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Abstract. Despite recent advances in multidisciplinary 
treatments of esophageal squamous cell carcinoma (ESCC), 
patients frequently suffer from distant metastasis after surgery. 
For numerous types of cancer, circulating tumor cells (CTCs) 
are considered predictors of distant metastasis, therapeutic 
response and prognosis. However, as more markers of cytopa‑
thological heterogeneity are discovered, the overall detection 
process for the expression of these markers in CTCs becomes 
increasingly complex and time consuming. In the present 
study, the use of a convolutional neural network (CNN)‑based 
artificial intelligence (AI) for CTC detection was assessed 
using KYSE ESCC cell lines and blood samples from patients 
with ESCC. The AI algorithm distinguished KYSE cells from 
peripheral blood‑derived mononuclear cells (PBMCs) from 
healthy volunteers, accompanied with epithelial cell adhesion 
molecule (EpCAM) and nuclear DAPI staining, with an accu‑
racy of >99.8% when the AI was trained on the same KYSE 
cell line. In addition, AI trained on KYSE520 distinguished 
KYSE30 from PBMCs with an accuracy of 99.8%, despite 
the marked differences in EpCAM expression between the 
two KYSE cell lines. The average accuracy of distinguishing 
KYSE cells from PBMCs for the AI and four researchers was 
100 and 91.8%, respectively (P=0.011). The average time to 
complete cell classification for 100 images by the AI and 
researchers was 0.74 and 630.4 sec, respectively (P=0.012). 
The average number of EpCAM‑positive/DAPI‑positive cells 

detected in blood samples by the AI was 44.5 over 10 patients 
with ESCC and 2.4 over 5 healthy volunteers (P=0.019). These 
results indicated that the CNN‑based image processing algo‑
rithm for CTC detection provides a higher accuracy and shorter 
analysis time compared to humans, suggesting its applicability 
for clinical use in patients with ESCC. Moreover, the finding 
that AI accurately identified even EpCAM‑negative KYSEs 
suggested that the AI algorithm may distinguish CTCs based 
on as yet unknown features, independent of known marker 
expression.

Introduction

Esophageal squamous cell carcinoma (ESCC) remains a 
significant global challenge, having the 6th highest mortality 
worldwide and killing over 500,000 people in 2020  (1). 
Despite recent progress in multidisciplinary treatments against 
ESCC, many patients die from distant metastasis or recurrence 
after surgery (2). Circulating tumor cells (CTCs) are defined 
as cancer cells that depart from the primary tumor to enter 
the bloodstream (3) and are considered predictors of distant 
metastasis and cancer recurrence (4,5). In esophageal cancer, 
researchers associate CTC detection with advanced disease 
stage, poor therapeutic response, and prognosis (6,7). 

Most CTC separation techniques are two‑step: firstly, 
cell enrichment of the sample and secondly, CTC detection. 
Enrichment protocols for CTCs generally use cell surface 
markers or morphological features enabling CTC isolation via 
immunological assays, microfluidic devices, or density gradient 
centrifugation (6‑8). Although subsequent detection methods 
include flow cytometry, biomechanical discrimination, and 
polymerase chain reaction  (7,9), with marker‑stained cell 
manual detection by microscope the most common method. 
Increased attention is being paid to these approaches thanks 
to recent reports exploring cancer cell heterogeneity in terms 
of malignant potential and stem cell properties. Accordingly, 
identifying heterogeneity and malignant subsets in CTCs 
is a priority, with the usefulness of various surface markers 
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reported  (4,10‑13). However, the use of multiple markers 
makes CTC detection more complex and time‑consuming. 
Therefore, an accurate, easy‑to‑use, and rapid detection 
method is required for clinical application.

Artificial intelligence (AI) is the simulation of human 
intelligence processes demonstrated by a computer program. 
AI can extract important information from large amounts of 
diverse data, classifying and summarizing common patterns. 
Potentially alleviating a significant quantity of human work‑
load  (14,15). Recently, attention has focused on a method 
called deep learning, which uses multiple layers of artificial 
neural networks and is modeled after the human cerebral 
cortex (16). Object recognition is a major application of deep 
learning, with convolutional neural networks (CNN) applied 
facilitate image diagnosis (17).

The aim of this study was to establish an accurate and rapid 
image processing algorithm based on CNN for CTC detection 
in patients with ESCC. We first investigated the AI algorithm's 
accuracy in distinguishing ESCC cell lines from peripheral 
blood mononuclear cells (PBMCs), then used the AI algorithm 
to detect CTCs in peripheral blood samples obtained from 
ESCC patients. 

Materials and methods

Patients' eligibility and sampling. This study was approved by 
the ethics review board of the University of Toyama Hospital 
(R2021042) and written informed consent was obtained from 
all ESCC participants. Peripheral blood was collected from 
10 newly diagnosed ESCC patients and 5 healthy volunteers. 
Patient samples were collected between January 2022 and 
October 2022. The eligibility criteria for patients were i) a 
confirmed diagnosis of ESCC, ii) undergoing treatment at the 
University of Toyama Hospital, and iii) no ESCC treatment 
prior to enrollment. All cases were diagnosed according to 
the 7th edition of the Union for International Cancer Control 
system (18).

For the four surgical patients, peripheral blood samples 
were extracted from each patient during general anesthesia via 
the arterial pressure line prior to the operation. From the six 
patients who underwent chemotherapy, blood samples were 
extracted via a median cubital vein. Peripheral blood samples 
were obtained from each healthy volunteer via a median 
cubital vein. Blood samples were collected in 3 ml ethylenedi‑
aminetetraacetic acid (EDTA) tubes. Samples were processed 
within 3 h of the collection as described below.

Cell lines and cell culture. Human ESCC cell lines (KYSE30, 
KYSE140, KYSE520, and KYSE1440) were purchased from 
the Japanese Collection of Research Bioresources (JCRB, 
Tokyo, Japan). These cell lines are authenticated using STR 
profiling in the JCRB. Cells were cultured in Dulbecco's 
Modified Eagle (DMEM) medium (Nacalai tesque, Kyoto, 
Japan), supplemented with 1% penicillin‑streptomycin and 
10% heat‑inactivated fetal calf serum (FCS). The culture 
was grown in cell culture dishes in a humidified atmosphere 
containing 5% CO2 at 37˚C. Cells were washed with phos‑
phate‑buffered saline without calcium and magnesium (PBS, 
FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan) 
and harvested with Trypsin‑EDTA (0.25%) (ThermoFisher, 

Massachusetts, USA). The harvested cells were processed 
immediately for imaging as described below.

Sample collection and processing. We collected 2.5 ml of 
peripheral blood samples from ESCC patients and healthy 
volunteers in EDTA tubes. Density gradient centrifuga‑
tion was performed using the RosetteSep™ Human 
Circulating Epithelial Tumor Cell Enrichment Cocktail 
(StemCell™ Technologies, Vancouver, Canada) combined 
with Lymphoprep™ (StemCell™ Technologies, Vancouver, 
Canada). To the 2.5 ml blood sample was added 250 µl (50 µl/ml) 
of the RosetteSep™ cocktail and then incubated for 20 min 
at room temperature. Blood samples were diluted with equal 
volumes of PBS and carefully layered onto Lymphoprep™ 
then centrifuged at 3,600 rpm at room temperature for 20 min. 
After centrifugation, supernatants were transferred to another 
15 ml conical tube with cells pelleted by centrifugation at 
1,800 rpm for 20 min at room temperature. The enriched cells 
were collected, red blood cells were lysed by BD Pharm Lyse 
lysing solution (Becton, Dickinson and Company, New Jersey, 
USA), and washed in PBS. 

Cell labeling. Cell fixation was performed using 4% 
paraformaldehyde. For staining, human monoclonal 
EpCAM‑phycoerythrin (PE) (clone REA764; MACS Miltenyi 
Biotec, Cologne, Germany) antibodies were used. Antibodies 
were diluted 1:50 in 50 µl PBS containing 5% FBS. After incu‑
bation for 60 min, the cells were washed in PBS and pelleted by 
centrifuge at 1,200 rpm for 5 min at 4˚C. SlowFade™ Diamond 
Antifade Mountant with DAPI (ThermoFisher, Massachusetts, 
USA) was added and deposited on a microscope slide to be 
prepared for imaging.

Imaging, processing, and computational classification of cells 
using AI. The cell classification process using the CNN‑based 
algorithm is shown in Fig. 1A. Cellular regions were extracted 
from the microscopic image of KYSEs and blood samples. 
Luminance characteristic analysis was performed on these to 
control cell image background information. Then the bright‑
ness value components of each fluorescence were combined 
into a single image. Images were then fed into the CNN‑based 
classifier for cancer cell evaluation.

Specifically, KYSEs and blood samples were prepared as 
above. Images were captured using the inverted microscope 
BZ‑X800 (KEYENCE, Osaka, Japan). Images were taken at 
a 20x magnification through the objective lens. The acquired 
images were processed using an algorithm constructed in coop‑
eration with the Department of Mechanical and Intellectual 
Systems Engineering, Faculty of Engineering, University of 
Toyama. Cell image cropping used the following morphological 
criteria: Extract the DAPI‑positive site using Otsu's method (19). 
Narrowing down by requiring an EpCAM luminance of 20 or 
more. Furthermore, DAPI‑ and/or EpCAM‑positive cells with 
an area greater than 700 pixels were excluded.

Fig. 1B shows the model with the classification network. 
The CNN consists of an input layer, hidden layer, and output 
layer. We input images of 64 pixels x64 pixels to the input 
layer. The hidden layer includes many convolutional layers, 
pooling layers, and fully connected layers. The convolutional 
layer extracts various local features of the input layer through 
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the convolution operation and normalizes the features for each 
channel image. The CNN performs feature extraction again at 
the pooling layer and semantically combines similar features 
to make the features robust to noise and deformation. The 
CNN samples these features, outputting them in a reduced 
processing size, this operation is repeated and continues with 
the fully connected layer. Each neuron in the fully connected 
layer is fully connected to all neurons in the previous layers. 
The fully connected layer integrates local information with 
class discrimination from the previous layers by the rectified 
linear unit (ReLU) function. Finally, the output value of the 
fully connected layer is passed to the output layer. 

A schematic diagram of the evaluation method for the cell 
classifying AI algorithm accuracy is shown in Fig. 1C. The 
cell identification algorithm is trained using training images of 
cancer cells and PBMCs. Cell identification accuracy is then 
confirmed using validation images. By repeating this process, 
the AI algorithm accuracy is evaluated with regard to the 
training data variability.

The hardware environment used for computation was; 
CPU:Intel(r) Core(TM) i9‑10980XE CPU @ 3.00GHz, 
Memory: 96GB, GPU:NVIDIA GeForce RTX 3090, 
V‑RAM:24GB. The software environments used for compu‑
tation were Python Ver.3.6.13, CUDA Ver.10.1, opencv 
Ver.4.5.3.56, cuDNN Ver.7.6.5, TensorFlow Ver.2.6.0, Keras 
Ver.2.6.0, NumPy Ver.1.19.5, pandas Ver.1.1.5, openpyel 
Ver.3.0.9, matplotlib Ver.3.3.4, scikit‑learn Ver.0.24.2, seaborn 
Ver.0.11.2, shap Ver.0.40.0.

Classification of ESCC cell lines. To validate AI image recog‑
nition accuracy in distinguishing ESCC cells from PBMCs, 
we used images of ESCC cell lines stained with DAPI and 

EpCAM (KYSE30: 640 images, KYSE140: 194 images, 
KYSE520: 1037 images, KYSE1440: 347 images) and PBMCs 
from healthy volunteers (400 images). Specifically, we trained 
the AI using images of a KYSE and PBMC, shown a pair at 
a time and in order. Then the AI evaluated other image sets 
of KYSEs and PBMCs (KYSE30 vs. PBMCs, KYSE140 vs. 
PBMCs, KYSE520 vs. PBMCs, KYSE1440 vs. PBMCs), with‑
holding the answers, to identify cell image as KYSE or PBMC.

Comparison of cell detection between AI image processing 
and manual cell count. To compare cell‑detecting speeds 
between AI and humans, the AI and three researchers (TA, 
YN, TY) counted a total cell number in three identical 
images of KYSE140 and PBMCs each. Specifically, KYSE140 
(1.0x105 cells) and PBMCs (1.0x107 cells), stained with DAPI 
as above, with 2x2 view images taken and merged to create 
3 images for each KYSE140 and PBMCs from healthy 
volunteers. The AI and three researchers then counted the 
DAPI‑positive areas recognized as cells, recording the time 
required to count.

Comparing AI and human image recognition accuracy. 
To compare image recognition accuracy between AI and 
humans, four researchers and pre‑trained AI were tested to 
distinguish between KYSE140 and PBMCs. As described in 
the previous section, the AI was pre‑trained using segmented 
194 and 400 single cell images of KYSE140 and PBMCs, 
respectively, both stained with DAPI and EpCAM. Three 
sets of 100 images (50 images each were randomly selected 
from the 194 and 400 images of KYSE140 and PBMCs, 
respectively) were presented to the AI and four researchers 
separately (TA, YN, TY, NM), to identify the cell images 

Figure 1. (A) The cell classification process using a CNN‑based algorithm. (B) Visualization of the CNN architecture used in this study. (C) A schematic 
diagram of the evaluation method for the accuracy of the cell classifying algorithm. CNN, convolutional neural networks; CTC, circulating tumor cell; PBMC, 
peripheral blood mononuclear cell.
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as either KYSE140 or PBMC. To each image was assigned 
a hidden answer as to whether it was a KYSE or a PBMC. 
The researchers classified cells as KYSE140 and PBMCs 
based on the detection of EpCAM‑positive/DAPI‑stained cells 
and EpCAM‑negative/DAPI‑stained cells, respectively. The 
analysis time required for the 100 images was also noted.

Statistical analysis. All analyses were carried out with JMP 
16.0 software (SAS Institute Inc., Cary, NC, USA). A confu‑
sion matrix was used to observe specificity, sensitivity, and 
accuracy. Difference between the AI and manual accuracy 
using image sets of KYSE140 and PBMCs was determined 
using the Wilcoxon rank‑sum test P<0.05 was considered to 
indicate a statistically significant difference.

Results

Validation of the image recognition accuracy of AI. Firstly, 
the image recognition accuracy of the trained AI in distin‑
guishing ESCC cell lines from PBMCs was evaluated. The 
AI was trained using identified paired images of single cells 
from ESCC cell lines and PBMC. Then the AI was shown 
paired images of a KYSE and PBMC, with the answer hidden, 
and tasked to identify which was the KYSE. Representative 
images of four ESCC cell lines (KYSE30, KYSE140, 
KYSE520, and KYSE1440) and PBMCs are shown in Fig. 2. 
PBMCs had no EpCAM expression and were small in both 
cell size and nucleus. KYSE520 did not express EpCAM, both 
KYSE30 and KYSE1440 strongly expressed EpCAM, while 
KYSE140 weakly expressed EpCAM. The AI differentiated 
KYSE30, KYSE140, KYSE520, and KYSE1440 from PBMCs 
with an accuracy of 99.9, 99.8, 99.8, and 100%, respectively, 
when trained using the same cell lines (Table I). Interestingly, 
even using KYSEs not used for training, the specificity in 
distinguishing KYSEs from PBMCs was greater than 99.6%, 
regardless of the KYSE combination used in training and 
examination. On the other hand, sensitivity varied from 
20.4 to 100% depending on the KYSE combination used in 
training and examination (Table I). Among these four ESCC 
cell lines, we further validated the efficiency of the AI trained 
with KYSE140 by comparing it to human manual CTC 
detection.

The efficiency of AI image processing compared to manual 
counting. Secondly, the AI and three researchers each counted 
the number of DAPI‑stained cells in three identical images 
of KYSE140 and PBMCs. AI image processing and manual 
counting detected the same number of KYSE140 cells and 
PBMCs (n=1,335.3±168.6 and 1,246.1±113.0 for KYSE140 
cells by AI and manual detection, respectively, P=0.71 Fig. 3A; 
n=387.7±45.6 and 425.6±29.1 for PBMCs, P=0.58, Fig. 3B).

Whereas, using KYSE140, AI image processing and 
manual counting took 4.9±0.3 and 591.4±62.4 sec, respec‑
tively, with a significant difference (P=0.016, Fig. 3C). Using 
PBMCs, AI image processing and manual counting took 
4.9±0.3 and 243.3±18.8 sec, respectively, with a significant 
difference (P=0.016, Fig. 3D). 

These results showed no significant difference in the 
number of cells detected between AI and humans, but yielded 
a significantly shorter AI analysis time.

Comparison of image recognition accuracy between AI and 
humans. To compare AI and human image recognition accu‑
racy in distinguishing cancer cells from PBMCs, the trained 
AI and four researchers were tasked to identify KYSE140 
from PBMCs using images of 100 EpCAM/DAPI stained 
cells (50 of KYSE140 and 50 of PBMCs) with the answers 
withheld. After evaluating the three sets of 100 images, the AI 
completely distinguished KYSE140 from PBMCs with both 
a sensitivity and specificity of 100%, while the researchers 
distinguished them with a sensitivity and specificity of 
86 and 97.5%, respectively (Table II). The average accuracies 
of the AI and researchers were 100 and 91.8% with a signifi‑
cant difference (P=0.011, Fig. 4A). The average times taken to 
classify 100 images for the AI and researchers were 0.7±0.01 
and 630.4±49.5 sec, with a significant difference (P=0.012, 
Fig. 4B).

Detection of CTCs in blood samples of ESCC patients using 
the AI algorithm. Finally, CTCs from the peripheral blood 
of 10 ESCC patients were enriched and processed using 
the image recognition AI algorithm to evaluate its clinical 
application. The clinicopathological characteristics of the 
patients are summarized in Table III. The patient popula‑
tion consisted of 5 men and 5 women, with a median age of 
71.9 years (range, 54‑79 years). Two patients presented with 
stage I disease and 8 patients with stage III. Blood samples 
from 5 healthy volunteers with a median age of 35.3 years 
(range, 30‑39  years) were used as negative controls. 
Representative images of EpCAM‑positive/DAPI‑positive 
cells detected from patients were shown in Fig. 5A. The 
combination of nuclear DAPI staining and cell surface 
expression of EpCAM indicated that the cells were 
mononuclear cells of epithelial origin. On the other hand, 
PBMCs detected from healthy volunteers were small, 

Figure 2. Representative images of immunofluorescent staining of KYSE30, 
KYSE140, KYSE520, and KYSE1440. KYSE520 has a lower EpCAM expres‑
sion level than other cell lines. EpCAM, epithelial cell adhesion molecule.
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Table I. Accuracy of image recognition.

Cell line used	 Cell line used				  
for training	 for evaluation	 Accuracy, (%)	 Sensitivity, %	 Specificity, %	 PPV, %	 NPV, %

KYSE30	 KYSE30	 99.9	 99.8	 100	 100	 99.8 
	 KYSE140	 69.9	 39.8	 100	 100	 62.4 
	 KYSE520	 80.7	 61.4	 100	 100	 72.2 
	 KYSE1440	 99.9	 99.8	 100	 100	 99.8 
KYSE140	 KYSE30	 96.0	 92.4 	 99.6 	 99.6 	 92.9 
	 KYSE140	 99.8	 100.0 	 99.6 	 99.6 	 100.0 
	 KYSE520	 60.0 	 20.4 	 99.6 	 98.1 	 55.6 
	 KYSE1440	 98.8	 98.0 	 99.6 	 99.6 	 98.0 
KYSE520	 KYSE30	 99.8	 100.0 	 99.6 	 99.6 	 100.0 
	 KYSE140	 70.6	 41.6 	 99.6 	 99.0 	 63.0 
	 KYSE520	 99.8	 100.0 	 99.6 	 99.6 	 100.0 
	 KYSE1440	 99.8	 100.0 	 99.6 	 99.6 	 100.0 
KYSE1440	 KYSE30	 99.9	 99.8 	 100.0 	 100.0 	 99.8 
	 KYSE140	 83.3	 66.6 	 100.0 	 100.0 	 75.0 
	 KYSE520	 82.9	 65.8 	 100.0 	 100.0 	 74.5 
	 KYSE1440	 100.0 	 100.0 	 100.0 	 100.0 	 100.0

PPV, positive predictive value; NPV, negative predictive value.

Figure 3. Comparison between AI and manual cell counts. (A) Cell counts of KYSE140. (B) Cell counts of PBMCs. (C) Time required for counting of 
KYSE140. (D) Time required for counting of PBMCs. AI, artificial intelligence; PBMCs, peripheral blood mononuclear cells.
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had round nuclei, and did not express EpCAM, indi‑
cating that they were lymphocytes (Fig.  5B). Although 
EpCAM‑positive/DAPI‑positive cells were detected in all 
examined samples, ESCC patients yielded significantly 
more EpCAM‑positive/DAPI‑positive cells than the healthy 
volunteers (mean cell counts of 2.4±0.8 and 44.5±20.9, 
respectively, P=0.019, Fig. 5C).

Discussion

Though the presence of CTCs in ESCC patients is widely 
accepted, methods of CTC identification with high accuracy 
and efficiency are still under investigation. The performance 
of recent CNN‑based diagnostic support tools is reaching a 
level comparable to experts in various medical fields (20‑22). 

In this study, we established a CNN‑based image 
processing algorithm and validated its performance with 
ESCC cell lines and blood from ESCC patients. These results 
demonstrated that AI distinguished cancer cells from PMBC 
by factors other than EpCAM expression, a reliable clinical 
marker. This AI algorithm distinguished each type of ESCC 
cell line from PBMCs with an accuracy of more than 99.8% 
when the AI was trained with the same KYSE. Regardless of 
the combination of KYSEs used for training and examination, 
specificity in distinguishing KYSEs from PBMCs was more 
than 99.6%. On the other hand, sensitivity in distinguishing 
KYSEs from PBMCs varied between 20.4 and 100%. This 
indicates that some cancer cells are misidentified as PBMCs 
depending on the combination of KYSE used for training and 
examination. The lower differentiation sensitivity in the iden‑
tification of KYSE520 after training on KYSE30, as well as in 
the identification of KYSE520 after training on KYSE1440, is 
partly explained by differences in EpCAM expression levels. 
However, KYSE30 was interestingly well distinguished after 
training on KYSE520 with an accuracy of 99.8%, despite 
marked differences in EpCAM expression, indicating that 
the AI algorithm distinguishes cells using factors other than 
EpCAM expression, such as cell morphology and nuclear 
staining. One strength of a diagnostic system that uses deep 
learning is that the AI can discover previously unknown 
features that are invisible to the human eye, such as minute 
differences in nucleus structure (16,23).

AI differentiated ESCC cell lines from PBMCs better 
than humans. Our AI algorithm was both faster and more 
accurate than humans. This may be due to as‑yet unidentified 
hierarchical features that help AI distinguish cancer cells from 
PMBCs. The AI algorithm counted almost the same number 
of cells but was significantly faster than humans. Additionally, 
the AI algorithm distinguished KYSE from PBMC perfectly, 
unlike humans. Sensitivity was also lower in humans compared 
to AI. Researchers recognized KYSE140 and PBMCs 
based solely on EpCAM‑positive/DAPI‑stained cells and 
EpCAM‑negative/DAPI‑stained cells, respectively. Therefore, 
EpCAM expression heterogeneity in individual KYSE140 cells, 
as well as non‑specific PBMC staining, may contribute to errors 
in the determination of EpCAM positivity by researchers. Also, 
it is possible that the AI algorithm accurately recognized the 

Table Ⅱ. Comparison of image recognition accuracy between manual and AI methods, using KYSE140 and PBMC images.

Method	 Accuracy, %	 Sensitivity, %	 Specificity, %	 PPV, %	 NPV, %

AI	 100	 100	 100	 100	 100
Manual	 91.8	 86.0	 97.5	 86.0	 90.0

AI, artificial intelligence; PBMC, peripheral blood mononuclear cell; PPV, positive predictive value; NPV, negative predictive value.

Figure 4. Comparison of cell identification performance between AI and 
manual. (A) Accuracy comparison between AI and manual. (B) Comparison 
of time required to identify 100 images. AI, artificial intelligence.
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EpCAM expression cut‑off value through pre‑training, or that 
features were recognized that were independent of EpCAM 

expression (24). It is of interest to evaluate whether diagnosis 
by a human will approach that of the AI when manual recogni‑
tion includes additional cytological details, such as cell size, 
shape, and nucleus‑to‑cytoplasmic ratio alongside EpCAM 
expression (25). Nevertheless, recognition accuracy among 
researchers varies, with trained pathologists continuing to use 
subjective criteria in cytology (25). It is possible that humans 
are unable to match AI's recognition capabilities.

AI counted and classified cells up to 850 times faster than 
humans. A full range search (X, Y, and Z axis) is required for 
humans to recognize a cell as slides have three‑dimensional 
structure, despite their flat, two‑dimensional appearance. In 
fact, this step requires the most time during the CTC detection 
process. However, AI performs rapid image acquisition and 
analysis. Reducing analysis time greatly improves efficiency, 
enabling accelerated AI algorithm evolution through training 
with a large library of images. In this study, the AI algorithm was 
preliminarily applied to detect EpCAM‑positive/DAPI‑positive 
cells in ESCC patients. EpCAM‑positive/DAPI‑positive cells 
were detected in blood samples from ESCC patients using the 
AI algorithm, suggesting potential clinical applications. The 
average number of EpCAM‑positive cells in the patients was 
44.5 cells while in healthy volunteers it was 2.4 cells, agreeing 
with previous reports (6,10).

In a recent report on CNN‑based detection of CTC 
in cancer patients, Guo et al processed the enriched CTC 
fraction for immunofluorescence in situ hybridization 
against chromosome 8 centromere, considering a cell as a 
CTC if it were CD45‑/DAPI+/with more than two centro‑
meres  (26). After pre‑training with segmented images of 
555 CTCs and 10777 non‑CTCs, their CNN model identified 
CTCs with a sensitivity and specificity of 97.2 and 94.0%, 
respectively (26). With a similar number of cell images used 
for pre‑training, the sensitivity and specificity on the test 
set were comparable to our results. This demonstrates the 
usefulness of the CNN‑based algorithm for CTC detection. 
Further research is required to determine optimal markers, 
in terms of accuracy and convenience, to define CTCs for 
pre‑training the AI algorithms.

Table III. Patient characteristics and number of EpCAM‑positive cells detected.

							       Chemotherapy	 Number of
Patient	 Age,						      before blood	 EpCAM‑
no.	 years	 Sex	 T	 N	 M	 Stage	 collection	 positive cells

  1	 69	 F	 3	 1	 0	 Ⅲ	 No	 23
  2	 54	 M	 3	 1	 0	 Ⅲ	 Yes	 60
  3	 73	 M	 1b	 0	 0	 Ⅰ	 No	 1
  4	 71	 F	 4a	 2	 0	 Ⅲ	 No	 8
  5	 79	 M	 3	 1	 0	 Ⅲ	 No	 221
  6	 78	 F	 3	 2	 0	 Ⅲ	 No	 3
  7	 69	 M	 1b	 0	 0	 Ⅰ	 Yes	 41
  8	 73	 F	 3	 1	 0	 Ⅲ	 Yes	 18
  9	 70	 M	 3	 1	 0	 Ⅲ	 Yes	 64
10	 73	 F	 3	 1	 0	 Ⅲ	 Yes	 6

EpCAM, epithelial cell adhesion molecule.

Figure 5. (A) Representative images of EpCAM‑positive/DAPI‑positive 
cells in patients with esophageal squamous cell carcinoma. Cell nuclei were 
stained by DAPI and EpCAM is expressed along the plasma membrane. 
(B) Representative images of DAPI‑positive mononuclear cells in healthy 
volunteers. Cell nuclei were stained with DAPI, but EpCAM is not expressed 
at the plasma membrane. (C) Number of EpCAM‑positive/DAPI‑positive 
cells in healthy volunteers and patients per clinical stage. EpCAM, epithelial 
cell adhesion molecule.
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Immunological detection of EpCAM expression is a 
robust method for CTC identification. However, certain 
limitations are being identified. Epithelial‑to‑mesenchymal 
transition (EMT) is reported during CTC detachment from 
the primary tumor, along with transformation to mesen‑
chymal and stem‑like properties (27‑29). As a result of EMT, 
downregulation of epithelial markers such as EpCAM and 
upregulation of interstitial markers such as cell surface 
vimentin (CSV) are observed  (27‑32). Previous evalua‑
tions of EpCAM‑based positive enrichment reported CTC 
detection rates in the range of 18‑50% (33). Given reports 
on the involvement of EMT in treatment resistance (33) and 
tumor stem cell maintenance (34), the clinical significance 
of EpCAM‑negative CTCs is suggested (33,34). Therefore, 
methods based on the combination of epithelial and mesen‑
chymal markers may improve the clinical relevance of CTC 
detection. 

In addition, using higher resolution images and setting 
cutoff values over the number of cases also improved detec‑
tion rates. Taking advantage of AI's ability to autonomously 
identify hierarchical features (23), it is possible to establish 
an AI algorithm upon accumulated cases which identify via 
currently unknown marker‑independent features. Further 
improvements in efficiency and system evolution automation 
may provide quick and accurate diagnoses based on simple 
sample preparation, ideally requiring only bright field image 
acquisition.

In this study, a small number of ESCC patients and healthy 
volunteers were compared by CTCs detection methods to 
assess the potential of our AI algorithm. CTC detection 
impacts prognostic value in ESCC patients, as indicated by 
several reports (32). The prognostic significance of AI‑based 
CTC detection compared to conventional CTC detection 
remains to be evaluated in large prospective studies.

In addition, molecular mechanisms regulating the malig‑
nant potential of CTCs are still being elucidated  (35,36). 
Future investigation of the correlation between the unknown 
features referenced by the AI algorithm in CTC detection and 
the molecular characteristics of CTCs may provide a basis for 
the development of novel diagnostic and therapeutic strategies 
against ESCC.

This study has certain limitations. First, a small number 
of EpCAM positive cells were detected in PBMCs prepared 
from healthy volunteers, meaning that not all the EpCAM 
positive cells were CTCs in ESCC patients. EpCAM posi‑
tive cells may correspond to contamination of skin cells or 
immature blood cells (5,37). However, when many EpCAM 
positive cells are detected in ESCC patients, the majority 
are considered CTCs. Detection improvements include 
using high‑resolution images, understanding EpCAM posi‑
tive cells in healthy volunteers, and setting appropriate 
cutoff values over several cases. Second, the criteria that 
AI applied to distinguish ESCC cells from PBMC are a 
black box. This makes it unclear as to whether the present 
conditions are applicable to other cancers. Finally, CTCs 
were detected in ESCC patients by image processing under 
the conditions used in the cell lines to establish a prototype 
AI and preliminarily applied to the patient's samples. To 
establish better AI, supervised learning algorithms are best 
performed with many ESCC cell lines. Also, our future goal 

is to establish AI trained by peripheral blood samples from 
ESCC patients. However, this AI training faces the problem 
of setting a positive standard. Preparation of a true CTC to 
effectively and robustly train an AI for the correct answer is 
not trivial.

In conclusion, our results demonstrated that the CNN‑based 
image processing algorithm for CTC detection provides 
higher reproducibility and a shorter analysis time compared 
to manual detection by the human eye. In addition, the AI 
algorithm appears to distinguish CTCs based on unknown 
features, independent of marker expressions.
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