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A Brain-Computer Interface (BCI) is a setup permitting the control of external devices

by decoding brain activity. Electroencephalography (EEG) has been extensively used

for decoding brain activity since it is non-invasive, cheap, portable, and has high

temporal resolution to allow real-time operation. Due to its poor spatial specificity, BCIs

based on EEG can require extensive training and multiple trials to decode brain activity

(consequently slowing down the operation of the BCI). On the other hand, BCIs based

on functional magnetic resonance imaging (fMRI) are more accurate owing to its superior

spatial resolution and sensitivity to underlying neuronal processes which are functionally

localized. However, due to its relatively low temporal resolution, high cost, and lack of

portability, fMRI is unlikely to be used for routine BCI. We propose a new approach

for transferring the capabilities of fMRI to EEG, which includes simultaneous EEG/fMRI

sessions for finding a mapping from EEG to fMRI, followed by a BCI run from only EEG

data, but driven by fMRI-like features obtained from the mapping identified previously.

Our novel data-driven method is likely to discover latent linkages between electrical

and hemodynamic signatures of neural activity hitherto unexplored using model-driven

methods, and is likely to serve as a template for a novel multi-modal strategy wherein

cross-modal EEG-fMRI interactions are exploited for the operation of a unimodal EEG

system, leading to a new generation of EEG-based BCIs.

Keywords: brain-computer interface, EEG, functional MRI, simultaneous EEG/fMRI, tensor decomposition

INTRODUCTION

Brain-computer interface (BCI) refers to the setup permitting the control of computers or external
devices by decoding brain activity. Among the technologies being employed for decoding brain
activity used in BCI, electroencephalography (EEG) presents a distinct advantage because it
is non-invasive, has superior temporal resolution to allow for real-time interaction and, most
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importantly, is portable, widely available and practical (Mason
et al., 2007). However, scalp EEG suffers from poor spatial
specificity; and volume conduction through the head makes
the EEG signals in different channels correlated, reducing
their ability to distinguish underlying neurological processes.
Consequently, the performance of EEG based BCI may be
suboptimal in tasks involving deep brain structures or multiple
brain structures that cannot be well-resolved with scalp EEG.
With recent technical advances in neuroimaging, real-time
functional magnetic resonance imaging (fMRI) has also been
used for BCI. Owing to its high spatial resolution, fMRI is
potentially more accurate for BCI (Weiskopf et al., 2004).
However, due to its relatively low temporal resolution, high cost,
restrictive environment and lack of portability, fMRI is unlikely
to be used for routine BCI.

Design strategies of EEG-BCI could involve modeling the
brain activity as either a dependent or an independent variable.
The former case is an open loop system wherein stimulus-
dependent brain activities are measured, interpreted, and used
to control an external device (e.g., the P300-based speller Serby
et al., 2005). This strategy can be implemented with relatively
little training, but may require multiple trials to decode the
brain’s intention accurately, thus limiting the speed at which
the external device can be operated (Blankertz et al., 2004). In
the latter case, volitional control of brain activity is achieved
through continuous biofeedback and themeasured neural output
is used to derive the signal that controls the external device.
One representative approach in the latter category relies on the
slow cortical potential (for example, used in cursor control)
(Hinterberger et al., 2004b). Limitations of this type of approach
are that they require extensive training, and their efficacy is highly
variable among different individuals. Given these limitations of
EEG-BCI, we hypothesize that the latent linkages between EEG
and fMRI can be exploited to estimate fMRI-like features from
EEG data, and hence drive an EEG-BCI using those estimated
fMRI-like features. This could then allow an independently
operated EEG-BCI to decode brain states in real-time. Estimation
of fMRI-like features from EEG is feasible and has been tried
before (De Martino et al., 2011; Meir-Hasson et al., 2014).
However, the estimation accuracy has not been satisfactory
when raw data has been used. Therefore, we propose the “EEG
to fMRI” mapping using multi-linear subspace regression on
latent variables, derived using orthogonal tensor decomposition
based on the Tucker model, from both modalities. Prediction
of a modality with superior spatial resolution (fMRI) from a
modality with lower spatial resolution (EEG) may seem counter-
intuitive; however, it is noteworthy that the missing information
is provided by the transformation found using simultaneous
EEG/fMRI data. Recently, Kenyan et al. (George, 2016; Keynan
et al., 2016) used simultaneous EEG/fMRI and showed that by
using EEG to predict fMRI signals in the amygdala, volitional
control of amygdala activity by participants was achieved.
Therefore, we believe that there is initial experimental basis
to believe that fMRI-inspired EEG BCIs may be viable. BCI
using tensor decomposition techniques has been successfully
performed with EEG before (Eliseyev et al., 2011; Eliseyev and
Aksenova, 2013), but not with fMRI or with a novel framework

like the one we are proposing. The open loop BCI is the focus of
this paper. However, the method could potentially be extended to
a closed loop system with carefully designed modifications.

There has been extensive literature pertaining to the
integration of EEG and fMRI, and BCIs based on each modality.
We provide a brief overview here.

Integration of EEG and fMRI
Combining EEG and fMRI data provides complementary
measures of neural electrical activity at high temporal resolution
and hemodynamics at high spatial resolution. For applications
where brain activity is reproducible in multiple experiments
(Krakow et al., 1999; Mulert et al., 2004), EEG and fMRI data
can be acquired separately, though for most applications,
simultaneous acquisition is desired. Recent technical advances
have made simultaneous acquisition of EEG and fMRI
sufficiently robust for routine applications (Salek-Haddadi
et al., 2003; Herrmann and Debener, 2008; Moosmann et al.,
2008; Koskinen and Vartiainen, 2009). The fundamental
assumption behind any integration approach is that the signals
recorded in both modalities are at least partly produced by
the same neural sources. This assumption is motivated by
many studies finding relationships between electromagnetic
and metabolic signatures of neural activity (Logothetis et al.,
2001; Mukamel et al., 2005). Specifically, it has been shown
that EEG power in various frequency bands and regional blood
oxygenation level dependent (BOLD) fluctuations co-vary in
the resting state (Goldman et al., 2002; Mantini et al., 2007),
and averaged or single trial amplitudes of event-related potential
(ERP) components are correlated with BOLD fMRI signals
(Nagai et al., 2004; Debener et al., 2005; Eichele et al., 2005;
Hinterberger et al., 2005).

Two approaches are predominantly employed for the
integration of simultaneously recorded EEG and fMRI: (1) using
fMRI activations as priors for EEG source localization, and (2)
examination of co-variations of the BOLD signal with different
EEG signatures (Ullsperger and von Cramon, 2001; Horovitz
et al., 2002, 2004; Bledowski et al., 2004; Gotman et al., 2004;
Mulert et al., 2004; Nagai et al., 2004; Eichele et al., 2005;
Hinterberger et al., 2005; Schicke et al., 2006). In spite of
the results indicating positive correlation between some EEG
signatures and the BOLD signal, it cannot be guaranteed that
both measures always sample the same underlying neuronal
process (Nunez and Silberstein, 2000). There may be differences
in their sensitivity to different neuronal generators primarily due
to the underlying differences in biophysics and a mismatch of
the sampling rates (Friston et al., 1998). For instance, it has been
shown that fMRI activation regions do not always provide an
appropriate prior for the event-related potential (ERP) inverse
problem solution (Dale et al., 2000; Dale and Halgren, 2001).
These studies indicate the need for additional investigation into
the linkages between latent variables underlying these modalities,
since the exact relation between phase-locked and non-phase-
locked ERP components with the hemodynamic response is
unclear. In this paper, we propose a novel approach for
discovering linkages between latent variables underlying EEG
and fMRI, rather than using the acquired signals themselves.
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EEG Based BCI
EEG is the method of choice for acquiring brain signals
for BCI applications. An EEG based BCI system provides
a communication channel between the human brain and a
computer or external device based on spatio-temporal patterns
extracted from EEG signals. The following problems, however,
decrease the efficiency of EEG-BCI systems: poor signal to noise
ratio (SNR) of EEG signatures without sufficient averaging (Lotte
et al., 2007), low dimensionality of temporal EEG signatures and
the fact that the acquired EEG data does not always represent
the pertinent neuronal activity corresponding to the behavior
which the BCI aims to decode/control. There has been some
work addressing these issues. For example, it has been shown
that source localization can aid the classification of task specific
regions and facilitate EEG-BCI by converting the smeared scalp
potential into source distribution within the brain, resulting in an
improved signal (Qin et al., 2004). However, source localization
is computationally intensive and is performed post-hoc. Hence
it cannot be used to decode or control brain activity in real-
time, although relatively fast algorithms for source localization
have been recently reported (Becker et al., 2014). Various other
feature extraction and robust classification strategies have been
reported for improving the specificity and SNR of EEG features
(Farwell and Donchin, 1988; Pfurtscheller et al., 1998; Penny
et al., 2000; Lotte et al., 2007; Makeig et al., 2012). However, they
have not been able to significantly improve the accuracy with
less trials/training (Birbaumer and Cohen, 2007). This frustration
was succinctly summed up by Birbaumer and Cohen: “A large
gap between the promises of invasive animal and human BCI
preparations and the clinical reality characterizes the literature:
while intact monkeys learn to execute more or less complex upper
limb movements with spike patterns from motor brain regions
alone without concomitant peripheral motor activity usually after
extensive training, clinical applications in human diseases such as
amyotrophic lateral sclerosis and paralysis from stroke or spinal
cord lesions show only limited success” (Birbaumer and Cohen,
2007).

fMRI Based BCI
Real-time fMRI makes it feasible to ascertain brain activity
online, for decoding brain states in order to drive a BCI device
(LaConte et al., 2007). Due to its spatial specificity and high
dimensionality of spatial features, fMRI is very accurate for
BCI applications (Sorger et al., 2012). One of the prominent
approaches for decoding brain states relies on multivariate
(or multiple voxel) pattern analysis (MVPA) using support
vector machine (SVM) as a classifier (Norman et al., 2006),
which relies on spatial patterns of voxel intensities/activations as
features. Its success can be attributed to the fact that the high
dimensionality of spatial patterns allows it to encode distinct
signatures of underlying neural activity (Kriegeskorte et al.,
2010). One major limitation of fMRI-BCI arises from the well-
known time lag between neural activity and the fMRI responses
detected by BOLD imaging, limiting the temporal resolution
(Sitaram et al., 2007). Another severe constraint for fMRI-BCI
is the restrictive MRI environment preventing it from being
portable. This limitation, coupled with the substantial cost of

MRI systems, makes fMRI-BCI unsuitable for routine use in
practice. While simultaneous EEG/fMRI has also been used for
BCI (Hinterberger et al., 2004a) and neurofeedback before (Zotev
et al., 2014), the requirement that the subject be in the scanner for
operating the BCI makes it impractical.

Given the complementary strengths of EEG and fMRI based
BCIs, we propose experiments using an open loop P300-
based speller paradigm wherein brain activity can be decoded
using latent features extracted from simultaneously acquired
EEG/fMRI data. Letter decoding accuracy using fMRI data
is expected to outperform the accuracy obtained from only
EEG. The significance of the approach lies in discovering the
linkages between latent features of simultaneously acquired EEG
and fMRI, such that optimal fMRI features providing excellent
classification can be estimated from only EEG, when operating
an EEG-only BCI. Essentially, the idea is to generalize the
discovered EEG-to-fMRI transformation such that one can gain
the portability and cost advantages of EEG-only BCI, and at
the same time, have access to fMRI-like features (obtained
from EEG) which provides higher accuracy with fewer trials.
This would likely increase the speed and accuracy with which
the EEG-only BCI operates, making it operationally more
efficient for potential clinical populations. Finally, our approach
could serve as a template for a novel multi-modal strategy
wherein cross-modal EEG-fMRI interactions are exploited for
the operation of a single-modal EEG system, leading to a new
generation of EEG-based BCIs.

Here we put forward a framework for achieving the objectives
laid out above and expand on these themes in the next section.
The first objective is to discover latent linkages between EEG
and fMRI. In order to achieve this, we propose the following
steps. (i) Obtain fMRI data with high temporal resolution: The
following methods can be employed: (a) Use multiband echo-
planar imaging (M-EPI) (Feinberg et al., 2010), to achieve whole
brain coverage with sampling intervals (TR) as short as 200
ms. (b) Use cubature Kalman filter based blind deconvolution
of fMRI (Havlicek et al., 2011), to recover driving neuronal
state variables with higher effective temporal resolution. (ii)
Identify EEG-fMRI transformation using simultaneously acquired
EEG/fMRI data using a P300 speller based paradigm: Obtain
orthogonal tensor decomposition (based on the Tucker method)
(Zhou and Cichocki, 2012) of both EEG and deconvolved fMRI
data along the following dimensions: trials, voxels/channels, time
and frequency. Subsequently, employ higher order multilinear
subspace regression based higher order Partial Least Squares
(HOPLS) model (Zhao et al., 2011) to predict the dependent
variable (deconvolved fMRI) from the independent variable
(EEG). The HOPLS model parameters such as the latent
variables, core tensors and tensor loadings are likely to provide
information about the latent EEG-fMRI relationships across the
dimensions considered.

The second objective is the designing of a real-time EEG-
based P300 speller using EEG-fMRI linkages. In order to achieve
this, we propose the following steps. (i) EEG-only BCI: Perform
an EEG-only experiment based on the P300 speller paradigm.
(ii) Obtain fMRI-like features: Predict fMRI at each voxel using
the transformations obtained in Objective-1 for use as input to
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a multivariate pattern analysis (MVPA) algorithm for decoding
brain activity (the AFNI software’s Cox, 1996 MVPA tool could
be used). This would enable the operation of an EEG-based P300
speller in real-time mode.

METHODS

Human Subject Recruitment
We suggest that, during subject recruitment, it is preferable to
collect demographic data like age, in order to detect specific
patterns of results, if any, which may correlate with demographic
factors. For example, age related changes in P300 are well known
(Juckel et al., 2012) and hence if a strong correlation exists
between BCI accuracy and age, then it could be detected. On
the other hand, latent EEG-fMRI linkages (as opposed to explicit
relationships between raw data) may be robust against these
effects, and this aspect is open to investigation.

Objective-1: Discovery of Latent Linkages
between EEG and fMRI
In order to bring the measured fMRI signal closer to
neuronal activity, we will first describe proposed approaches
for acquiring fMRI data with superior temporal resolution,
and blind hemodynamic deconvolution for minimizing the
smoothing effect of the hemodynamic response function (HRF).
Subsequently, orthogonal tensor decomposition (Kolda, 2001)
using the Tucker model will be introduced as a method
for subspace decomposition of EEG and deconvolved fMRI,
following which the higher order partial least squares (HOPLS)
model will be proposed for discovering the relationships between
the latent subspace representations of EEG and deconvolved
fMRI. Finally, experimental details will be provided for the P300
speller paradigm, and the entire procedure for discovering latent
EEG-fMRI linkages will be put into the context of this paradigm.

Faster Acquisition
Multiband-EPI (M-EPI) pulse sequence is a recent technique
which combines two forms of multiplexing: temporal
multiplexing (m) utilizing simultaneous echo refocused
(SIR) EPI and spatial multiplexing (n) with multibanded RF
pulses (MB), to achievem×n images in an EPI echo train instead
of the normal single image (Feinberg et al., 2010). Using 3 × 3
acceleration, TRs can be reduced up to 200 ms with whole brain
coverage. This can be done without sacrificing spatial resolution.
The tradeoffs between voxel size, sampling rate and coverage
are given in Table 1. M-EPI data with all the options shown in
Table 1 could be acquired, so that one could determine their
respective effects on finding linkages between EEG and fMRI.
We predict that a smaller TR would prove to be more useful than
a smaller voxel.

Blind Deconvolution of HRF
The fMRI signal can be represented as a convolution of the
neuronal state variables and the HRF. Since both the neuronal
variables and the voxel-specific HRFs are unknown, estimating
them using only the observed fMRI data is termed as blind
deconvolution. Blind hemodynamic deconvolution minimizes

TABLE 1 | Voxel size-sampling-coverage tradeoffs for fMRI acquisition.

TR (ms) Isotropic resolution (mm) Coverage

M-EPI (functional) 200 3 Whole brain

200 2 Partial brain

100 3 Partial brain

800 2 Whole brain

EPI (functional) 2,000 3 Whole brain

Red, optimized for higher temporal resolution; Blue, optimized for higher spatial resolution.

The values given are notional and exact numbers will depend on the type of scanner.

the spatial variability of the HRF (Handwerker et al., 2004) as well
as the smoothing effect of the HRF (Havlicek et al., 2011), thus
increasing the effective temporal resolution of the signal. Briefly,
let k fMRI time series be represented as X(t) = [x1(t) x2(t) ...
xk(t)]. A dynamic state-space model can be described as follows.

ñkt =





nkt
ukt
θkt



 =





f (nkt−1, u
k
t−1, θ

k
t−1)

ukt−1

θkt−1



 +





qkt−1

vkt−1

wk
t−1



 (1)

Where n is the neuronal state variable, u is the exogenous input
and θ are the parameter variables of the Balloon model (Friston
et al., 2000). f is the function which links the current neuronal
state to the previous neuronal states, exogenous inputs and
parameters. The subscript t indicates time and the superscript k
indicates the number of the time series in the model. q, v, and w
are the zero mean Gaussian state noise vectors. The observation
equation, which links the state to the observation variables, is as
follows.

xk (t) = g
(

ñkt

)

+ rt−1 (2)

Where g is the measurement function which links the state
variables to the measurement variables, and r is the measurement
noise. The inputs to the model are xk(t) and exogenous inputs u,
which is the experimental boxcar function. As described before,
the cubature Kalman filter and smoother performs very efficient
joint estimation of the underlying neuronal state variables and
the parameters (Havlicek et al., 2011). Also, by using a smaller
time step in the estimation, the neuronal variables can be
successfully estimated at an effective temporal resolution up to
10 times smaller than the TR.

Orthogonal Tensor Decomposition Using the Tucker

Model
EEG and fMRI contain rich multidimensional information
which can be probed by blind source separation (BSS), i.e.,
decomposition into underlying sources using constraints such
as independence (Niknazar et al., 2014), or low tensor rank.
The most notable use of this concept is in the application
of independent component analysis (ICA) to both EEG and
fMRI, separately, for obtaining latent subspace representations
which characterize brain function (Calhoun et al., 2001; Beckman
et al., 2005) and help separate the artifacts (Onton et al., 2006).
These vector subspace methods are not only limited by the
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number of dimensions of data that they can incorporate, but
are also inferior to tensor subspace based methods for small
sample size problems (Wolf et al., 2007). Published algorithms
of Tensor-ICA application to fMRI are limited to 3 dimensions
(Beckmann and Smith, 2005). On the other hand, multi-way
tensor decomposition of EEG data based on the Tucker model
has been shown to be based on solid theoretical framework, and
has been demonstrated to be superior to the existing methods
of feature extraction for EEG-BCI applications (Cichocki et al.,
2008, 2016; Onishi et al., 2012). Importantly, this method
does not use alternating least squares iterations and hence the
decomposition is extremely robust and fast with well-defined
identification and uniqueness conditions (Zhou and Cichocki,
2012). We propose that the same be applied to fMRI data as
well, which has never been done before, though other tensor
decomposition techniques such as PARAFAC has recently been
applied for EEG-fMRI fusion (Ferdowsi et al., 2015). It is
noteworthy that, even though other equally good higher order
decompositions exist in literature (such as CP decomposition
Kolda and Bader, 2009; Cichocki et al., 2015, which have been
successfully used for EEG-fMRI integration Mørup et al., 2008),
our proposal of the Tucker decomposition is motivated by the
fact that the speed of decomposition is the fastest using the
Tucker model and hence is suitable for real-time implementation
required in BCI applications.

There is evidence that subspace decompositions are very
effective for finding linkages between different modalities
sampling similar underlying processes. Joint and parallel ICA
of fMRI and EEG data has been successfully demonstrated by
finding either a common mixing matrix (joint ICA) (Edwards
et al., 2012; Kyathanahally et al., 2017) or a mixing matrix
for each modality with the constraint that the relationship
(e.g., correlation or neurovascular coupling) between them is
maximized (Wu et al., 2011). We contend that inter-modality
dependence may be strong between the latent variables/loadings
(also referred to as components) in comparison to between the
mixing matrices. This stems from the fact that the mixing matrix
models the underlying biophysics, which is different for EEG and
fMRI. Even if we are to constrain the relationship between EEG
and fMRI mixing matrices using a neurovascular model such as
the Balloon model (Friston et al., 2000), the fact remains that
EEG does not represent the neuronal variables in the Balloon
model. Therefore, we propose the use of HOPLS for discovering
the relationships between the latent subspace representations of
EEG and fMRI.

Multilinear Subspace Regression Based on Higher

Order Partial Least Squares
Partial least squares is an established methodology for predicting
a set of dependent variables Y from a set of independent variables
X (Wold et al., 2001). Its optimization objective is to maximize
pairwise covariance of a set of latent variables by projecting
both X and Y onto a new subspace (Hou et al., 2016). Due
to known limitations of N-way PLS for multidimensional data
(Eliseyev and Aksenova, 2016), we propose that a new tensor
subspace regression model called HOPLS be employed, which
was proposed recently (Zhao et al., 2011, 2013).

We consider EEG data to be the independent variable X
and deconvolved fMRI (i.e., the hidden neuronal states obtained
from blind deconvolution) data to be the dependent variable
Y. This is a reasonable assumption given the fact that the
hemodynamic/metabolic activity is a secondary response to the
electrical activity. The objective of the PLS method is to find a set
of latent vectors that explain as much as possible the covariance
between X and Y, which can be achieved by performing the
following decomposition (Figure 1)

X = TPT + E =

R
∑

r=1

trp
T
r + E

Y = UQT + F =

R
∑

r=1

urq
T
r + F, (3)

where T = [t1, t2, · · · , tR] and U = [u1, u2, · · · , uR]
are matrices of R extracted latent variables from X and Y,
respectively, and U will have maximum covariance with T
column-wise. The matrices P and Q are latent vector subspace
base loadings and E and F are residuals. The relation between T
and U can be approximated as

U ≈ TD, (4)

where D is an R×R diagonal matrix whose elements act as
regression coefficients. When X and Y are tensors having the
same dimensionality on the first dimension, our objective is to
find their optimal subspace approximations in which their latent
vectors have maximum pairwise covariance.

Consider a 4-way Tucker decomposition of EEG and
deconvolved fMRI data along the following dimensions: trials,
voxels/channels, time, and frequency. Here, voxels apply for
fMRI and channels for EEG. A time-frequency representation of
EEG and fMRI could be obtained by using the complex Morlet
wavelet (Teolis, 1998). Note that the first dimension of “trials” is
the same for both tensors, permitting the application of HOPLS
(if performing group analysis, the number of subjects could
also be used as the first dimension as it is same for EEG and
fMRI). This is a very important property, which allows both

FIGURE 1 | Schematic diagram of the PLS model.
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EEG and fMRI to be sampled at different rates. Therefore, it is
not required to downsample EEG to fMRI’s temporal resolution,
as done by most researchers in the EEG-fMRI comparison
literature (Goldman et al., 2002; Hinterberger et al., 2005),
which will lead to loss of vital temporal information. Let X

−

and Y
−
represent tensor representations of EEG and deconvolved

fMRI, respectively. The new tensor subspace represented by
the Tucker model can be obtained by approximating X

−
with a

sum of rank- (1, L2, · · · , LN) decompositions (Figure 2), while
Y
−
can be approximated by a sum of rank- (1, K2, · · · ,KM)

decompositions.
Using the relation in Equation (4), and integrating D into the

core tensor, we get the HOPLS expressed as

X
−
=

R
∑

r=1

Gr ×1 tr ×2 P
(1)
r ×3 · · · ×N P(N−1)

r + E
−

Y
−
=

R
∑

r=1

Dr ×1 tr ×2 Q
(1)
r ×3 · · · ×N Q(M−1)

r + F
−
, (5)

where R is the number of latent vectors, tr is the rth latent vector,
P
(n)
r andQ

(m)
r are loading matrices corresponding to latent vector

tr on mode-n and mode-m, respectively, Gr and Dr are core
tensors, and×r is the product in the rth mode. Note that the core
tensors model the underlying biophysics and are different for
EEG and fMRI. The subspace transformation is optimized using
the following objective function, yielding the common latent

variable tr instead of 2 latent variables as in Equation (3).

min{P(n) ,Q(n)}||X− − [G; t, P(1), · · · , P(N−1)]
2
||

+||Y
−
− [D; t, Q(1), · · · , Q(M−1)]

2
||

such that
{

P(n)TP(n)
}

= ILn+1 and
{

Q(m)TQ(m)
}

= IKm+1 (6)

This involves the simultaneous optimization of subspace
representations and latent variable tr . The solution to this can be
obtained by Multilinear Singular Value Decomposition (MSVD)
(see Zhao et al., 2011 for more details).

Software for Tensor Decomposition
We propose that several existing toolboxes in MATLAB such as
Tensor ToolBox (Bader and Kolda, 2015) and TensorLab (Sorber
et al., 2015) be tested and compared for the purpose.

P300 Speller Paradigm
The P300 is a positive component appearing ∼300 ms after
the onset of task-relevant stimuli (Hoffmann et al., 2007). To
evoke the P300, subjects are asked to concentrate on a random
sequence of two types of stimuli, with the target type appearing
rarely in the sequence and the non-target type appearing more
frequently. Whenever a target stimulus appears, a larger P300
component can be found in ERPs averaged over many trials. This
phenomenon was exploited by Farwell and Donchin in the P300
speller, based on subjects’ response to letters arranged in a 6 ×

6 symbol matrix (Mason et al., 2007). Rows and columns are
highlighted in random order, and P300 components are most

FIGURE 2 | Simplified schematic diagram of the HOPLS model.
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strongly elicited when the row or the column containing the
desired letter is flashed (Farwell andDonchin, 1988). By detecting
the row and the column corresponding to the largest P300s, the
letter is determined. We propose the use of a 6 × 6 stimulus
grid with letters from A-Z and numbers from 0 to 9 shown in
each of the cells (Figure 3). A trial in this task could be defined
as a highlight (500 ms) of either a row or a column in this
stimulus grid. At the beginning of each trial block, the subjects
could be told a target letter/number. During subsequent trials,
the subjects would need to focus eye fixation on the central green
dot and see if the target letter/number is shown in the highlighted
row/column. Trials could be organized in displaying cycles with
each row and column being highlighted, in random order, only
once in each cycle. The target/non-target trial ratio could be set
to 0.2. Each subject could complete 48 trial cycles (96 target trials
and 480 non-target trials) in 4 fMRI scans (12 cycles/scan) with
EEG simultaneously recorded. The inter trial interval (ITI) in this
task could be randomly chosen in the range of 2–5 s. The P300
may be blurred by the EOG and the EMG, and its latency can
vary from 250 to 400 ms (Katayama and Polich, 2001; Spencer
et al., 2001). Hence, multiple trials are often needed to detect
this latency, making the speller very slow. Using our proposed
method, one could aim to decrease the number of trial averages
needed for high accuracy.

Discovering Latent EEG-fMRI Linkages
A schematic of the proposed procedure is shown in Figure 4.
After simultaneous EEG and fMRI data are acquired and pre-
processed, the pre-processed EEG and deconvolved fMRI data
could be represented in the time-frequency domain using the
complex Morlet wavelet. Its tensor decomposition could be

FIGURE 3 | The stimulus grid used in the P300 based speller task.

performed and HOPLS model parameters, i.e., latent variables,
core tensor and tensor loadings, could be estimated as described
before. When learning the model from multiple subjects, the
decomposition could be 5-way, including the subjects as a factor.
The data could be split into many random halves and HOPLS
model parameters could be estimated from one of the halves as
a training sample, using which the deconvolved fMRI data in
the testing sample could be estimated by the corresponding EEG
data using the procedure described in Zhao et al. (2011), which
is essentially a forward estimation (hence, a well posed problem)
of the dependent variable from the independent variable using
the estimated HOPLS model, by a series of tensor operations.
This would yield a distribution of HOPLS model parameters
corresponding to different splits. Surrogate EEG and fMRI data
could be created 10,000 times by temporally mixing the time
series values in a random fashion such that the predictability
between EEG and fMRI is destroyed, and the HOPLS analysis
could be repeated with surrogate data. This would yield a
null distribution of HOPLS model parameters corresponding to
different splits and surrogates. The distribution of HOPLS model
parameters obtained from original EEG and fMRI data could
then be compared with the null distribution obtained from the
surrogate data such that statistically significant HOPLS model
parameters involved in EEG-fMRI linkage are established. This
would lead to the discovery of time-frequency signatures of EEG
linked to that of deconvolved fMRI.

There are several novel aspects of the proposed approach over
the existing ones. First, the relevant signatures are latent and
obtained without downsampling EEG to match fMRI’s temporal
resolution. Second, the tensor framework allows simultaneous
investigation of linkages in all dimensions. Third, since
deconvolved fMRI reflects neuronal states, it truly represents
the linkage between electrical and metabolic neuronal states
without interference from hemodynamics. Finally, the temporal
correspondence between EEG and fMRI can be investigated
using fMRI data with very high effective temporal resolution
(≤200 ms).

Objective-2: A Real-Time EEG-Based P300
Speller Using EEG-fMRI Linkages
BCI Design
The design of the entire BCI is illustrated in Figures 5, 6.
Following the acquisition of simultaneous EEG/fMRI data using
the P300 speller paradigm, post-hoc decoding of the encoded
letter could be performed from multiple features (described
below) on a single trial-block basis, which is required for near
real-time operation. Linear support vector machines (SVM)
could be used for decoding, with standard cross-validation,
complete separation of training and testing datasets (LaConte
et al., 2007) and in-built feature selection algorithms such
as recursive cluster elimination (RCE) (Deshpande et al.,
2010). First, the encoded letter from pre-processed (but not
deconvolved) fMRI data could be decoded using MVPA (which
also uses SVM coupled with in-built feature selection). This
accuracy is expected to be reasonably high, given the fact that
fMRI spatial patterns for the oddball task are robust, specific,
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FIGURE 4 | Schematic showing the prediction of fMRI from EEG. Arrow legend—red, EEG; magenta, fMRI; green, deconvolved fMRI; black, non-specific; dash,

surrogate data.

localized and discriminatory (Bledowski et al., 2004). Second,
deconvolved fMRI data at every voxel could be predicted by
EEG, as described in the previous paragraph, using statistically
significant HOPLS model parameters (i.e., a sparse HOPLS
model), with the non-significant ones set to zero. It could then
be convolved with voxel specific HRF previously estimated using
the Balloon model, resulting in estimated fMRI-like data, which
could be used in an MVPA (as above) for classification.

For comparison, classification could also be performed
using fMRI data estimated by a full HOPLS model (i.e.,
without the non-significant parameters set to zero), features

obtained from subspace representations of EEG and fMRI,
and standard EEG parameters such as ERP amplitude and
latency. We expect that MVPA of estimated and original fMRI
data would be the best performers in terms of classification
accuracy.

A separate EEG-only BCI run could be performed outside the
scanner, with real-time MVPA of estimated fMRI, to determine
its accuracy. Since the tensor decomposition has to be real-time
for the BCI to work, one could adopt the “sequential extraction
and update” version of the tensor decomposition (Zhou and
Cichocki, 2012).
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FIGURE 5 | Schematic for letter decoding from post-hoc analysis of simultaneous EEG/fMRI data. Arrow legend—red, EEG; magenta, fMRI; green,

deconvolved fMRI.

FIGURE 6 | Schematic for letter decoding from real-time analysis of EEG-only BCI run. Arrow legend—red, EEG.

Testing Generalizability
Three runs could be performed with the EEG-only BCI,
driven by HOPLS, MVPA and Balloon model parameters
learned with the EEG/fMRI run of the same subject, all
prior subjects and a random prior subject (Figure 6). These
runs would aid in determining the generalizability of the
proposed method across different subjects. In addition, post-
hoc analysis of the data obtained from the EEG-only BCI
could be performed involving K-fold cross validation and leave-
one-out cross validation in order to determine whether the
EEG to fMRI transformations learned from a set of subjects

can be generalized to another set of subject/s. Further, one
could investigate whether generalization (in terms of decoding
accuracy) is better when the transformations learned from
a given subject is applied to another subject with the same
gender and similar age compared to when used with a
subject of opposite gender and greater age difference. This
investigation could be performed by finding a regression model
between decoding accuracy and different gender/age pairings
used for building the transformations using simultaneous
EEG/fMRI and applying the transformations in an EEG-
only BCI.
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DISCUSSION

We proposed a novel approach for transferring the capabilities
of fMRI to EEG wherein cross-modal EEG-fMRI interactions are
exploited for the operation of a unimodal EEG system. Here we
discuss alternative suggestions to the methodologies described
earlier.

Alternative Tensor Decompositions
Tucker decomposition for tensors is the higher dimensional
analog of block diagonalization in matrix analysis, and produces
a factorization of the tensor into a tensor with a small core,
together with one change of basis matrix per mode of the tensor.
PARAFAC is a refined Tucker decomposition, where the core
tensor is concentrated on the super-diagonal. Here an advantage
is the reliance only on matrix computations, which are very
fast. Limitations occur in situations of high incoherency (high
concentration in a small proportion of tensor entries) and high
rank.

The more general Canonical Polyadic (CP) decomposition
expresses a tensor as a sum of outer products of vectors.
Computing the CP decomposition is NP Hard (Hillar and Lim,
2013), so it may be unsuitable for real-time operation of a BCI,
but it might represent a model which makes more sense for our
data.

Orthogonal tensor decomposition (ODECO) was recently
employed by Anandkumar et al. (2014) in the case of symmetric
tensors for latent variable learning. In their approach one
successively extracts highermoments from the data and estimates
“whitening information” for higher order symmetric tensors
from lower order decompositions. For symmetric tensors of
low rank, the robust tensor eigenvectors (Lim, 2005; Qi, 2005;
Kolda and Mayo, 2014) (stable points of the tensor power
algorithm) are orthogonal, and give the rank-one factors in the
symmetric CP decomposition. One could follow this approach
by analogy in the non-symmetric case. One could first estimate
the covariance matrix formed by forgetting the time components
in the EEG/fMRI data. Then, equipped with an estimate of the
subspace of frequency-location covariance, one could reduce the
computation of the full 4th order tensor by restricting to this
subspace. Further, one could attempt to identify a time span
for each event and extract a sub-tensor, thus reducing a large
tensor decomposition problem into a collection of smaller tensor
decomposition problems, and allowing one to distribute the
computation, increasing efficiency on multi-core machines.

Higher order singular value decomposition (HOSVD) (De
Lathauwer et al., 2000) can apply to the EEG/fMRI fusion tensor.
Analogous to finding left and right singular vectors of a matrix
associated to each singular value, for an m-mode tensor one
obtains an m-tuple of vectors associated to a singular value, such
that contraction with m-1 of them produces the singular value
times the missing vector. Unlike ODECO, HOSVD may be used
when the given tensor is not symmetric and the modes have
different dimensions. In addition, the singular tuples of a tensor
may be computed as critical points of a gradient on a product of
spheres (Friedland and Ottaviani, 2014).

One could perform each type of decomposition and choose
the one that has the best performance for the experiments, given
the constraints of operating a BCI in near real-time. In addition
to employing the existing algorithms for tensor decomposition,
we suggest the implementation of new homotopy methods for
tensor decomposition as in Hauenstein et al. (2014).

Alternative BCI Paradigms
Since the P300 speller paradigm is well-established (a PubMed
search on the P300 speller returned >130 papers), one could
reduce the variability of the experiment because we are
insisting that all but one of the components, i.e., tensor
decomposition for latent EEG-fMRI linkages, consist of well-
understood, and well-established procedures. For example, if one
used an untested experimental BCI paradigm while obtaining
simultaneous EEG/fMRI data and our latent variable discovery
were to fail, then one would not know if the failure was due
to the novel paradigm or the failure of the HOPLS or MSVD
algorithms. That said, the shortcomings of the P300 paradigm
for BCI applications need to be factored into the risks associated
with the proposal and hence alternative mitigating strategies are
proposed here. The first strategy involves the operation of the
P300 speller in auditory (instead of visual) mode or a mixed
auditory/visual mode (Vaughan et al., 2006) in order to mitigate
the eye gaze dependence of the P300 speller operated in the visual
mode (Brunner et al., 2010). The second strategy involves using
sensorimotor rhythms instead of the P300 to decode intentions
of movement by motor imagery tasks performed by the subjects
(Yuan and He, 2014).

Our approach could, in principle, be applied to open loop
BCI systems which employ event-related EEG paradigms. The
event-related nature of the EEG paradigms makes it easier for
them to be adapted to the fMRI context by redoing the timing of
events. BCIs based on EEG paradigms which are not amenable to
be adapted into the simultaneous EEG/fMRI environment may
not benefit from our proposed approach. As mentioned before,
fMRI-inspired EEG BCIs could also be designed for closed loop
BCI systems, but a more thorough specification of how that can
be achieved is beyond the scope of this report. Further, it is
nontrivial to extend the proposed approach to BCI systems which
use implicit, rather than volitional, control. Finally, BCI systems
based on neural processes that rely solely on cortical activation
within a depth of 4 cm can make use of functional near–infrared
spectroscopy (fNIRS) (Naseer and Hong, 2015), either alone or
in combination with EEG (Koo et al., 2015). The efficacy of such
systems with respect to fMRI-inspired EEG BCIs proposed is an
open question and must be investigated in the future.

In summary, the salient features of the proposed EEG-to-fMRI
mapping are as follows: (a) Bringing fMRI closer to EEG using
faster temporal sampling of fMRI and blind deconvolution of
the hemodynamic response for removing its smoothing effect
and obtaining underlying neuronal variables. This is essential to
achieve a good mapping between EEG and fMRI. (b) Orthogonal
tensor decomposition using the Tucker method: a data-driven
subspace decomposition of both EEG and deconvolved fMRI
is proposed to find the underlying latent variables in multiple
dimensions (such as time, frequency, trials, voxels/channels). (c)

Frontiers in Neuroscience | www.frontiersin.org 10 June 2017 | Volume 11 | Article 246

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Deshpande et al. BCI Using Latent EEG-fMRI Linkages

Multilinear subspace regression based on higher order partial
least squares (HOPLS): Given simultaneous EEG/fMRI data, the
transformation required to estimate latent variables underlying
deconvolved fMRI from latent variables underlying EEG data
could be obtained.

The salient features of the EEG-only BCI run driven by fMRI-
like features are as follows: (d) EEG-only experiment: Using
the same paradigm employed in the simultaneous EEG/fMRI
experiment, it is proposed to run an EEG-only experiment. (e)
The forward model: Latent variables underlying EEG data are
obtained and passed through the transformation estimated using
the simultaneous EEG/fMRI experiment to obtain deconvolved
fMRI (using Tucker method) and raw fMRI data (using the
Balloon model obtained during deconvolution) in real time. (f)
Decoding: During the operation of EEG-only BCI, brain activity
is decoded using fMRI-like features obtained from the forward
model with acquired EEG data as inputs. The efficacy of the entire
procedure is proposed to be tested using a P300-based speller

BCI (though alterative BCI paradigms could also be considered
to mitigate risks).

On a theoretical level, the proposed data-driven method
will likely discover latent linkages between electrical

and hemodynamic signatures of neural activity hitherto
unexplored using model-driven methods. On a practical
level, this is likely to serve as a template for a novel
multi-modal strategy wherein cross-modal EEG-fMRI
interactions are exploited for the operation of a unimodal
EEG system, leading to a new generation of EEG-based
BCIs.
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