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A longitudinal, randomized 
experimental pilot study 
to investigate the effects 
of airborne ultrasound on human 
mental health, cognition, and brain 
structure
L. Ascone1*, C. Kling3, J. Wieczorek3, C. Koch3 & S. Kühn1,2

Ultrasound-(US) emitting sources are highly present in modern human environments (e.g., movement 
sensors, electric transformers). US affecting humans or even posing a health hazard remains 
understudied. Hence, ultrasonic (22.4 kHz) vs. sham devices were installed in participants’ bedrooms, 
and active for 28 nights. Somatic and psychiatric symptoms, sound-sensitivity, sleep quality, 
executive function, and structural MRI were assessed pre-post. Somatization (possible nocebo) and 
phasic alertness increased significantly in sham, accuracy in a flexibility task decreased significantly 
in the verum condition (indicating hastier responses). Effects were not sustained after p-level 
adjustment. Exploratory voxel-based morphometry (VBM) revealed regional grey matter (rGMV) but 
no regional white matter volume changes in verum (relative to placebo). rGMV increased in bilateral 
cerebellum VIIb/Crus II and anterior cingulate (BA24). There were rGMV decreases in two bilateral 
frontal clusters: in the middle frontal gyri/opercular part of inferior frontal gyrus (BA46, 44), and the 
superior frontal gyri (BA4 ,6, 8). No brain-behavior-links were identified. Given the overall pattern of 
results, it is suggested that ultrasound may particularly induce regional gray matter decline in frontal 
areas, however with yet unclear behavioral consequences. Given the localization of clusters, candidate 
behavioral variables for follow-up investigation are complex motor control/coordination, stress 
regulation, speech processing, and inhibition tasks.
Trial registration: The trial was registered at NIH www. clini caltr ials. gov, trial identifier: NCT03459183, 
trial name: SonicBrain01, full trial protocol available here: https:// clini caltr ials. gov/ ct2/ show/ NCT03 
459183.

It is now known that we are—mostly without our conscious awareness—exposed to ultrasound in our modern, 
technologized environments each and every  day1. As a rule of thumb, the term ultrasound comprises frequencies 
above the upper human hearing threshold (∼20 kHz)—however depending upon the sound pressure level (SPL), 
even higher frequencies are audible (or rather otherwise ‘perceivable’). Hearing thresholds could be determined at 
frequencies above 20  kHz1–3 demonstrating an auditory perception at least in a subset of test persons. The experi-
ments showed the highly individual properties of this perception process. A recent study identified a multitude 
of ultrasonic devices in public areas, some of them emitting ultrasound with remarkably high SPLs (e.g., pest 
deterrents emitted ultrasound of up to 100 dB SPL at frequencies of about 20 kHz). Other identified sources in 
that study included a hand dryer, a door sensor, public voice alarm systems, or a cathode ray tube  television2.
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Adverse effects (e.g., fatigue, vertigo, heart rhythm disturbances, lack of concentration, anxiety, irritability, 
memory and learning problems) have been occasionally documented for ultrasonic noise (which contains a 
mixed spectrum of both audible, high-frequency noise and inaudible ultrasonic components), mainly in earlier 
studies with industrial workers, and field studies on individuals exposed to  ultrasound1,4. It has been found 
that noise that contains ultrasonic components, for instance in a study using an ultrasonic washer (including a 
frequency spectrum from 1.6 kHz to 80 kHz and A-weighted SPLs of 72 dB, 80 dB and 96 dB), is rated as par-
ticularly unpleasant and annoying, even at the lowest  levels5. In another study, using an animal repellent system 
as a source, no indications of significant adverse effects were  identified6. The system was audible to some of the 
test persons, and for those it was disturbing. For inaudible airborne ultrasound, there is a general lack of well-
controlled studies in order to estimate potential health hazards and investigate any effects driven by psychological 
variables, such as expectation or attitude (e.g., conviction about the dangerousness of ultrasonic frequencies). 
Small nocebo effects (on ear pain, dizziness, and tinnitus) have recently been reported in double-blind trial, 
exposing individuals to a 20 kHz inaudible tone vs. sham for 15 minutes. In this trial, ultrasound exposure per 
se did not evoke any increases in self-reported adverse symptoms, but apparently the expectation to be exposed 
drove the effects. This pattern of results was replicated in an individual with high self-reported ultrasound sen-
sitivity. The study nevertheless concluded that long-term effects may differ from this  result7. Controversially, 
there is also evidence for increased pleasantness through ultrasound. One study reported a musical preference 
for a piece with (vs. without) ultrasonic components (above 22 kHz), and the occipital alpha-EEG signal was 
enhanced alongside with increases of regional cerebral blood flow in the left thalamus, as measured using  PET8. 
In general, however, the investigation of brain effects of ultrasound is in its infancy. When it comes to ‘pure’ 
ultrasound, an fMRI study found no evidence of auditory cortex activation for airborne ultrasound below the 
hearing  threshold3, as already documented in an earlier MEG (magnetencephalography) that did not find audi-
tory evoked magnetic field changes in response to frequencies at or above 20  kHz9.

In sum, the evidence of effects ultrasound on the human brain or human health can be said to be under-
researched and ambiguous. Long-term exposure studies are lacking, and methodologically rigorous randomized-
controlled trials are urgently needed. It is well-known that our immediate environment and lifestyle can have 
a profound impact on the brain’s morphology, and ultrasound is now a common stimulus in our immediate 
environment. Hence, studying this can be said to be not only relevant, but necessary. The few existing trials used 
a laboratory setting with only brief stimulations, which does not allow for assessing more sustainable effects. 
For those reasons, the present study was set out as the first ever conducted randomized long-term exposure trial 
(1 month) of humans to airborne ultrasound vs. a sham condition, addressing the issue of significant effects on 
human (mental) health, cognition, and brain structure. Effects of inaudible US on human mental health (i.e., 
psychiatric symptoms in general, anxiety, depression, stress), somatic symptoms (i.e., sleep disturbances, somatic 
symptoms), cognition/attention (i.e., alertness, vigilance [sustained attention], cognitive flexibility, divided atten-
tion, attention shifting, inhibition), and brain structure have never been studied comprehensively before, which 
is the intention of the present study.

Methods
Recruitment and in- and exclusion criteria. The trial was pre-registered in the National Institute of 
Health trial registry (a full trial protocol is available here: https:// clini caltr ials. gov/ ct2/ show/ NCT03 459183, trial 
identifier: NCT03459183; ID: SonicBrain01; registration date: 08/03/2018). In all procedures, we adhered to the 
declaration of Helsinki, and the study was approved by a local ethics board prior to study onset (Ethik-Kom-
mission der Ärztekammer Hamburg; approval number: PV5570). Active recruitment and data collection took 
place between May 31, 2018 until December 15, 2019. We obtained informed consent from all study participants 
who were enrolled in the study. The study comprised a 2 (ultrasound verum vs. placebo [sham]) × 2 (pre-post 
1 month of sound exposure) repeated-measures randomized-controlled, single-blind (participants unaware of 
group assignment) design. Participants were assigned to the conditions based on list-wise randomization, with 
an allocation ratio of 50:50. The randomization list included a computed-generated random sequence which was 
implemented by the first author (L.A.), and restrained to 25 slots per condition (considering potential drop out). 
Included participants were sequentially assigned to the next available list position and unaware of their assign-
ment until the end of the trial. The experimenter was aware of the group assignment. Several advertisements in 
local newspapers were run, and flyers systematically spread across the city of Hamburg, searching for healthy 
test persons. Interested individuals who contacted the study team first received exhaustive study information 
and a link for an online screening to check in- and exclusion criteria. The screening took about 45 min, and 
included socio-demographic assessments, including sex, age (required to be between 18 and 45 years), educa-
tion, partnership status, children, regular medication intake, and variables addressing housing conditions (incl. 
size of the bedroom, number of windows and doors in the bedroom, city district, and closeness to main roads). 
Children sleeping in the same bedroom was an exclusion criterion for safety reasons. In addition, we advised 
pet owners to keep their animals outside the room for the time of the exposure. Main exclusion criteria were 
counter-indications for magnetic resonance imaging (MRI) (i.e., cochlear implants, non-removable metal on/
in the body, or tinnitus), chronic inflammatory, autoimmune, or other severe illnesses (e.g., cancer), as well as 
central-nervous system diseases. Similarly, indicating any anomalies concerning hearing (e.g., deafness, past ear 
surgery, chronic inflammation of the ear canal, chronic sinusitis, anatomic anomalies) lead to exclusion. Central 
nervous medication intake or participation in a medical trial also led to exclusion. Further health-relevant vari-
ables assessed were smoking and alcohol consumption. Mental illness was assessed using standardized screen-
ing tools: the Mini International Neuropsychiatry Interview (MINI)10 for axis I disorders, and the Structured 
Clinical Interview for DSM-IV-II (SCID-II)11 for axis II (personality) disorders. Only the screening questions 
of the respective interviews were included in the online survey. Any positive screening was followed up on in a 
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subsequent telephone interview, which, depending upon the amount of positively endorsed clinical screening 
questions, could take between 20 and 60 min. Telephone contacts also included providing further information 
on the study and answering the participants’ questions. Medical or psychological student research assistants 
who were trained and supervised by a postdoc level clinical psychologist conducted all telephone screenings. 
Suspicion of a potential mental disorder led to exclusion from the study.

A minimum sample size of N ≈ 40 was determined based on previous experience of the principal investiga-
tor (S. K.) who is an expert in conducting research of neuroplasticity induced by environmental changes that 
were observed in comparable samples after experimental interventions between 4 and 8 weeks. This constituted 
a minimum compromise based on available time and resources.

Study procedure. If all in- and exclusion criteria were fulfilled, appointments for the pre-test, on-site 
sound source installation, and post-test were made. Both assessments before and after the exposure took place at 
the neuroplasticity research laboratory unit at University Medical Center Hamburg-Eppendorf and were divided 
into two blocks. A first block included intermixed self-reports (self-reports of somatic and mental illness symp-
toms, sleep quality self-reports, personality tests) and cognitive tasks (e.g., alertness, inhibition, task switching, 
working memory, sustained attention) (2–2.5 h in total). A second block included a MRT session (1–1.5 h), 
where also a spatial n-back task was performed in the scanner. Closely after the pre-test assessment (one day 
to maximally one week after initial assessment), participants were randomly assigned to one of the ultrasound-
verum vs. -sham groups, and the on-site sound source installation took place. For the entire process, we followed 
a standardization of procedure protocol (see Supplementary Appendix I for details). The ultrasound sources 
were commercially available devices, which were modified for the purpose of the experiment, and which emit-
ted a frequency of about 24.2 kHz. Due to the lack of a reliable ultrasound level meter, the SPL was not explicitly 
measured in-situ, but the sources were adjusted in preceding laboratory tests to a maximum emitted sound 
pressure level. The sources were configured so that they emitted sound steadily for eight hours during the par-
ticipant’s self-reported, habitual sleep time (refer to Supplementary Appendix I for details). They were installed 
close to the bed on loudspeaker-stands that were adjusted to match the height of the head-position during sleep. 
The sources were chosen for general and practical reasons. Animal repellent systems are quite common and rep-
resent a typical ultrasound source in public spaces. They are easy to handle and could be adapted to the required 
experimental settings with simple modifications of the circuitry. The sham sources looked and operated identical 
to the verum sources but did not emit any sound. For a detailed description of the design, technical details, and 
initial calibration of the US sources and for descriptive data on the on-site constellation details and exposure lev-
els please refer to Supplementary Appendix I. After 28 days of exposure, the post-test, with the same measures, 
taken in the same order as at pre-test, took place.

Measures. Self‑reports. All self-reports were assessed always in the same order for all participants at all 
assessment points (baseline, post-test) and filled out by the participants on a computer.

The Brief Symptom Inventory (BSI)12 was used to measure global severity of psychiatric symptoms. It contains 
53 items, asking for how strongly respondents were affected (0 = not at all, 4 = extremely) by a range of different 
problems, which can be categorized into nine symptom group subscales. We separately analyzed the somatiza-
tion, depression, and anxiety subscales. The BSI has been shown to have sufficient to excellent reliability with 
Cronbach’s αs of 0.90 for the global severity index, 0.63 for somatic symptoms, 0.62 for anxiety, and 0.72 for 
depression. Participants were instructed to rate symptoms for the past two weeks.

The Perceived Stress Scale (PSS) measures the perceived stressfulness of daily life situations. Fourteen items 
address how often the respondents felt stressed (vs. in control of things) on a 5-point frequency scale ranging 
from 0 (= never) to 4 (= very often). Reliabilities (Cronbach’s α) have been reported as good (0.84–0.86)13. Again, 
participants answered the questions referring to the last two weeks.

In order to assess daytime sleepiness and fatigue, the Epworth Sleepiness Scale (ESS) was  used14. It asks the 
participant to rate the perceived likelihood of dozing in eight typical daytime activities (e.g., sitting quietly after 
a lunch without alcohol; 0 = would never doze, 1 = slight chance of dozing, 2 = moderate chance of dozing, 3 = high 
chance of dozing). The scale refers to daily life in recent time. Good reliability (Cronbach’s α of 0.88) has been 
 reported15.

Overall quality or disturbances of sleep was assessed using the Pittsburgh Sleep Quality Inventory (PSQI)16. 
Seven components, based on the participants’ replies to 19 questions, are evaluated: subjective sleep quality, sleep 
latency, sleep duration, habitual sleep efficiency, sleep disturbances, use of sleeping medication, and daytime 
dysfunction. The scores can range between 0 and 21, as each component is rated from 0 to 3, with lower ratings 
indicating poorer sleep quality. The components are usually integrated into a single global sleep quality score. 
The PSQI has been shown to sensitively differentiate between good and poor  sleepers16. Reports in our study 
referred to the last 2 weeks.

Particularly neuroticism and introversion have been shown to be related to higher sensitivity, perceived 
loudness, and annoyance induced by high-frequency noise (e.g.,17). Hence, in order to make sure that there were 
no differences in this variable between the groups at baseline, a 30-item version of the five factor personality 
inventory (NEO-FFI-3)18 was assessed. This questionnaire assesses neuroticism (characterized by ‘moodiness’ 
and frequent experience of aversive as emotions), extraversion (enjoying human interactions, enthusiasm and 
zest, talkativeness, assertiveness, and gregariousness), conscientiousness (orderliness, self-discipline, dutiful-
ness, competence, achievement striving, and deliberation), openness (intellectual curiosity, aesthetic sensitivity, 
attentiveness to feelings, preference for variety) and agreeableness (warmth, kindness and empathy). All items are 
rated on a 5-point Likert-scale, ranging from 0 = strongly disagree to 4 = strongly agree. Both factorial validity and 
good internal consistencies (Cronbach’s α) have been reported for all subscales, ranging between 0.78 and 0.8618.
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In addition, sound sensitivity was assessed. Normal (hearing sound) sensitivity was quantified using the 
Noise Sensitivity Questionnaire which has been reported to have excellent reliability (.90),19. The questionnaire 
comprises 35 items rated on a 4-point Likert scale (strongly agree = 3, slightly agree = 2, slightly disagree = 1, and 
strongly disagree = 0). Sensitivity to high frequency sound in particular was assessed using the SISUS-Q (sensi-
tivity to infra- and ultrasound questionnaire) which is a brief and economic scale consisting of four items, rated 
on an 11-point Likert (0 = totally disagree, 10 = totally agree) that assess high-frequency-sensitivity with good 
reliability (Cronbach’s alpha = .82),20.

Cognition. We used the computer-based Tests of Attentional Performance (TAP)21 to assess a set of cognitive 
performance indicators in several domains, namely alertness, sustained attention, flexibility, divided attention, 
incompatibility (Simon task), covert shift of attention, and inhibition (GoNogo). The choice to investigate execu-
tive functioning was made to reduce the complexity of reported adverse cognitive effects (e.g., reduced concen-
tration, impaired work performance, mnestic and learning problems) and break it down to underlying basic 
functions. For each test, different parameters are of relevance (see Supplementary Appendix II).

MRI scanning parameters. Brain scans were performed with a 3 T Siemens Magnetom Prisma (Siemens Medi-
cal Systems, Erlangen, Germany) using a 64-channel head coil. A 3D MPRAGE was run with 256 slices per slab, 
FOV = 240 mm, TR = 2500 ms, TE = 2.12 ms, TI = 1100 ms, voxel size = 0.8 mm × 0.8 mm × 0.9 mm.

Statistical analyses. Voxel‑based morphometry. We performed our pre-processing and whole brain 
analyses using the toolboxes SPM12 (v7487), (https:// www. fil. ion. ucl. ac. uk/ spm/ softw are/ spm12) and CAT12 
(Structural Brain Mapping Group, University of Jena—exact version: CAT12.6-rc1 [r1429] from 2019-02-08), 
(http:// www. neuro. uni- jena. de/ cat/ index. html). We run the toolboxes with Matlab R2017a (MathWorks Inc., 
Natick, MA). Pre-processing steps were conducted following the default CAT12 segmentation routine for lon-
gitudinal data (http:// dbm. neuro. uni- jena. de/ cat12/ CAT12- Manual. pdf) including registering the segmented 
images to the MNI space using the high-dimensional Dartel  approach22.

Behavioral data analysis. A series of classical test theory repeated-measures ANOVAs were carried out in SPSS 
25 (IBM Corp. 2017) for all variables of interest. Post-hoc exploratory paired t-tests were applied to identify 
within group changes underlying the interaction. To adjust for multiple testing, we used Bonferroni correction. 
Effect size η2

partial was interpreted as η2
partial > 0.01 small, > 0.06 medium, > 0.14 large effect.

Structural brain data analysis. We performed a whole-brain voxel-based morphometric (VBM) analysis with 
no prior assumptions concerning affected regions of interest (ROIs), as no pre-assumptions could be made due 
to the lack of research on structural brain effects of long-term US exposure. The analyses were run with the 
preprocessed, segmented grey matter images using SPM12, examining both global increases and decreases in 
regional grey matter volumes (rGMV) in the US verum condition, while controlling for, and assuming stability 
(no change) in the US placebo condition. The following contrasts were computed: with verum [pre, post], pla-
cebo [pre, post] relative increase in US verum vs. placebo; contrast: − 1 3 − 1 − 1; relative decrease in US verum 
vs. placebo; contrast: 1 − 3 1 1). The same analytical approach was repeated to identify any regional white matter 
volume changes in verum relative to placebo.

In addition, we computed the contrast 0 0 − 1 1 (increases from pre-to-post within the sham condition) and 
0 0 1 − 1 (decreases from pre-to-post within the sham condition) to investigate any changes over time in the 
non-exposed group. Results for the latter two contrasts can be found in detail in the supplementary document 
(Supplementary Appendix III) but will also be briefly reported in this paper. A flexible factorial design was cho-
sen, establishing a model with group and time factor and their interaction. An absolute threshold masking with 
a value of 0.01 was set. The resulting maps were thresholded with p < 0.001. The statistical cluster extent threshold 
was applied to correct for multiple comparisons. The latter was combined with a non-isotropic smoothness cor-
rection based on permutation as proposed by Hayasaka and  Nichols23 (as implemented in the CAT12 toolbox).

Association of structural with behavioral changes. In a last step, we extracted mean rGMV volumetric data from 
any identified significant clusters  from the VBM analyses using the REX (https:// www. nitrc. org/ proje cts/ rex) 
toolbox [release alpha0.5; Neuro Imaging Tools and Resources Collaboratory]. The identified significant clusters 
(spmT-extent-thresholded-cluster images) from the VBM were used as masks to extract the volumetric informa-
tion within each of the ROIs, separately for baseline and post-exposure assessments. Afterwards we correlated 
the changes in volumetric rGMV data for each identified ROI with changes in behavioral data of variables that 
exhibited a significant change within verum. For variables differing from normality (skew and/ or kurtosis > 2 
or < − 2), and/or variables measured at a ranked, rather than interval level (e.g., number of errors), non-paramet-
ric correlations were computed (Spearman), as these have additionally been shown to be more robust in case of 
 outliers24. For the correlations, we used Cohen’s25 rule of thumb to determine effect size: r ≥ 0.10 = small effect, 
r ≥ 0.30 medium effect and r ≥ 0.50 = large effect.

Ethics and participant consent. The study was approved by a local ethics consortium prior to study 
onset. The study adhered to the declaration of Helsinki. All participants consented to participate in the study.

https://www.fil.ion.ucl.ac.uk/spm/software/spm12
http://www.neuro.uni-jena.de/cat/index.html
http://dbm.neuro.uni-jena.de/cat12/CAT12-Manual.pdf
https://www.nitrc.org/projects/rex
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Results
Sample. In total, 34 participants fully took part in the study  including both behavioral and neuroimag-
ing data, hence 34 pre-post datasets were available for structural brain or brain-behavior correlation analy-
ses (nverum = 20, nplacebo = 14). One participant (ultrasound verum) even after encouragement by the study team 
refused to again go into the scanner after an initial strong self-reported aversive (fear) response. This participant 

Table 1.  Descriptive sample data and between-group differences for socio-demographic variables.

Variable/descriptives
Ultrasound—verum (n 
= 21) Ultrasound—placebo (n = 14) Inferential statistics

Age: mean (SD) 27.48 (5.53) 25.57 (5.26) t(33) = 1.02, p = 0.316

Sex: percentage male/female (no. male/no. 
female) 43/57 (9/12) 50/50 (7/7) X2 (1, N = 35) = 0.17, 

p = 0.678

Years of education 16.83 (3.07) 15.71 (3.58) t(33) = 0.99, p = 0.330

Children: percentage yes/no (no. yes/no) 5/95 (1/20) 7/93 (1/13) X2(1, N = 35) = 0.09, 
p = 0.766

Nationality: percentage German/other (no. 
German/other) 90/10 (19/2) 86/14 (12/2) X2(1, N = 35) = 0.19, 

p = 0.664

Regular medication: percentage yes/no (no. 
yes/no) 5/95 (1/20) 0/100 (0/14) X2(1, N = 35) = 0.69, 

p = 0.407

Table 2.  Results (group × time interaction effects) of the repeated measures ANOVAs for all behavioral 
variables. Alpha level = 0.05; Bonferroni-adjusted = 0.05/21 = 0.0024. After application of the corrected p-level 
none of the significant effects (reported here with unadjusted level, highlighted in bold in Table) remain. The 
likelihood of by chance detecting a significant result is 5%, with 21 tests this equals 1.05 tests that would be 
detected as significant by pure chance.

Dependent variables Statistics for the interaction effect

Sensitivity

High frequency sensitivity F(1,33) = 0.18, p = 0.673, η2
p = 0.005

Normal sound sensitivity F(1,33) = 0.19, p = 0.732, η2
p = 0.004

Symptoms and sleep

BSI total F(1,32) = 2.91, p = 0.098, η2
p = 0.083

BSI somatization F(1,32) = 4.93, p = 0.034, η2
p = 0.133

BSI depressive symptoms F(1,32) = 0.62, p = 0.439, η2
p = 0.019

BSI anxiety symptoms F(1,32) = 2.18, p = 0.150, η2
p = 0.064

ESS sleepiness F(1,33) = 1.43, p = 0.240, η2
p = 0.042

PSQI—sleep quality (total) F(1,30) = 0.08, p = 0.784, η2
p = 0.003

PSS perceived stress F(1,33) = 3.36, p = 0.076, η2
p = 0.092

Alertness

Median RTs tonic arousal F(1,33) = 1.72, p = 0.199, η2
p = 0.049

Median RTs phasic arousal F(1,33) = 0.71, p = 0.405, η2
p = 0.021

Phasic alertness index F(1,33) = 9.01, p = 0.005, η2
p = 0.214

Anticipations after warn tone (low impulse control) F(1,33) = 0.51, p = 0.480, η2
p = 0.015

Sustained attention (WM)

Omissions (total) F(1,33) = 0.90, p = 0.349, η2
p = 0.027

Flexibility

Speed-accuracy index F(1,33) = 7.28, p = 0.011, η2
p = 0.181

Total performance index F(1,33) = 1.61, p = 0.214, η2
p = 0.046

Divided attention

Omissions (total)
Incompatibility F(1,33) = 0.33, p = 0.569, η2

p = 0.010

Incompatibility effect (visual field × hand) F(1,33) = 0.99, p = 0.328, η2
p = 0.029

Errors incompatible F(1,33) = 0.06, p = 0.816, η2
p = 0.002

Covert shift of attention

Validity × side (re-orientation of attention) F(1,33) = 0.12, p = 0.736, η2
p = 0.003

GoNoGo (inhibition)

Errors (total) F(1,32) = 0.06, p = 0.802, η2
p = 0.002
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was not excluded from the study as a whole, as her partner also took part in the study (i.e., simultaneous sound 
exposure as a couple). Hence, for behavioral analyses, n = 21 cases were available in ultrasound verum. On top 
of these participants, there were 4 dropouts (all during pretest). Reasons for dropout were claustrophobia in the 
scanner (3 cases), and mental disorder (1 case) that was revealed during pre-test. Socio-demographic details for 
each group can be found in Table 1. There were no differences in any of the demographic variables across the 
groups. There were no adverse events leading to premature study termination. In addition, differences between 
the groups in personality and sensitivity (high frequency, hearing sound) were tested to exclude confounders. 
Descriptive data can be found in Supplementary Appendix III. No differences between any of the personality 
dimensions (openness, neuroticism, conscientiousness, extraversion/ introversion, agreeableness) or sensitivity 
could be identified (all p > 0.30).

Behavioral results. For descriptive pre-post data please refer to Supplementary Appendix III. Given that 
21 hypothesis tests were carried out, the rate of positive results  (H1) identified based on mere chance equals: 
21 × 0.05 = 1.05. The identification of more than one significant result may indicate that one of these findings 
is genuine. Three significant interactions were discovered (see Table 2): a medium-sized effect for somatiza‑
tion (η2

partial = 0.133, p = 0.037; attributable to significant increases in placebo [paired t-tests within groups]: 
t (13)  = 2.38, p = 0.034, d = 0.63; verum: t (19)  = 0.53, p = 0.603), a large effect for the phasic arousal index 
(η2

partial = 0.207, p = 0.007; significant increase in placebo: t (13) = 4.04, p = 0.001, d = 1.08; verum: t (20) = 1.21, 
p = 0.241) and a large effect for the speed‑accuracy trade‑off (η2

partial = 0.204, p = 0.007; significant decrease in 
verum [shift towards speed strategy]: t (20) = 2.15, p = 0.044, d = 0.47; placebo: t (13) = 1.97, p = 0.071). Bonfer-
roni-correction sets the significance needed to reject the  H0 to p < 0.0024. None of the identified results remained 
significant after applying the correction.

Brain structure results. Increases and decreases in ultrasound verum relative to placebo in regional grey 
matter volume. Complete structural pre- and post-test data was available for n = 20 participants in verum, and 
n = 14 participants in placebo. We found significant clusters for both directions (increase and decrease model 
for ultrasound verum, clusters exceeding a threshold of k > 97). All significant clusters are depicted at their peak 
intensity coordinate in Fig. 1. Concerning increases from pre-to-post in the ultrasound verum condition, two 
clusters were identified: in the left anterior cingulum (ACC: − 9, 30, 39; t = 6.09, k = 320), and right cerebellum 
(region VIIb/Crus II; 41, − 57, − 45; t = 4.43, k = 651).

Decreases were identified in four clusters: bilateral middle frontal gyrus, including parts of the operculum 
of inferior frontal gyrus (right MFG/OpIFG: 30, 21, 21; t = 6.28, k = 858; left MFG/OpIFG: − 33, 24, 24; t = 6.07, 
k = 556), and bilateral superior frontal gyrus (left SFG: − 17, − 11, 78; t = 4.30, k = 340; right SFG: 21, 17, 42; 
t = 4.30, k = 256).

Increases and decreases in ultrasound verum relative to placebo in regional white matter volume. There were no 
significant changes in rWMV in the verum condition relative to placebo exceeding the cluster extent threshold 
(k > 130).

Changes within ultrasound placebo. There were no absolute decreases in rGMV within the placebo group, but 
there were two clusters of increase identified: one cluster roughly corresponding to the right entorhinal area 
(right Ent; t = 4.56, k = 192; 12, 2, − 41) and another cluster  including parts of the left ventral diencephalon/
thalamus (left ventral DC/thalamus proper; t = 4.44, k = 127; − 17, − 14, 5). For a figure, please see Supplementary 
Appendix III.

Correlations between behavioral and regional grey matter volume changes. Change scores of 
rGMV (post minus pre) within the six identified clusters were correlated with change scores only of variables 
that exhibited a significant change in verum in the behavioral analyses. This only applied to the speed-accuracy 
trade-off index, which significantly declined in verum. No significant brain-behavior-correlations were identi-
fied between the change in speed-accuracy trade-off and any of the clusters (all p > 0.05).

For US placebo, again change scores of rGMV (post minus pre) within the two identified ROIs were corre-
lated with change scores of variables that exhibited a significant change in placebo: somatization and the phasic 
arousal index. There were no significant associations, except for a trend-level, medium-sized correlation between 
changes within left ventral DC/thalamus proper and somatization (r = − 0.487, p = 0.078); although the data was 
heterogeneous, there was a tendency of smaller changes in this cluster being associated with higher levels of 
somatization at post-test. A plot of this association can be found in Supplementary Appendix IV.

Discussion
The present study was dedicated to the question of whether airborne ultrasound above the human hearing range 
(20 kHz) affects human behavior and brain structure, which is particularly of interest given ultrasonic waves 
now being omnipresent in manmade environments. We reported here on the first ever conducted randomized-
controlled experimental, longitudinal trial that involved an assessment of both behavioral and neuroimaging 
data. Key findings are summarized in the following paragraphs.

Effects of ultrasound on human behavior. Our results suggest that there is no consistent evidence for 
alterations through ultrasound in any of the assessed behavioral domains (i.e., sound sensitivity, personality, 
self-reported psychiatric symptoms, quality of sleep, cognitive performance). There were isolated effects, with 
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increases in self-reported symptoms in the sham condition, possibly hinting towards a nocebo effect. The latter 
notion adds up to a recent study that identified somatic nocebo-responses in sham-exposure to  ultrasound7. In 
addition, there were isolated effects on cognitive performance variables: the phasic arousal index improved in pla-
cebo, but remained unchanged in verum, and there was a shift towards a speed strategy (vs. accuracy) in verum. 
This extends the existing literature insofar, as it goes beyond the evidence of somatic effects evoked by ultrasound 
(e.g., nausea, headache, fatigue,  tinnitus1,4), by suggesting that ultrasound may have an effect on cognitive flex-
ibility (decreased accuracy). However, in sum the data is inconclusive, and needs be interpreted with caution, as 
effects are not statistically significant after alpha-level-correction. Further experimental replication is needed.

Figure 1.  Graphical depiction of identified significant clusters in the VBM analysis of increases in rGMV 
(in red): in the left anterior cingulate cortex (ACC)/medial segment of superior frontal gyrus (MSFG) and in 
the right cerebellum VIIb/Crus II/Crus II, as well as decreases in rGMV (in blue): in the left and right middle 
frontal gyrus (MFG) adjacent to the opercular part of the inferior frontal gyrus (OpIFG), and in the left and 
right superior frontal gyrus (SFG), in ultrasound verum, relative to placebo.
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Effects of ultrasound on brain structure and correlations with behavior. Exploratory structural 
grey matter analyses (Voxel-Based Morphometry) revealed several substantial clusters that exhibited both in- 
and decreases in regional grey matter volume pre-to-post US exposure. Areas of relative increases included 
the left anterior cingulum (ACC, BA24), and right cerebellum VIIb/Crus II. In VBM-based studies, the dorsal 
region of ACC has been found to show diminished levels of rGMV in individuals with trauma  experience26. 
Functionally, the involvement of the ACC in stress regulation has also been confirmed in several  studies27. Spec-
ulatively, the increase in that area could indicate an increase in stress regulation in response to ultrasound expo-
sure, but this needs further study. Area VIIb/Crus II of the cerebellum has recently been shown to be involved in 
demanding cognitive tasks, such as difficult n-back working memory, but also in language-related tasks, which 
were found to be right-lateralized28.

Furthermore, there were substantial bilateral frontal clusters that exhibited decreases from pre-to-post within 
the verum (relative to the sham) condition, involving the following areas: bilateral middle frontal gyrus and 
opercular part of the inferior frontal gyrus (MFG/OpIFG [BA 46, 44]). These areas are critically involved in syl-
lable information coding (bilateral OpIFG—BA44) and semantic tasks, as well as motor aspects of speech (left 
OpIFG—BA44) and sustained attention as well as self-control/ inhibition (bilateral MFG—BA46). Left [BA 4, 6] 
and right SFG [BA 6, 8] are known to be particularly related to motor control, but also down-regulation of arousal 
(right SFG), as shown by a lesion-based  study29. However, in the present study we were unable to relate these 
structural changes to behavioral changes that were observed in verum (i.e., speed-accuracy trade-off decrease).

Concerning white matter, no significant changes in verum relative to placebo could be identified. Given the 
overall pattern of results, this suggests that ultrasound may particularly induce grey matter decline in frontal 
areas. In addition ultrasound may not induce changes in anatomical connectivity, which however does not 
preclude other types of connectivity changes (i.e., functional or effective). This should be followed up in resting 
state and functional brain analyses.

Effects within the Sham condition (signs of nocebo effects). Of note, exploratory correlation analy-
ses of identified changes within the sham group revealed that changes in somatization (mainly increases) were 
associated with stronger increases in a cluster including parts of the left ventral diencephalon/thalamus proper. 
These regions are involved in somatosensory processing and have been shown among other regions to be asso-
ciated with the unconscious conditioned nocebo  response30. However, caution is warranted in interpreting the 
effects within the sham group, since a control group (such as waitlist control) was missing. Therefore, the rGMV 
change analyses are prone to reflect changes due to changes in the MRI hardware over time and other confound-
ers. Nevertheless, the identified effects in sham could hypothetically be attributed to maintained vigilance in 
expecting detecting a signal, but in the absence of any sensory input from the source, while using bodily states as 
a means to detect any indications of adverse effects through the source. In the verum group, there was feedback 
(although very likely only unconsciously processed) and there was a distinct pattern of neurological change, 
which is why bodily reactions might not have been in the focus of attention.

Limitations. Our study sample was young and healthy, and not selected to be particularly sensitive to ultra-
sound. Follow-up investigations will need to recruit a broader, more balanced age-range and include individu-
als with self-reported high-sensitivity to systematically control for different possible moderators. In addition, 
expectations of effects need to be addressed more thoroughly, as there is evidence for nocebo responses from a 
prior  study7. Of interest, nocebo responses as observed in our ultrasound condition can be prevented by psycho-
education31, hence assessing expectation bias and a waitlist (natural) control group would be mandatory for 
future works. Furthermore, as the sample size of the control group was small, robustness of findings are not 
entirely assured especially for this group, and generally warrant replication. Nevertheless, the present study sig-
nificantly contributes to narrowing down target variables, methods, and design requirements for future trials by 
having applied a manualized and controlled approach.

Conclusion. Ultrasound exposure is associated with decreases in regional grey matter volume in brain areas 
involved in executive functioning, attention, stress regulation and inhibition (bilateral MFG/OpIFG, bilateral 
SFG). Increases were observed in areas that encode complex motor and working memory functions (bilateral 
cerebellum VIIb/Crus II), and stress regulation (left ACC). However, no brain-behavior correlations concerning 
ultrasound exposure could be established in this study, which is why the consequences of the identified brain 
alterations are speculative.

The isolated significant effects identified in our study—increases in somatization related to ultrasound-sham 
exposure (possible nocebo effect), increase of phasic alertness in sham (possible indication of heightened aware-
ness due to expectation but lack of sensory input from the sham source) and cognitive flexibility with a shift 
towards a speed strategy (vs. accuracy) in verum (possible indication of increased hastiness as a result of ultra-
sound exposure)—need to be replicated.

We suggest conducting further ultrasound exposure trials and recommend including additional tasks in order 
to establish brain-behavior correlates, including complex motor control and coordination, demanding n-back 
working memory, stress regulation, speech processing, and impulse control/ inhibition (e.g., stop-signal) tasks.

Data availability
We hereby declare that our data, code and syntaxes (including a documentation of all analyses that were under-
taken) are available upon request.
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