phase calculation amount, four-step phase-shifting algorithm is preferable for the following study.

3. Adaptive Binocular Fringe Dynamic Projection Method

In order to expand the application scope of fringe projection technology, this section explains the
adaptive binocular fringe dynamic projection method (ABFDP) for the problem of image saturation
in HDR measurement. In order to enhance the acquisition range of point cloud and reduce fitting
error [31,32], the binocular vision with fringe projection is selected in this paper with the advantages of
high precision and non-gamma effect of projector.

3.1. Flowchart of ABFDP Method

The flowchart of the proposed adaptive binocular fringe dynamic projection method is shown in
Figure 1. The main steps are as follows.

• Step 1. Adaptive optimal projection intensity. In this step, the intensity response function and
multi-threshold segmentation are used to generate the modified fringe images. Its basic principle
is that the fringe images are modified iteratively by the feedback of the deformed fringe images
captured by the binocular cameras.

• Step 2. Binocular system calibration. Through binocular system calibration, the mapping
correspondences of binocular images and projector image are obtained.

• Step 3. Phase matching. After calculating the absolute phase, according to the principle of equal
phase of homonymy point in binocular system, binocular matching points are obtained.

• Step 4. Point cloud acquisition. In this step, point cloud information of object is obtained with the
principle of triangulation.

Compared with other HDR methods [23–27], ABFDP method extends high dynamic range
measurement from monocular fringe projection to binocular fringe projection. The intensity modification
mask is calculated without pre-known geometry information. The proposed ABFDP method reduces
the number of fringe patterns and the number of projection iterations, which avoids complex matrix
calculation and improves the projection efficiency. The ABFDP method can adaptively calculate the
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optimal projection intensity through multi-threshold segmentation of surface reflectivity. The adaptive
projection pattern can be automatically updated for different objects. The mapping relationship of
binocular saturation point and projection point is established by binocular transformation and left
camera–projector mapping.
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Figure 1. Flowchart of the adaptive binocular fringe dynamic projection method (ABFDP) method.

3.2. Adaptive Optimal Projection Intensity Method

In the binocular fringe projection system as shown in Figure 2, the DLP projector is used to
generate sinusoidal fringe patterns and project the fringe patterns onto the object surface to code
its shape information. The deformed fringes modulated by the surface of the measured object are
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captured by binocular cameras at the same time. The wrapped phase map and unwrapped phase
map are calculated by four-step phase-shifting method. For an object point PW and a projector image
point PP, if two points PLC on left camera image corresponds to the point PRC on right camera image,
then

(
PW , PP, PLC, PRC

)
is called homonymy point. In binocular FPP, homonymy points have the same

phase values, through which the coordinates of binocular matching points can be obtained. Thereby,
the object point PW could be calculated by stereo matching technology.
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Figure 2. Schematic diagram of binocular fringe projection system, (1) the ambient light coming directly
to the camera sensor with an intensity of IA, (2) the projected light with an intensity of IP, reflected by
the object with surface reflectivity of ρ, ρIP, (3) the ambient light with an intensity of IO, reflected by
the object, ρIO, (4) let the camera sensitivity be k, the exposure time be t, (5) the noise of the sensor is In,
generally obeys Gauss distribution, In

∼ N
(
0, σ2

)
.

In Figure 2,
(
OW , XW , YW , ZW

)
is the world coordinate system.

(
OP, XP, YP, ZP

)
and

(
UP, VP

)
are

the projector coordinate system and its pixel coordinate system respectively.
(
OLC, XLC, YLC, ZLC

)
and

(
ULC, VLC

)
denote the left camera coordinate system and its pixel coordinate system respectively.(

ORC, XRC, YRC, ZRC
)

and
(
URC, VRC

)
denote the right camera coordinate system and its pixel coordinate

system respectively. Then, the intensity IC captured by each camera can be described as

IC(x, y) = kt
{
ρ(x, y)

[
IP(u, v) + IO(x, y)

]
+ IA

}
+ In, (3)

where (x, y) and (u, v) denote the pixel coordinate in the camera coordinate and projector coordinate,
respectively. Due to the noise of the sensor, In, obeys Gauss distribution, and for a given system,
the camera sensitivity and the exposure time are constants, In′ = In/kt also obeys Gauss distribution.
Thus, Equation (3) can be rewritten as,

IC(x, y) = kt
{
ρ(x, y)

[
IP(u, v) + IO(x, y)

]
+ IA + In′

}
. (4)

Let
x1 = ktIP(u, v), x2 = kt, a = ρ(x, y), b = ρ(x, y)IO(x, y) + IA + In′ , (5)

and substituting formula (5) into Equation (4), we get,
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IC(x, y) = ax1 + bx2. (6)

Assuming the reflection intensity and the ambient light on the object surface remain constant during

measurement, we can estimate the values of a and b by the following way. Let J =
n∑

i=1

(
IC
i − axi1 − bxi2

)2
.

In order to minimize J, the partial derivatives of J with respect to a and b can be obtained, which are all
equal to zero [25]. 

∂J
∂a = −2

n∑
i=1

(
IC
i − axi1 − bxi2

)
xi1 = 0

∂J
∂b = −2

n∑
i=1

(
IC
i − axi1 − bxi2

)
xi2 = 0

(7)

Simplification of Equation (7) is written as,
a

n∑
i=1

x2
i1
+ b

n∑
i=1

xi1xi2 =
n∑

i=1
xi1IC

i

a
n∑

i=1
xi1xi2 + b

n∑
i=1

x2
i2
=

n∑
i=1

xi2IC
i

. (8)

Let

X =


x11 x12

x21 x22
...

...
xn1 xn2

, A =

[
a
b

]
, IC =


IC
1

IC
2
...

IC
N

. (9)

Formula (8) can be rewritten to matrix form as,

XTXA = XTIC. (10)

From Equations (8)–(10), theoretically, two patterns are sufficient to solve a(x, y) and b(x, y).
Assuming the reflectivity of the object remains constant, a set of uniform patterns with different light
intensities are projected onto the measured object to increase the accuracy. If n patterns are used,
Equation (10) can be expressed in matrix form as

IP
1 kt

IP
2 kt
...

...
IP
n kt


[

a(x, y)
b(x, y)

]
=


IC
1 (x, y)

IC
2 (x, y)

...
IC
n (x, y)

. (11)

Thus, the solution of the system of Equation (11) is

Â =

[
â
b̂

]
=

(
XTX

)−1
XTIC. (12)

Then the surface reflectivity of each pixel is estimated to be â, the ambient light and the surface
mutual reflection light intensity are estimated to be b̂, and the response function of the projector–camera
can be simplified as follows,

IC(x, y) = kt
[
â(x, y)IP(u, v) + b̂(x, y)

]
. (13)

Equation (13) is the so-called nonlinear intensity response function of projector–object–camera,
which shows that for a given object and measurement scene, the gray values of the fringe image pixels
captured by the cameras depend on the intensity of the projected light IP, the camera gain k, and the
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exposure time t. If the camera gain and the exposure time remain constant, IC depends only on IP.
According to the Equation (13), optimal projection gray-level can be computed to ensure that the
gray-levels of the fringe image pixels captured by the camera are in an appropriate range. The optimal
projection gray-level can be calculated by the inverse function of the intensity response function as,

IP
opt =

IC
opt − b̂kt

âkt
(14)

Theoretically, the optimal intensity IC
opt captured by camera should avoid saturation and have

high contrast. Taking into account the system noise, we have to reserve some gray level space to avoid
saturation. Let IC

opt be 240 for an 8-bit camera. The corresponding optimal projection light intensity IP
opt

derived from the intensity response function, can be rewritten as

IP
opt =

240− b̂kt
âkt

. (15)

It can be seen from Equation (15) that the optimal projection gray-level of each pixel in a fringe
image is different for surface with different reflectivities, i.e., the reflectivity of each pixel is not uniform,
and the ambient light and surface mutual reflection intensity of each pixel are also not uniform.
Equation (15) shows that each pixel will correspond to an optimal projection intensity IP

opt. However,
for high resolution images up to several million pixels, the computational complexity is obviously very
large, which is not conducive to online measurement. From Equations (13) and (15), we notice that the
projection light intensity depends on the distribution of a(x, y) and b(x, y). So, the surface reflectivity
component could be divided into several intervals, and each interval corresponds to a projection light
intensity. Therefore, the size of the interval length has a direct impact on the measurement result.
The smaller the interval, the more light intensities will be set. This improves the measurement accuracy
but sacrifices the measurement efficiency. Therefore, how to divide surface reflectivity component
into several intervals is very important. Artificial experience classification of surface reflectivity in
literature [27] has achieved good results. However, the way of interval division depends on manual
experience, and the results are not consistent for different people.

In order to realize automatic interval segmentation, considering the surface reflectivity and the
neighborhood characteristic of surface reflectivity, the 2-dimensional Otsu (2D OTSU) [33] method is
introduced for threshold segmentation. As shown in Figure 3, let (s, t) denotes the thresholds, then,
the 2D histogram of object reflectivity can be divided into four regions. According to the histogram,
the value is close to the average value of the field at the target and background, and the difference
between the value of reflectivity and the mean reflectivity value of the field at the boundary of the
target and background is large. Therefore, reflectivity values in the target and background will appear
around the diagonal [33].
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According to [33], let r(x, y) be the surface reflectivity value, d is the width of the square
neighborhood window, the neighborhood mean value of reflectivity is defined as

n(x, y) =
1

d ∗ d

(d−1)/2∑
i=−(d−1)/2

(d−1)/2∑
j=−(d−1)/2

r(x + i, y + j), (16)

Define the frequency and the joint probability density of (r, n) by f (r, n) and p(r, n), the probabilities
of target and background can be described respectively as,

ωt(s, t) =
s∑

i=0

t∑
j=0

pi j =
s∑

i=0

t∑
j=0

f (i, j)
M∗N

ωb(s, t) =
max(r)∑

i=s+0.001

max(n)∑
j=t+0.001

pi j =
max(r)∑

i=s+0.001

max(n)∑
j=t+0.001

f (i, j)
M∗N

. (17)

To distinguish easily, an increment of 0.001 is added to the reflectivity when calculating the
background probability. We can define the discrete measure matrix between the target and background
as [33]

σB = ωt
[
(u0 − uz)(u0 − uz)

T
]
+ωb

[
(u1 − uz)(u1 − uz)

T
]
. (18)

Thus, the trace of discrete measure matrix, that is, the distance measure function, can be written as:

tr(s, t) = ωt

[
(u0i − uzi)

2 +
(
u0 j − uzj

)2
]
+ωb

[
(u1i − uzi)

2 +
(
u1 j − uzj

)2
]

=
[
(ωt(s, t)uzi − ui(s, t))2 +

(
ωt(s, t)uzj − u j(s, t)

)2
]
/[ωt(s, t)(1−ωt(s, t))]

. (19)

Suppose (s∗, t∗) represent the 2D optimal segmentation thresholds, when

(s∗, t∗) = arg maxtr(s, t). (20)

Let
T = (T1, T2, T3, T4) = Ascending (kss∗, ktt∗, km(s∗ + t∗)/2, amax), (21)

where k = (ks, kt, km) is scale factor. The threshold T can divide the surface reflectivity into four
intervals: (0, T1] , (T1, T2] , (T2, T3] , (T3, T4] . bi is the maximum value of b(x, y) corresponding to each
interval. The corresponding projection light intensities can be expressed as

IP
N1 =

240− b1

T1
, IP

N2 =
240− b2

T2
, IP

N3 =
240− b3

T3
, IP

N4 =
240− b4

T4
. (22)

For the use of four-step phase-shifting algorithm, the average intensity IA and the intensity
modulation IB of fringe patterns are given by

IAi(x, y) = IBi(x, y) =
IP
Ni(x, y)

2
, i = 1, 2, 3, 4. (23)

From Equations (22) and (23), groups GN
i

for four-step phase-shifting of fringe patterns are
generated as follows:

G4
i :



IP
4i1 =

IP
4i
2 +

IP
4i
2 cos[ϕ(u, v)]

IP
4i2 =

IP
4i
2 +

IP
4i
2 cos

[
ϕ(u, v) + π

2

]
IP
4i3 =

IP
4i
2 +

IP
4i
2 cos[ϕ(u, v) + π]

IP
4i4 =

IP
4i
2 +

IP
4i
2 cos

[
ϕ(u, v) + 3π

2

] , i = 1, 2, 3, 4. (24)
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3.3. Mapping Correspondence of Binocular Saturation Point and Projection Point

In Section 3.2, the adaptive optimal projection intensity method solves the magnitude of the
projected intensity. This subsection will answer where the appropriate projection intensities should be
located, through mapping its image coordinates to the projector image coordinate system.

According to the working principle of binocular fringe projection system [34,35], stereoscopic
vision calibration should be carried out, that is, to get the internal and external parameters of the left
and right cameras, as well as the rotation and translation relations between the two cameras. Usually,
the camera calibration principle is based on the aperture imaging model. For the left camera [35],
we have

sL


uL

vL

1

 = AL
[

RL TL
]

xW

yW

zW

1

 = ML


xW

yW

zW

1

, (25)

where (xW , yW , zW , 1)T represents the world coordinates of any space point, (uL, vL, 1)T is the pixel
coordinate of the point in the left camera image, AL is the internal parameter of the left camera and RL,
TL are the rotation matrix and translation matrix of the left camera respectively, ML is the projection
matrix of the left camera.

Similarly, for the right camera, we have

sR


uR

vR

1

 = AR
[

RR TR
]

xW

yW

zW

1

 = MR


xW

yW

zW

1

, (26)

where (uR, vR, 1)T is the pixel coordinate of the point in the right camera image, AR is the internal
parameter of the right camera, RR, TR are the rotation matrix and translation matrix of the right camera
respectively, and MR is the projection matrix of the right camera.

External parameters of the two cameras can be obtained by calibration of monocular cameras[
RL TL

]
,
[

RR TR
]

and internal parameters AL, AR. Assuming that the projection points of a
space point PW on the imaging plane of the left and right cameras are PR, PL respectively, a coordinate
system can be established [35] {

PL = RLPW + TL

PR = RRPW + TR
. (27)

Suppose that the rotation and translation matrix between two cameras is
[

R T
]
, thus:

PL = RLR−1
R PR −RLR−1

R TR + TL =
[

R T
]
PR

R = RLR−1
R , T = TL −RTR

(28)

The above is the calibration process of binocular cameras, so that the conversion relationship
between right camera and left camera can be obtained. For the calibration of DLP projector, it is
usually assumed that the projector is a reverse camera, and the left camera and the DLP projector
constitute a binocular system. The camera and the projector can also be calibrated through the above
process, so that the internal and external parameters of the camera and the DLP projector and their
correlation can also be obtained. The pixel coordinate of a point mP(uP, vP) on the image plane of
projector corresponds to the point (xW , yW , zW) in the world coordinate, while corresponding to the
point mL(uL, vL) of the left camera,
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uP

vP

1

 = AP
[

RP TP
]

xW

yW

zW

1

 (29)

where AP is the internal parameter of projector, RP is a rotation matrix, TP is a translation matrix.
According to formula (25), the mapping relationship between image point coordinates of left

camera image and projection image point coordinates can be obtained as:
uP

vP

1

 = AP
[

RP TP
]
M−1

L


uL

vL

1

. (30)

The internal and external parameters of the binocular cameras can be obtained by Equations
(25) and (26). The transformation relationship between the right camera and the left camera can be
obtained by Equation (28), and the mapping relationship between the left camera and the projector
can be obtained by Equation (30). Furthermore, for the saturated points of the left camera image,
the corresponding coordinates of the projected image points can be obtained by mapping. For the
saturated points of the right camera image, the coordinates of the projection image points can be
transformed into the coordinates of the left camera image by Equation (28), and then the coordinates of
the projection image points can be obtained by Equation (30). Therefore, the adaptive projection gray
level correction is carried out.

In summary, the calculation process of the proposed method is as follows,

• Step 1. Binocular camera and left camera–projector calibration. This step is mainly used to obtain
the internal and external parameters of the cameras and projector, as well as the conversion
relationship of the cameras and projector.

• Step 2. Projecting a set of light intensity onto the surface of object, we can get the surface reflection
characteristics and the optimal projection grays.

• Step 3. Four-step phase-shifting images are collected simultaneously by left and right cameras.
The saturation points in binocular cameras are identified, and then the corresponding points in
the projection image are obtained according to step 1.

• Step 4. The corrected fringe images are projected onto the surface of the object to calculate the
absolute phase. Therefore, the diameter results of objects can be obtained by point cloud fitting.

4. Experiments and Results

In this section, we try to further evaluate the proposed method. All simulations listed here are
implemented in Matlab R2018b on a laptop equipped with 2.50 GHz CPU and 4G RAM memory.
To verify the performance of our method, we built a fringe projection system consists of a digital light
processing (DLP) projector (model PDC03, Fuzhou Giant Vinda Photoelecyric Technology CO. LTD.
China) with a projection speed of 30 fps and 1280 × 800 pixels, and two industrial CMOS cameras
(model: IDS UI-3370CP-M-GL, produced by the company of IDS Imaging Development Systems GmbH
in Obersulm, Germany). The cameras have a resolution of 2048 × 2048 pixels at a frame rate up to 80 fps.
The fitting of point cloud data obtained to calculate the diameters in this experiment is processed by
Geomagic Studio®2013 which made by Geomagic, Inc., USA. A photograph of the experiment system
is shown in Figure 4. This system was calibrated before the experiment. Experiments were conducted
to verify the validity of the proposed method.
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4.1. Mixed Reflectivity Materials Experiment

In order to verify the effectiveness of the adaptive optimal projection intensity method, the
glass checkerboard with a frame of aluminum alloy material is chosen as one sample for verification.
As shown in Figures 5–7, the surrounded frame has higher reflectivity characteristic than the glass
checkerboard. The uniform light intensities are projected to the chessboard, and then the corresponding
images are captured. It can be seen that with the increase of projected light intensity, the image contrast
shows an enhanced trend.
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It can be seen from Figures 5–7 that the reflectivity characteristic of aluminum alloy material is
obviously stronger than that of checkerboard. From Figures 5 and 7e, an area in the image captured
by the left camera is always in the state of direct reflection. Even if the light intensity is very small,
this area is always in saturation state. From Figure 7, the reflectivity of the white area of checkerboard
is obviously higher than that of the black area, while black areas have high ambient light intensity.
As shown in Figure 7, if Zhang’s method [26] is used, surface reflectivity can be divided into three
intervals: (0, 1], (1, 2], and (2, 2.7]. The corresponding projected light intensities are
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IP
1 =

240− 70
1

= 140, IP
2 =

240− 70
2

= 70, IP
3 =

240− 70
2.7

= 56.

If our proposed method is used, surface reflectivity of left camera image is divided into three
intervals: (0, 1], (1, 1.7], (1.7, 2.2], and (2.2, 2.7], and surface reflectivity of right camera image is
divided into three intervals: (0, 1], (1, 1.6], (1.6, 2.3], and (2.3, 2.7]. The corresponding projected light
intensities are

IP
L1 =

240− 12
1

= 228, IP
L2 =

240− 18
1.7

= 130, IP
L3 =

240− 34
2.2

= 94, IP
L4 =

240− 91
2.7

= 55,

IP
R1 =

240− 10
1

= 230, IP
R2 =

240− 22
1.6

= 136, IP
R3 =

240− 41
2.3

= 86, IP
R4 =

240− 73
2.7

= 62.

Compared with Zhang’s method, the adaptive optimal projection intensity method has better
adaptability to saturated region and can fine-tune the gray-scale according to the reflectivity
characteristics of objects.

4.2. Shiny Metal Objects Experiment

The precision of the fringe projection system is verified before measuring the metal objects with
high dynamic reflectivity surface. Three calibration balls were designed, as shown in Figure 8, and their
diameters are needed to be measured. In order to better evaluate the system accuracy, Coordinate
Measuring Machine (CMM) measurement values are chosen as the actual values. In the commercial
software Geomagic Studio, the diameter results of calibrated balls can be obtained by spherical fitting
of point cloud information, shown in Table 1.
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Table 1. Measurement results of calibration balls.

Calibration Balls CMM/mm Mean Value by
ABFDP/mm

Mean Error by
ABFDP/mm

A 50.7991 50.8046 0.0055
B 50.7970 50.8021 0.0051
C 253988 25.4039 0.0041

As can be seen from Table 1, compared with the measurement value of CMM, the mean measurement
error values of the system for three calibration balls are 0.0055 mm, 0.0051 mm, and 0.0041 mm respectively,
which means the fringe projection system has a higher measurement accuracy.

In industrial field, due to the influence of material and surface roughness, metal objects have
high reflectivity characteristic, which limits the application of non-contact measurement methods.
In order to verify the measuring effect of the proposed method on metal workpiece, the following
two aluminum workpieces were designed, as shown in Figure 9. The measurement requirement is to
measure the diameters of stepped cylinder object with cylinder Ca and Cb, and cylindrical shell object
with cylinder Cc. Similar to the calibration balls, the diameter results of stepped cylinders can also be
obtained by cylindrical fitting of point cloud information.
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Figure 9. HDR objects. (a) Stepped cylinder object with cylinder Ca and Cb; (b) cylindrical shell object
with cylinder Cc.

For the requirements of diameter measurement of HDR object, the measurement value with
CMM is taken as the actual value. In order to verify the algorithm, the proposed method is compared
with line laser method (LL method, model: LMI Gocator 2430, resolution X: 0.037mm, resolution Z:
0.006mm, points 1940), traditional fringe projection method (FPP method) and adaptive adjustment
method (adaptive method), as shown in Tables 2–4. In order to observe the measurement accuracy and
repetitive measurement accuracy, 10 times measurements were carried out with different methods,
and the Mean value (MV), Standard deviation (STD), Root mean square error (RMSE), and Mean
absolute error (MAE) were calculated as the evaluating indicators. For the convenience of visual
comparison, the measured values in Tables 2–4 are displayed graphically in Figure 10.
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Table 2. Diameter measurement results of Ca with different methods.

Cylinder
Measured CMM/mm Line Laser

Method/mm
FPP

Method/mm
Adaptive

Method/mm
ABFDP

Method/mm

Ca 199.750

199.874 200.059 199.778 199.765
199.884 199.786 199.793 199.758
199.902 199.807 199.774 199.772
199.884 199.811 199.807 199.786
199.876 200.029 199.785 199.781
199.868 200.107 199.769 199.779
199.878 199.838 199.803 199.781
199.910 199.914 199.792 199.788
199.922 199.835 199.802 199.762
199.888 199.824 199.771 199.765

MV/mm 199.889 199.901 199.787 199.774
STD/mm 0.017 0.119 0.014 0.011

RMSE/mm 0.140 0.189 0.040 0.026
MAE/mm 0.139 0.151 0.037 0.023

Table 3. Diameter measurement results of Cb with different methods.

Cylinder
Measured CMM/mm Line Laser

Method/mm
FPP

Method/mm
Adaptive

Method/mm
ABFDP

Method/mm

Cb 239.741

238.884 239.924 239.764 239.758
238.877 239.893 239.766 239.745
238.871 239.885 239.805 239.749
238.823 240.126 239.803 239.766
238.844 239.953 239.814 239.771
238.856 239.977 239.785 239.781
238.800 240.215 239.811 239.767
238.826 239.836 239.765 239.787
238.872 239.841 239.781 239.762
238.834 239.993 239.782 239.771

MV/mm 238.849 239.964 239.788 239.766
STD/mm 0.027 0.122 0.019 0.013

RMSE/mm 0.893 0.252 0.050 0.028
MAE/mm −0.892 0.223 0.047 0.025

Table 4. Diameter measurement results of Cc with different methods.

Cylinder
Measured CMM/mm Line Laser

Method/mm
FPP

Method/mm
Adaptive

Method/mm
ABFDP

Method/mm

Cc 276.299

275.380 275.684 276.180 276.263
275.300 275.936 276.195 276.261
275.448 275.853 276.194 276.274
275.376 275.830 276.197 276.289
275.344 275.734 276.206 276.287
275.464 275.879 276.197 276.249
275.440 275.607 276.192 276.256
275.352 275.931 276.108 276.284
275.368 275.994 276.197 276.280
275.428 275.963 276.198 276.261

MV/mm 275.390 275.841 276.186 276.270
STD/mm 0.053 0.128 0.028 0.014

RMSE/mm 0.910 0.474 0.116 0.032
RMSE/mm −0.909 −0.458 −0.113 −0.029
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Figure 10. Measurement error distribution: (a) measurement error for cylinder Ca; (b) measurement
error for cylinder Cb; (c) measurement error for cylinder Cc; (d) measurement error using ABFDP method.

The fringe patterns of cylinders Ca and Cb are shown in Figure 11. From Figure 11a,d, in order to
reduce the intensity of the highlighted area, a lower projection gray level was used for the fringe image
by traditional FPP method. Although the local highlighted area can be reduced, the image contrast is
low, and most gray-levels are in the projection non-linear area below 50. In Figure 11b,e, compared with
the traditional FPP method, the fringe contrast of adaptive method is obviously improved, but there
is still a large range of bright areas in local area, which belongs to specular reflection. As shown
in Figure 11c,f, the fringe contrast of ABFDP method is obviously higher than traditional FPP and
adaptive method. Although some fringes are saturated locally, most gray-levels are in the projection
linear region from 50 to 200. The point cloud of the cylinder is obtained by phase-shifting algorithm,
and the point cloud data is imported into software of Geomagic studio for cylindrical fitting, and the
fitting effect is obtained, as shown in Figure 11g–i.
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From Tables 2–4, it can be seen that different measurement methods are affected by the problem
of metal surface. The mean absolute error values of line laser method are 0.139 mm, −0.892 mm,
and −0.909 mm. The reason for the low detection accuracy is that the line laser method only collects
the point cloud of the shorter arc, and the maximum number of point cloud is 1940. It belongs
to circle fitting or ellipse fitting based on short arc, which is well known that there is a high error
magnification problem in fitting short arc [32,36]. At the same time, for metal high-brightness object,
the line laser stripe is still over-saturated, which easily leads to the reduction of the accuracy of stripe
center recognition and affects the accurate extraction of point clouds. From Tables 2–4 and Figures 10
and 11, the bright metal surface has a great influence on the traditional FPP method, which leads to the
over-saturation of the image and the lack of point clouds in large areas. Meanwhile, the measurement
error fluctuates greatly makes it difficult to get the real value of the object. Although the point cloud
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information of the traditional fringe projection method is much better than that of the line laser method,
due to the influence of the metal surface, the local some areas are over-saturated, which leads to
the inability of collecting the point cloud information. When these point clouds are used for circle
fitting, they still belong to the problem of piecewise short arc fitting. Compared with the above two
methods, adaptive method can achieve more point cloud information for high-brightness surfaces, in
which MAE values are 0.037 mm, 0.047 mm, and −0.113 mm. Besides, the point cloud information
collected by the adaptive method is better than that by the traditional FPP method. However, due to
the influence of the bright metal surface, there are still some areas where the point cloud information
cannot be extracted. Compared with the other three methods, the ABFDP method proposed in this
paper effectively reduces the impact of HDR reflections, and the measurement results are closer to
the actual value for the three cylinders. The mean values of the ABFDP method are 199.774 mm,
239.766 mm, and 276.270 mm and the RMSE values are 0.026 mm, 0.028 mm, and 0.032 mm, also the
MAE values are 0.023 mm, 0.025 mm, and −0.029 mm. From Figures 10 and 11, compared with the
other three methods, the mean absolute error and fluctuation of ABFDP method are smaller, and it is
closer to the actual value. At the same time, it can be seen from the Figure 10d that with the increase
of the diameter of objects, the mean absolute error of this method will raise. The reason is that with
the increase of the object size, the arc corresponding to the detected point cloud becomes smaller,
which leads to the increase of the errors after the fitting of point cloud. As can be seen from Figure 11,
the point cloud integrity of the proposed method is better than that of the traditional FPP method and
the adaptive method. However, there are still some areas present the phenomenon of losing point
cloud. The areas are directly opposite to the left and right cameras, and will be saturated by the camera
even if the light intensity is low. The above experiments have demonstrated that ABFDP method can
get highly accurate 3D measurement results.

As stated above, we can see that the surface reflection characteristics and the size of the object
will all affect the final detection accuracy when using the fringe projection method for diameter
measurement. Compared with several measurement methods, the ABFDP method has the best overall
performance for HDR measurement.

5. Conclusions

In this study, in order to solve the HDR measurement problem, an adaptive binocular fringe
dynamic projection method was proposed to reduce the number of fringe patterns, which also
avoids the complex matrix calculation. A novel adaptive optimal projection intensity method based
on multi-threshold segmentation was established to reduce the projection gray-level according
to the reflectivity information of saturated points. The mapping relationship between binocular
saturation points and projection points was obtained by binocular calibration and camera–projection
transformation relationship. Experimental results demonstrated that the proposed ABFDP method has
the ability to precisely measure HDR objects.

The proposed method also shares some limitations, similar to most 3D reconstruction methods
based on FPP. When the objects near specular reflection, the captured fringe images are always saturated
even though a little light intensity, which should be addressed in the future.
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