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Nonsteroidal anti-inflammatory drugs (NSAID)s relieve pain, inflammation, and fever by
inhibiting the activity of cyclooxygenase isozymes (COX-1 and COX-2). Despite their
clinical efficacy, NSAIDs can cause gastrointestinal (GI) and cardiovascular (CV)
complications. Moreover, NSAID use is characterized by a remarkable individual
variability in the extent of COX isozyme inhibition, therapeutic efficacy, and incidence of
adverse effects. The interaction between the gut microbiota and host has emerged as a
key player in modulating host physiology, gut microbiota-related disorders, and
metabolism of xenobiotics. Indeed, host–gut microbiota dynamic interactions influence
NSAID disposition, therapeutic efficacy, and toxicity. The gut microbiota can directly
cause chemical modifications of the NSAID or can indirectly influence its absorption or
metabolism by regulating host metabolic enzymes or processes, which may have
consequences for drug pharmacokinetic and pharmacodynamic properties. NSAID
itself can directly impact the composition and function of the gut microbiota or indirectly
alter the physiological properties or functions of the host which may, in turn, precipitate in
dysbiosis. Thus, the complex interconnectedness between host–gut microbiota and drug
may contribute to the variability in NSAID response and ultimately influence the outcome of
NSAID therapy. Herein, we review the interplay between host–gut microbiota and NSAID
and its consequences for both drug efficacy and toxicity, mainly in the GI tract. In addition,
we highlight progress towards microbiota-based intervention to reduce NSAID-
induced enteropathy.

Keywords: NSAIDS (nonsteroidal anti-inflammatory drugs), microbiota (microorganisms), dysbiosis, enteropathy,
prostanoid, cyclooxygenase
INTRODUCTION

Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most commonly used drugs
worldwide for the treatment of pain, inflammation, and fever. NSAIDs exert their
pharmacological effects through the inhibition of the cyclooxygenase (COX) enzyme. COX is the
rate-limiting enzyme involved in the biotransformation of arachidonic acid (AA) into prostanoids,
including prostaglandin (PG)E2, PGD2, PGF2a, prostacyclin (PGI2), and thromboxane (TxA2).
COX exists in two isozymes, known as COX-1 and COX-2, which have different physiological
functions, gene regulation, and pattern of expression (Ricciotti and FitzGerald, 2011). COX-1 is
constitutively expressed in almost all tissues and is responsible for the production of prostanoids
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that control homeostatic functions, such as gastric epithelial
cytoprotection, platelet function homeostasis, and renal blood
flow regulation (Ricciotti and FitzGerald, 2011). COX-2 is an
immediate response gene. Its basal expression is restricted to
certain organs, including the kidney, the central nervous system,
and the vasculature. COX-2 gene and protein expression are
rapidly induced by inflammatory cytokines, laminar shear stress,
and growth factors, and it represents the main source of
prostanoid formation during the inflammatory response
(Ricciotti and FitzGerald, 2011).

NSAIDs are part of a chemically heterogeneous group of
compounds that can be classified on the basis of their relative
inhibition of COX isozymes. Based on their selectivity for COX-1
and COX-2 inhibition achieved by therapeutic doses, NSAIDs
can be broadly classified into nonselective COX inhibitors, such
as aspirin, ibuprofen, indomethacin, and naproxen and selective
COX-2 inhibitors, such as diclofenac and coxibs (e.g. celecoxib,
rofecoxib, etc.).

Despite their efficacy in the relief of pain and inflammation,
NSAIDs can cause serious adverse events such as gastrointestinal
(GI) and cardiovascular (CV) complications in some individuals
(Grosser et al., 2017; Bjarnason et al., 2018). The coxibs,
rationally designed COX-2 selective inhibitors, were originally
developed to reduce the incidence of serious GI adverse effects
when compared with nonselective NSAIDs (Bjarnason
et al., 2018).

GI toxicity is arguably a significant adverse effect associated
with NSAID use, due to its frequency and severity. Short- and
long-term use of NSAIDs can cause upper and lower GI damage,
predominantly in patients with predispositions (Bjarnason et al.,
2018). About 30 to 50% of NSAID users have endoscopic lesions
in the GI tract. The incidence rates of upper GI toxicity
(gastropathy), which is manifested with gastroduodenal ulcers,
range from 5 to 80% in short-term (<1 month) endoscopy
studies (Bjarnason et al., 2007) and from 15 to 40% in long-
term (>3 months) users (Geis et al., 1991). The incidence rate of
serious upper GI complications, which include ulcers, intestinal
perforation, acute bleeding, and gut stenosis ranges between 1
and 2% in chronic (>3 months) NSAID users (Sostres et al.,
2013). The signs and symptoms of NSAID-induced lower GI
toxicity (enteropathy), localized distal to the ligament of Triez,
are usually nonspecific, often are clinically silent, and difficult to
detect. New endoscopic techniques enabled diagnosis of NSAID-
induced enteropathy more easily than in the past and revealed
that they may be as common and serious as upper GI
complications (Shin et al., 2017). NSAID-induced toxicity in
the small bowel can manifest with nausea, indigestion,
constipation, diarrhea, and abdominal pain. Chronic exposure
to NSAID can cause mucosal erythema, mucosal erosions and
breaks, sub-epithelial hemorrhages, protein loss, anemia,
strictures, and ulcerations. In the long term these lesions may
become more serious but rarely cause intestinal obstruction and
perforation. Small intestine permeability is present in 50–70%
of long-term NSAID users, while inflammation is present in
60–70% of them (Tai and McAlindon, 2018). Lower GI mucosal
damage is present in approximately 30–40% of NSAID users
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(Maiden et al., 2005; Sostres et al., 2013). Over the past decades,
NSAID-induced peptic ulcer disease and the hospitalization rates
due to upper GI complications have declined (Lanas et al., 2011;
Malmi et al., 2014), paralleling the prescription of modified-
release and/or enteric-coated NSAIDs, widespread use of anti-
secretory drugs [e.g. proton pump inhibitors (PPIs) and
histamine 2-receptor inhibitors], and reduction in Helicobacter
pylori prevalence. Meanwhile, the incidence of lower GI damage
associated with NSAIDs has become more perceptible
(Bjarnason et al., 2018). Unfortunately, current prevention
strategies that reduce the extent of damage in the upper GI
tract are not effective in the lower GI tract. Potential new
therapeutic strategies that aim to prevent lower GI tract
damage caused by NSAIDs are reported in Table 1.

In addition to GI adverse effects, NSAIDs can cause serious
CV complications. NSAIDs can raise blood pressure and cause
atherothrombotic events, heart failure, arrhythmias, and sudden
cardiac death (Coxib and traditional NSAID Trialists’ (CNT)
Collaboration et al., 2013; Grosser et al., 2017). Randomized
placebo-controlled trials have established that NSAIDs confer a
CV hazard in approximately 1 to 2% of people exposed, but the
absolute risk may increase with higher drug doses, frequency of
use, and established CV disease (Coxib and traditional NSAID
Trialists’ (CNT) Collaboration, et al., 2013; Grosser et al., 2017).
TABLE 1 | Potential therapeutic interventions to reduce NSAID-induced
enteropathy.

Intervention Specie Reference

Antibiotics Rat Kent et al., 1969; Yamada et al., 1993; Uejima
et al., 1996; Koga et al., 1999; Konaka et al.,
1999; Leite et al., 2001; Syer et al., 2015; Fornai
et al., 2016; Kim et al., 2016; Colucci et al.,
2018; Zhang et al., 2019

Mouse Liang et al., 2015; Xiao et al., 2017
Human Bjarnason et al., 1992; Scarpignato et al., 2017

Hydrogen Sulfide
-releasing NSAID

Rat Wallace et al., 2010; Blackler et al., 2015

Prostaglandin E2
analog

Mouse Kunikata et al., 2001; Kunikata et al., 2002
Rat Kunikata et al., 2001; Kunikata et al., 2002;

Hatazawa et al., 2006
Human Bjarnason et al., 1989; Davies et al., 1993;

Watanabe et al., 2008b; Fujimori et al., 2009;
Kyaw et al., 2018; Taha et al., 2018

Prostaglandin E2
receptor 3 agonist

Mouse Kunikata et al., 2001; Kunikata et al., 2002;

Prostaglandin E2
receptor 4 agonist

Mouse Kunikata et al., 2001; Kunikata et al., 2002
Rat Hatazawa et al., 2006

Rebamipide Mouse Diao et al., 2012; Tanigawa et al., 2013; Lai et al.,
2015;

Rat Mizoguchi et al., 2001; Kurata et al., 2015
Human Niwa et al., 2008; Fujimori et al., 2011; Mizukami

et al., 2011; Kurokawa et al., 2014; Watanabe
et al., 2015; Ota et al., 2016

b-glucuronidase
inhibitors

Mouse LoGuidice et al., 2012; Saitta et al., 2014

Probiotics Rat Kinouchi et al., 1998; Watanabe et al., 2009;
Syer et al., 2015; Fornai et al., 2020

Human Endo et al., 2011; de Vos et al., 2017; Suzuki
et al., 2017; Gotteland et al., 2001; Montalto
et al., 2010; Mujagic et al., 2017
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The increased risk for hypertension and atherothrombotic events
associated with NSAID exposure is mechanistically consistent
with the inhibition COX-2 dependent formation of
cardioprotective PGs (Yu et al., 2012). On other hand, NSAID
may increase the risk for heart failure through a direct effect on
the myocardium and vasculature remodeling and/or by altering
hemodynamic stability and renal function (Patrono, 2016). The
increased risk for heart failure associated with NSAID use occurs
through a COX-2 dependent hazard unrelated to the degree and
duration of suppression of platelet COX-1 (Coxib and traditional
NSAID Trialists’ (CNT) Collaboration, et al., 2013). Thus, the
risk profiles of NSAIDs can vary due to the degree to which an
individual drug inhibits COX-1 or COX-2 isozymes. NSAID use
is associated with interindividual variability in the extent of COX
isozyme inhibition and in the occurrence of therapeutic and
adverse effects (Panara et al., 1999; McAdam et al., 1999; Theken
et al., 2019), which could partially be explained by pharmacokinetic
variability and single-nucleotide polymorphisms (SNPs) in NSAID-
metabolizing genes cytochrome (CYP) P450 isoenzymes
(Karaźniewicz-Łada et al., 2009; Bae et al., 2011) and in COX
genes (Fries et al., 2006; Lee et al., 2017).

The interaction between host and gut microbiota (the large
community of microorganisms that resides in the gut) has emerged
as a key player in modulating host physiology, gut microbiota-
related disorders, and metabolism of xenobiotics (dietary
components, environmental pollutants, and pharmaceuticals;
Sommer and Bäckhed, 2013; Vayssier-Taussat et al., 2014;
Spanogiannopoulos et al., 2016). The human gut microbiota, by
modulating drug disposition, is now recognized as a novel factor
driving interindividual variation in drug efficacy and side effects,
including those of NSAIDs. Indeed, the heterogeneity of the gut
microbiota in populations may result in different responses to drug
treatment (Yip and Chan, 2015; Kashyap et al., 2017).

In this review, we discuss the field’s current knowledge of
NSAID–gut microbiota interactions. We report on studies
describing how NSAIDs can modify the growth and imbalance
the composition of the intestinal microbial communities
(condition known as dysbiosis) and the effects of these
modifications on the host. In addition, we summarize research
reporting the direct and indirect effects of the gut microbiota on
NSAID disposition, efficacy, and toxicity, mainly related to lower
GI side effects. Although we describe these interactions as
separate events, in reality they are part of a dynamic and
multidirectional interplay. Thus, NSAIDs may modify the
composition of the intestinal microbiota and cause changes in
the relative abundance of the bacterial strains involved in drug
absorption and metabolism that ultimately affects NSAID
therapeutic outcomes. Finally, we briefly highlight the
translational implication of this research and discuss progress
towards microbiota-based interventions to reduce NSAID
induced lower GI side effects. In conclusion, the increasing
understanding of the NSAID–gut microbiota interface could
provide novel insights for the discovery and development of
new anti-inflammatory drugs. Moreover, this knowledge could
be used as a precision medicine-based approach to increase
NSAID efficacy and prevent NSAID related toxicities.
Frontiers in Pharmacology | www.frontiersin.org 3
THE GUT MICROBIOTA

The gut microbiota is a large and diverse community of microbes
that inhabit the GI tract. The microbiota interacts with human
cells and these interactions are very diverse due to the variability
of microbial organisms in the GI tract. The different regions of
the gut vary in pH, oxygen levels, epithelial cell physiology, and
nutrient content; therefore, the environment in the GI tract
determinates the dominant bacterial strains in the different
areas and the types of metabolic processes that occur (Koppel
et al., 2017).

For example, the small intestine, characterized by higher oxygen
levels, has a high proportion of facultative anaerobic bacteria,
including Lactobacillaceae; whereas the colon and feces,
characterized by lower oxygen levels, have a high proportion of
strictly anaerobic bacteria, including Bacteroidaceae, Prevotellaceae,
Rikenellaceae, Lachnospiraceae, and Ruminococcaceae (Gu
et al., 2013).

The gut microbiota is a highly plastic community which is
influenced by numerous factors like diet, gender, environment,
eating behavior, and xenobiotic and microbial metabolites. It is
constituted by bacteria, archaea, viruses, fungi, and parasites,
counting approximately trillions of microorganisms. The
number of microbes in the intestinal tract increases from the
stomach to the colon, ranging approximately from 101–104 to
1010–1012 microbes per gram of luminal content, respectively
(Sender et al., 2016). Bacteria are the most abundant components
of the gut microbiota. There are over a thousand bacterial species
in the gut, counting approximately the same order of bacterial
cells as the number of human cells. Healthy human gut
microbiota is diverse and largely consists of seven phyla:
Bacteroidetes, Firmicutes, Proteobacteria, Verrumicrobia,
Actinobacteria, Fusobacteria, and Cyanobacteria (Sommer and
Bäckhed, 2013). Although obligate anaerobes typically dominate
most intestinal anatomical locations, a large range of variation in
community composition is observed among individuals and
among locations within the gut (Eckburg et al., 2005;
Huttenhower et al., 2012). Intestinal bacteria are involved in
many human physiological processes: they metabolize
structurally different food molecules, including lipid and
glucose metabolism, and synthesize amino acids and vitamins.
In addition, they play important roles in several physiological
functions like intestinal epithelial barrier, GI sensory and motor
activities, mucosal immunity, systemic immune surveillance, and
host behavior (Thomas et al., 2017). The microbiome is
estimated to comprise ~3.3 million microbial genes (150 times
more genes than the host human genome), including genes
involved in xenobiotics biodegradation and metabolic
pathways (Qin et al., 2010; Spanogiannopoulos et al., 2016).
The gut microbiota can be considered as an important metabolic
“organ” for drugs, with a metabolic capacity at least equal to that
of the liver.

The gut microbiota can directly cause chemical modifications
of drugs themselves or of their metabolites. The human gut
microbiota is known to biotransform so far more than 50
pharmaceuticals by producing enzymes with different catalytic
August 2020 | Volume 11 | Article 1153
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activities and thus determining the bioactivity, bioavailability,
and toxicity of several natural or synthetic substances (Koppel
et al., 2017; Wilson and Nicholson, 2017; Collins and Patterson,
2020). Drugs taken orally can encounter gut microbes mainly in
the small or large intestine or through biliary excretion.

The reactions catalyzed by bacterial enzymes include: reduction,
hydrolysis, hydroxylation, dihydroxylation, dealkylation,
deamination, decarboxylation, acetylation, deacetylation, and
rarely oxidation (Sousa et al., 2008; Wilson and Nicholson, 2017).
The major bacterial enzyme families involved in drug metabolism
are: b-glucuronidases, azoreductases, demethylases, desulfatases,
sulfoxide reductase, and cardiac glycoside reductases (Wilkinson
et al., 2018; Collins and Pattersons, 2020). In contrast, the host
enzymes, CYP P450 and phase II drug metabolizing enzymes,
participate in drug metabolism mainly by oxidation or
conjugation reactions (Sousa et al., 2008). Gut microbial
metabolism of drugs generates metabolites with active, inactive, or
toxic properties (Li et al., 2016). The formation of these microbial
metabolites occurs concurrently and often competing with host
metabolic processes. Thus, the chemistry of microbial
transformations is distinct from that of host enzymes, and it can
oppose or reverse host metabolism, ultimately altering the
pharmacokinetics and pharmacodynamics of xenobiotics and
their metabolites. In addition, whereas host metabolism occurs to
detoxify the body from xenobiotics, microbial modifications occur
generally to provide nutrients and energy to the microbes.

The synergism between the host and the microbiota generates
metabolites that would not be synthesized by the host alone and can
alter the biological activities and duration of xenobiotics. For
example, the NSAID sulindac is a pro-drug that requires gut
bacteria to be converted in the active compound sulindac sulfide
(Strong et al., 1987). Additionally, bacterial metabolites can compete
with drugs for host metabolic enzymes. For example, the production
of p-cresol by bacteria competes with the human cytosolic
sulfotransferase involved in the metabolism of acetaminophen, so
that increase production of p-cresol causes decreased acetaminophen
O-sulfonation and increased glucuronidation (Clayton et al., 2009).
Another example is represented by the Parkinson’s disease
medication Levodopa (L-dopa), which is metabolized first by a
pyridoxal phosphate-dependent tyrosine decarboxylase from
Enterococcus faecalis, followed by a molybdenum-dependent
dehydroxylase from Eggerthella lenta. L-dopa degradation in
human stool samples can be predicted predominantly by tyrosine
decarboxylase gene expression and abundance of Enterococcus
faecalis and Eggerthella lenta (Maini Rekdal et al., 2019).
Moreover, bacterial enzymes, like b-glucuronidase, b-glucosidase,
demethylase, desulfatases, and other phase II reversing enzymes, can
remove small molecules attached to the drug by host enzymes during
the drug metabolism. This process makes the free parent drug
molecule available for reabsorption (enterohepatic circulation) by
the host and thus increases the exposure of the host to the drug itself
or its metabolites. This kind of reabsorption prolongs the exposure of
drugs in the body (higher half-life) and often contributes to toxicity
(Boelsterli et al., 2013).

In addition, the gut microbiota can indirectly influence the
drug fate. The gut microbiota can limit drug absorption in the
Frontiers in Pharmacology | www.frontiersin.org 4
small intestine by increasing the expression of cell–cell adhesion
proteins, thickening the protective mucosal layer, and/or directly
sequestering chemicals to prevent their absorption (Collins and
Pattersons, 2020). These processes can influence the bioavailability
of the drugs with consequences for drug toxicity (at the body site
where the drug is bioaccumulated) and/or drug effectiveness (since
lower concentrations of drugs are circulating). Furthermore, the
gut microbiota can regulate host expression of genes involved in
vary metabolic pathways, including nuclear receptor regulation,
phase I and II enzymes, and transporters (Collins and Pattersons,
2020). Moreover, the gut microbiota can produce microbial
metabolites that can compete with drug metabolism (Sun
et al., 2019).

Thus, microbes that reside in the human gut are considered a
newly recognized modulator of drug exposure and consequently
of variability in drug response, but they may also represent a
potential source of new therapeutics.
IMPACT OF NSAIDS ON GUT
MICROBIOTA COMPOSITION AND
METABOLIC ACTIVITY

Medication has recently emerged as one of the most influential
determinants of the gut microbiota composition and activity
(Falony et al., 2016; Zhernakova et al., 2016; Maier et al., 2018).
Several classes of drugs can shape the physiome of the gut
microbiota by shifting the composition of the intestinal
microbial communities (Maurice et al., 2013; Mani et al.,
2014). Some drugs determine a shift of the microbiota
composition to favor the abundance of microbial taxa involved
in its metabolism. This shift could consequently affect the
pharmacokinetic proprieties of subsequent doses of the drug
itself and the pharmacokinetics of co-administered medications
(Walsh et al., 2018).

NSAID use can affect the gut microbiota composition and
metabolic activity through a direct effect on the microbiota (e.g.
by inhibiting/facilitating microbial growth, inducing microbial
cell death and/or influencing microbial metabolism) or through
an indirect effect by interacting with the host (e.g. by changing
the metabolism, gut environment, mucosa integrity, and
permeability, Figure 1). Both selective and nonselective
NSAIDs can affect the composition of the gut microbiota in
animals and in humans (Table 2).

Animal Studies
Several animal studies have shown that NSAID administration
causes significant changes in the intestinal microbiota, often
increasing the abundance of Gram-negative bacteria (Kent
et al., 1969; Honda et al., 1999; Otani et al., 2017; Vázquez-
Baeza et al., 2018). Subcutaneous treatment with indomethacin
increases intestinal Enterococcus faecalis and decreases
segmented filamentous bacteria in the small intestine and
mesenteric lymph nodes in female rats (Dalby et al., 2006).
Similarly, systemic administration of indomethacin causes
August 2020 | Volume 11 | Article 1153
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intestinal inflammation, characterized by upregulation of Toll-
like receptor (TLR)-2 and -4 in the intestine and increases the
abundance of Bacteroides and Enterobacteriaceae in the ileum
and cecum-colon and Clostridium the in ileum of male rats
(Terán-Ventura et al., 2014). In mice, a single oral
administration of indomethacin causes lesions in the small
intestine, increases the richness of the microbiota in the large
intestinal content and feces, with an expansion of pro-
inflammatory bacteria, reduces the diversity of the microbial
species in the cecum and large intestinal mucosal content, and
increases the microbial diversity in the feces. Meanwhile, one-
week treatment with a diet containing indomethacin decreases
the diversity of the microbiota only in the cecum luminal
content, probably indicating a recovery of the gut microbiota
during chronic drug exposure (Liang et al., 2015). In contrast,
another study reports that a single oral administration of
indomethacin does not cause small intestinal damage but
induces adaptive beneficial changes in the gut microbiota,
including increased abundance of Firmicutes and decreased
abundance of Bacteroidetes, which may be protective against
indomethacin-induced enteropathy in mice (Xiao et al., 2017). In
fact, the administration of antibiotics after indomethacin
treatment increases the mortality due to GI lesions, while naïve
mice transplanted with adaptively changed microbiota collected
from mice previously treated with indomethacin, show smaller
intestinal damage in response to indomethacin.

Diet and dietary additives can increase the vulnerability to
indomethacin induced-enteropathy. High fat diet aggravates
Frontiers in Pharmacology | www.frontiersin.org 5
indomethacin-induced small intestinal damage in mice via
intestinal dysbiosis, increases gene expression of interleukin
(IL)-17A in the intestine and augments intestinal permeability
(Sugimura et al., 2019). A dietary emulsifier, polysorbate 80,
exacerbates indomethacin-induced small-intestinal lesions via
intestinal dysbiosis and increases protein expression of IL-1b in
the small intestine (Furuhashi et al., 2019). A possible
mechanism by which indomethacin can cause the translocation
of luminal bacteria from the lumen into the mucosa is by altering
the content of sugars and lipids in the glycocalyx layer of the
mucosa (Basivireddy et al., 2005). Indomethacin-induced
dysbiosis has also been associated with intestinal infections.
Indomethacin increases the severity of Clostridium difficile
infection (CDI) by perturbing the gut microbiota and
dysregulating intestinal inflammatory response in a mouse
model of antibiotic-associated CDI (Maseda et al., 2019).
Similarly, both low and high doses of indomethacin increase
the severity of Clostridium difficile infection in two different
mouse models of antibiotic-associated CDI (Muñoz-Miralles
et al., 2018). Such findings support epidemiological data
linking NSAID exposure and CDI and warn against the use of
NSAIDs in patients at high risk for Clostridium difficile
(Permpalung et al., 2016).

Short oral treatment with naproxen causes intestinal
ulceration and inflammation, increases bile cytotoxicity, and
shifts the jejunal microbiota composition in rats (Syer et al.,
2015). Naproxen decreases the abundance of Lachnospiraceae
family (from the Gram-positive Clostridia class) and increases
FIGURE 1 | Dynamic interactions between NSAID and gut microbiota. NSAID Direct effects: NSAIDs can have antibacterial properties that directly affect the
composition of the gut microbiota (by effecting bacterial metabolism/growth, and/or inducing microbial cell death). NSAID Indirect effect: NSAIDs can alter the
physiological properties or functions of host organs (e.g. by changing the gut environment, changing mucosa integrity and permeability, and interfering with host and
microbial metabolism) which may, in turn, precipitate in dysbiosis. Gut Microbiota Direct effects: the gut microbiota can directly biotransform orally and systemically
administrated drugs into other chemical forms or metabolites, which may have altered efficacy or toxicity. Gut Microbiota Indirect effects: the gut microbiota can
indirectly impact the efficacy and toxicity of drugs by altering the host metabolism capacity or processes (by influencing hepatic function, altering expression of
hepatic enzymes or metabolic genes, interfering with detox pathway).
August 2020 | Volume 11 | Article 1153
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the Bacteroides genus (from the Gram-negative Bacteroidia class)
in the rat jejunum (Syer et al., 2015). Similarly, short term oral
administration of diclofenac increases intestinal permeability
and ulceration and augments the number of Gram-negative
bacteria in rat ileum (Reuter et al., 1997). In a recent study,
intragastrical treatment with diclofenac for 14 days caused small
intestinal damage and inflammation characterized by an increased
protein expression of TLR-2 and TLR-4 and biosynthesis of
IL-1b and tumor necrosis factor-a (TNF-a) (Colucci et al.,
2018) in the ileum. Moreover, diclofenac-induced enteropathy
is associated with an increase in the relative abundance of
Proteobacteria and Bacteroidetes and a decrease in Firmicutes in
the rat ileum.

Chronic oral treatment with celecoxib also alters the intestinal
microbiota, causing an increase in Coriobacteriaceae and
decrease in Bifidobacteriaceae and Lactobacillaceae abundance
in both ileal content and feces, and this effect is associated with
the reduction of polyp burden in APC Min/+ mice. Moreover,
celecoxib alters the fecal metabolite profile and diminishes the
content of amino acids, dipeptides, lipids, nucleotides and
glucose (Montrose et al., 2016). In contrast, a long-term
intragastrical treatment with rofecoxib does not cause small
Frontiers in Pharmacology | www.frontiersin.org 6
intestinal damage and does not influence the composition,
richness, and diversity of the jejunal microbiota in rats (Lázár
et al., 2019). The result of this study may indicate that, in
addition to COX-2 inhibition, the microbial alterations caused
by some NSAIDs may be due to drug-specific properties that
determine topical epithelial damage.

There is also some initial evidence that NSAIDs can alter the
oral microbial composition. Two-weeks of intragastrical
treatment with aspirin increases oral microbial diversity and
content in rats (Cheng et al., 2018). In particular, the
Lactobacillaceae abundance is increased significantly by aspirin.
Furthermore, aspirin reduces the immunoglobulin (Ig)G and
secretory IgA content in the saliva. On the contrary, a short oral
treatment with aspirin does not have an impact on the Gram-
negative bacterial counts in the ileum and does not cause small
intestinal damage in rats (Reuter et al., 1997).

Although the overgrowth of specific bacteria after NSAID
administration has been recognized for several decades, the
reasons for NSAID-induced dysbiosis are not known. One
hypothesis is that certain NSAIDs could have antibacterial
activity as reported in vitro for indomethacin, diclofenac,
ibuprofen, aspirin and celecoxib (Annadurai et al., 2002;
August 2020 | Volume 11 | Article 115
TABLE 2 | Studies assessing the perturbation of the gut microbiota composition by NSAIDs.

NSAID Specie Changes Location Reference

Indomethacin (s.c. 7.5 mg/kg) Rat (females) ↑Enterococcus faecalis
↓ Segmented filamentous bacteria

Small intestine content; mesenteric
lymph nodes

Dalby et al., 2006

Indomethacin (s.c. 7.5 mg/kg) Rat (males) ↑ Bacteroides and Enterobacteriaceae
↑ Clostridium

Ileum and cecum-colon content Terán-Ventura
et al., 2014

Indomethacin (gavage, 10 mg/kg) Mouse
(males)

↑ Firmicutes
↑Ruminococcus, ↑Lachnospiraceae,
↑Anaeroplasma
↑rc4-4
↓ Bacteroides
↓S24-7

Feces Liang et al., 2015

Indomethacin (gavage, 10 mg/kg) Mouse ↑Firmicutes
↓ Bacteroides

Feces Xiao et al., 2017

Naproxen (gavage, 10 mg/kg BID) Rat ↓Lachnospiraceae
↑Bacteroides

Jejunum content Syer et al., 2015

Diclofenac (gavage, 10 mg/kg BID) Rat ↑ Gram negative bacteria Ileum Reuter et al., 1997
Diclofenac (gavage, 4 mg/kg BID) Rat ↑ Proteobacteria

↑Bacteroidetes
↓ Firmicute

Ileum Colucci et al., 2018

Celecoxib (diet, 1,000 ppm) APC Min/+ mouse ↑Coriobacteriaceae ↓Lactobacillaceae and
↓Bifidobacteriaceae

Ileal content and feces Montrose et al.,
2016

Rofecoxib (gavage, 5 mg/kg) Rat None Jejunal content Lázár et al., 2019
Aspirin (gavage, 0.23 g/kg) Rat ↑ Lactobacillus Oral swap Cheng et al., 2018
Aspirin (gavage, 100 mg/kg) Rat No effect on enteric aerobic bacteria count Ileum Reuter et al., 1997
Celecoxib (os, 200 mg, BID) Human (obese

women)
None Feces Bokulich et al.,

2016
Indomethacin
(os, 75 mg, BID)

Human (males and
females)

↑Bacteroidetes (♀) ↑Prevotellaceae (♀)
↑Bacteroidetes (♀)
↓Firmicutes (♀)
↑Firmicutes (♂)
↓ Proteobacteria (♂)
↓ Alphaproteobacteria (♂)
↓ Proteobacteria (♂)
↓ Rhizobiales (♂)
↓ Proteobacteria (♂)
↓Pseudomonadaceae (♂)

Feces
Duodenal aspirates

Edogawa et al.,
2018
3
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Shirin et al., 2006; Obad et al., 2015; Thangamani et al., 2015;
Chan et al., 2017; Maier et al., 2018). In mouse infection models,
diclofenac has shown to be effective against Salmonella
Typhimurium (Dastidar et al., 2000; Annadurai et al., 2002),
and celecoxib has shown to be efficacious in a methicillin-
resistant S. aureus skin infection (Thangamani et al., 2015).
However, it still remains unknown whether the antibacterial
activity of NSAIDs occurs with therapeutic concentrations of the
drugs in vivo; it could be responsible for the dysbiosis observed
with NSAIDs, and it could be implicated in NSAID-
induced enteropathy.

Human Studies
The impact of NSAID administration on the human intestinal
microbiota has been less explored due to the difficulties associated
with this type of investigations. NSAID users can present different
gut microbiota profiles from that of nonusers, as do users of specific
types of NSAIDs (Rogers and Aronoff, 2016). For example,
treatment with aspirin causes a shift in the composition of the gut
microbiota regarding Prevotella, Bacteroides, Ruminococcaceae, and
Barnesiella, whereas celecoxib and ibuprofen increase the
abundance of Acidaminococcaceae and Enterobacteriaceae.
Ibuprofen causes enrichment in Propionibacteriaceae,
Pseudomonadaceae, Puniceicoccaceae, and Rikenellaceae species
compared with either nonusers or naproxen users.

The composition of the gut microbiota of NSAID and PPI
users differs from that of only NSAID users in the abundance of
Bacteroides and Erysipelotrichaceae species. Furthermore,
Bacteroides species and a bacterium of family Ruminococcaceae
differ between NSAID users and antidepressant and laxative
users (Rogers and Aronoff, 2016). Thus, these data indicate that
the profile of bacteria in the GI tract reflects the combinations of
medicines ingested. This is in agreement with the fact that the co-
administration of drugs may cause changes in the composition of
the microbiota to favor the abundance of taxa that have
metabolizing capacity for those drugs (Ticinesi et al., 2017). In
contrast to the aforementioned study, celecoxib does not alter the
composition of the gut microbiota in a longitudinal study in
post-menopausal obese women (Bokulich et al., 2016). In this
small study, the inter-individual variability in response to
celecoxib could have masked the effect of this drug on the
diversity of the gut microbiota. On this note, a recent study
reported that without altering the composition of the microbiota,
celecoxib can decrease microbial butyrate production in a human
intestinal microbiota ecosystem model and also diminish
markers of inflammation like IL-8 and CXCL16 in intestinal
cells in vitro (Hernandez-Sanabria et al., 2020).

Although these are the first studies investigating a possible
shift in the composition of the gut microbiota by NSAIDs in
humans, some of these studies did not take into account
confounding factors (e.g. primary disease conditions,
concomitant use of other medications, drug dose, drug
exposure, time of drug intake, sex, diet, and age) and lacked
appropriate controls. Indeed, both age and sex can influence the
impact of NSAIDs on the composition of human gut microbiota.
In terms of age-related differences, the total number of microbes
Frontiers in Pharmacology | www.frontiersin.org 7
is reduced in older (between 70 and 85-year-old) compared with
younger subjects (mean age 28 years), but it is higher in the
senior NSAID users compared with senior nonusers. However,
the fecal microbiota composition of older subjects using NSAIDs
presents a reduction of the abundance in Collinsella,
Actinobacteria, and Lactobacilli, compared to older nonusers
and young adults (Mäkivuokko et al., 2010).

In terms of sex-related differences, women present lower
intestinal permeability and higher microbial diversity than man
(Edogawa et al., 2018). Intestinal permeability is sensitive to
perturbation following acute treatment with indomethacin, but
returns to baseline 4–6 weeks after discontinuation of the drug in
both sexes. Fecal and duodenal gut microbiota diversity
decreases after acute treatment with indomethacin, especially
in women, which recovers 4–6 weeks later. Women present
greater abundance of Actinobacteria phylum but lower
abundance of Bacteroidetes and Proteobacteria compared to
men (Edogawa et al., 2018).

In addition to the demographic factors, psychological stress
can exacerbate indomethacin-induced small bowel injury in mice
by increasing the total number of bacteria and the proportion of
gram-negative bacteria and by increasing the permeability of
intestinal mucosa via glucocorticoid receptor signaling
(Yoshikawa et al., 2017). This study indicates that the
microbiota–gut–brain axis may play an important role in the
development of NSAID-induced enteropathy as reported also for
other pathological conditions (Collins and Bercik, 2009).

Future studies should be designed to include larger and more
diverse cohorts and be carried longitudinally. Moreover, more work
and complex analysis (e.g., multi-omics and longitudinal studies)
are needed to go beyond associations and determine causality.
IMPACT OF THE GUT MICROBIOTA ON
NSAID DISPOSITION, TOXICITY AND
EFFICACY

The gut microbiota can have direct and indirect effects on drug
absorption, distribution, metabolism and excretion, and
consequently affect drug efficacy and toxicity (Wilson and
Nicholson, 2017). In the case of the NSAIDs, the gut microbiota
can directly biotransform orally and systemically administrated
drugs into other chemical forms or metabolites, which may have
altered efficacy or toxicity (Figure 1). Different microbial, fungal,
and yeast cultures are capable of biotransforming valdecoxib and
celecoxib in vitro (Keshetti and Ciddi, 2010; Srisailam and
Veeresham, 2010). Moreover, flurbiprofen is converted by the
zygomycete fungus Cunninghamella to a variety of metabolites in
different mammals, including humans (Amadio et al., 2010).
Furthermore, the gut microbiota can indirectly impact the efficacy
and toxicity of drugs by altering the host metabolism capacity (by
influencing hepatic function, altering expression of hepatic enzymes
or metabolic genes, interfering with detox pathway) (Figure 1).

While few studies show the influence of the gut microbiota on
NSAID metabolism and efficacy, several reports indicate its
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involvement in NSAID-induced lower GI toxicity. Compositional
changes of the gut microbiota associated with indomethacin
administration can alter both its disposition and consequently its
inhibitory effect on prostanoid biosynthesis via de-glucuronidation
of its metabolites during enterohepatic recirculation. Antibiotic
suppression of intestinal bacteria significantly reduces the level of
indomethacin de-glucuronidation, resulting in increased
elimination, a shortened half-life, and reduced drug exposure
(Liang et al., 2015).

Reduction of metabolic activity of the gut microbiota by oral
antibiotics reduces the host metabolism of orally administrated
aspirin and increases its antithrombotic effects in rats. However,
aspirin metabolism is not changed by antibiotics administrated
intravenously (Kim et al., 2016). This study represents the first
evidence of the impact of the gut microbiota on the NSAID
effects on the CV system. Similarly, the oral administration of
amoxicillin reduces the pharmacokinetics of aspirin by slowing
down the metabolic activity of the gut microbiota involved in the
biotransformation of aspirin in rats (Zhang et al., 2019). These
findings indicate that antibiotics could interfere with the gut
microbiota metabolism of some NSAIDs, frequently prescribed
together in the clinical setting, and affect their bioavailability
and efficacy.
NSAID-INDUCED ENTEROPATHY

The mechanisms underlying NSAID-induced enteropathy are
still not completely understood. Our current knowledge indicates
that the pathogenesis of NSAID-induced small intestinal damage
is a multifactorial process that occurs in response to multiple
insults (Davies et al., 2000; Boelsterli et al., 2013). NSAIDs can
cause intestinal damage through topical irritant effects due to the
direct contact of the drug with the intestinal mucosa, local
inhibition of protective PGs, and interaction with the
gut microbiota.

The topical effects are caused by physiochemical proprieties of
the drugs. These are COX-independent effects linked to the drug
acidity and/or lipophilicity (most NSAIDs are lipid-soluble weak
organic acids). The topical effects caused by NSAIDs are relevant
to oral drug administration but also to parental administration due
to hepatobiliary excretion of active metabolites and their
enterohepatic cycling (Boelsterli et al., 2013). On the contrary,
the local inhibition of protective PGs is a COX-dependent effect
related to the drug potency and selectivity for the inhibition of
COX isozymes. Indeed, there are differences between individual
NSAIDs and their risk of inducing small intestinal damage in
humans (Sigthorsson et al., 1998; Davies et al., 2000).

Drugs present in the intestinal lumen initially interact with
the intestinal mucus layer and the cell surface phospholipid
bilayer, where they can trigger drug-induced mithocondrial and
endoplasmic reticulum damage, and oxidative stress in epithelial
cells, all detrimental events that coalesce to impair healthy GI
function. These topical effects strongly increase the permeability
of the intestinal mucosa and lead to a low-grade inflammation,
which facilitates the entrance and action of luminal aggressors
Frontiers in Pharmacology | www.frontiersin.org 8
(bile, intestinal enzymes, and commensal bacteria) in the small
bowel (Bjarnason et al., 2018). The concurrent COX inhibition
and the presence of luminal aggressors increase the severity of
inflammatory and ulcerative damage causing mucosal erosions
and ulcers (Bjarnason et al., 1993; Somasundaram et al., 1997;
Wallace, 2012). Indeed, NSAID administration can increase
intestinal permeability within 12–24 h after drug intake,
mainly in the jejunum and ileum, and cause inflammation in
the small intestine within 10 days, while ulcer formation can take
up to 2 weeks (Bjarnason et al., 2018).

There are controversial pieces of evidence regarding which
COX isozymes are expressed in the intestine and the degree of
their involvement in the development of lower GI toxicity. In the
small intestine, PGs are implicated in the maintenance of blood
flow, turnover of epithelial cells, mucus secretion, intestinal
motility, mucosal repair, and inflammatory response. Intestinal
PGs are produced mainly by COX-1 since COX-2 seems to have
little or no gene/protein expression in the healthy intestine
(Kargman et al., 1996; Takeuchi et al., 2010a; Bjarnason et al.,
2018). However, some reports indicate constitutive expression of
COX-2 gene/protein in the intestine of some animal species
(Haworth et al., 2005; Fornai et al., 2014; Kirkby et al., 2016).
Additional studies indicate that COX-1 is mainly responsible for
the production of endogenous PGs involved in mucosal
protection, with COX-2 contributing to mucosal defense only
under conditions or inflammation, while, while both COX-1 and
COX-2 are involved in the healing of small intestinal lesions
(Takeuchi and Amagase, 2018).

Genetic and pharmacological studies in animal models have
helped to understand the pathophysiological functions of COX-1
and COX-2 and of their products in the GI tract. Cox-1 deficient
mice do not exhibit spontaneous gastric ulcers despite low
mucosal PG levels (Langenbach et al., 1995; Loftin et al., 2002).
The gastric pH is lower in Cox-1 deficient mice than in wild-type
and Cox-2 deficient mice (Langenbach et al., 1999), consistent
with the Cox-1 dependent secretion of acid and/or bicarbonate in
the stomach. Thus, although the suppression of COX-1-derived
PGs increases stomach acidity, this is not sufficient to induce
gastric lesions. Traditional Cox-2 deficient mice, which have a
reduced life-span due cardio-renal defects, present normal PG
level and no gastric ulcers (Morham et al., 1995; Loftin et al.,
2002). Similarly, rodents treated with the COX-1 inhibitor SC-
560 or with selective COX-2 inhibitors do not present upper GI
lesions (Futaki et al., 1993; Masferrer et al., 1994; Wallace et al.,
2000; Gretzer et al., 2001; Tanaka et al., 2001). Indeed, dual
inhibition of both COX-1 and COX-2 is needed to cause damage
in the upper GI tract as observed with nonselective NSAIDs and
with COX-1 or COX-2 inhibitors in rodents (Langenbach et al.,
1995; Wallace et al., 2000; Tanaka et al., 2001).

Similarly, in the small intestine, Cox-1 deficiency or
inhibition with SC-560 does not cause ulcers in mice despite a
significant reduction in intestinal PGE2 levels (Sigthorsson et al.,
2002), while Cox-2 deficient mice present peritonitis with
intestinal inflammation and fibrosis (Morham et al., 1995).
Short term COX-2 inhibition with celecoxib or rofecoxib does
not reduce intestinal mucosal PGE2 and does not cause intestinal
August 2020 | Volume 11 | Article 1153
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damage (Sigthorsson et al., 2002; Tanaka et al., 2002a; Ohno
et al., 2004; Hotz-Behofsits et al., 2010), while long-term Cox-2
deficiency or inhibition leads to disruption of the small bowel
barrier function, intestinal chronic inflammation, and
microscopically ileal ulcers in male and female mice despite
normal PGE2 levels (Sigthorsson et al., 2002). However, the
lesions caused by long-term COX-2 suppression have a
different localization (terminal ileum vs mid to small intestine)
and histopathologic appearance compared to the ones caused by
acute exposure to nonselective NSAIDs (Sigthorsson et al., 2002).
In contrast, long-term COX-2 inhibition with rofecoxib does not
reduce intestinal mucosal PGE2 content, does not cause mucosal
damage, and does not alter the composition of the intestinal
microbiota in male rats (Lázár et al., 2019). The results of these
studies indicate that other factors (i.e. sex, age, diet, environment,
drug metabolism, physicochemical properties of the drug), in
addition to COX-2 inhibition, maybe be contributing to the
formation of the intestinal damage observed with long term
exposure to celecoxib.

Dual inhibition of COX isozymes (with nonacidic compounds
like SC-560 and rofecoxib or celecoxib) causes lowerGI damage as
well the use of COX-1 or COX-2 inhibitors in Cox-2 or Cox-1
deficientmice (Sigthorsson et al., 2002; Tanaka et al., 2002a;Hotz-
Behofsits et al., 2010; Takeuchi et al., 2010a; Takeuchi and Satoh,
2015). Similarly, NSAIDs that inhibit both COXs, such as
indomethacin, diclofenac, naproxen, and flurbiprofen, severely
damage the small intestine in rodents (Reuter et al., 1997; Konaka
et al., 1999; Tanaka et al., 2002a; Syer et al., 2015; Takeuchi and
Satoh, 2015; Colucci, et al., 2018).

These studies indicate that inhibition of both COX isozymes
is required for the development of intestinal lesions after short
NSAID exposure, with or without the presence of an NSAID that
causes topical effects (Sigthorsson et al., 2002; Hotz-Behofsits
et al., 2010). Intestinal damage can also result as a consequence of
COX-2 deletion or inhibition and the presence of an NSAID with
topical effects as shown in Cox-2 deficient mice treated with (R)-
2-phenyl propionic acid, a compound that causes topical irritant
effects but does not have COX inhibitory activity, and in wild-
type mice treated with celecoxib and (R)-2-phenyl propionic acid
(Hotz-Behofsits et al., 2010). COX-1 inhibition alone is not
sufficient to cause lower GI damage probably because COX-1
inhibition triggers compensatory mechanisms to overcome the
functional consequences of PG deficiency like upregulation of
COX-2 or inducible nitric oxide gene/protein expression in the
intestinal mucosa (Tanaka et al., 2002a; Tanaka et al., 2002b;
Takeuchi et al., 2010a; Takeuchi and Satoh, 2015). Moreover,
these studies indicate that suppression of prostaglandin synthesis
by NSAIDs seems unlikely to be a major contributor to the
development of NSAID-induced small intestinal injuries
compared to other factors since both Cox-1 deficient mice and
wild-type mice treated with SC-560 do not present intestinal
damage, although they present a significant reduction of
intestinal PGE2 (Melarange et al., 1992; Reuter et al., 1997;
Sigthorsson et al., 2002).

Many of the results obtained in animal studies were
confirmed by clinical trials with coxibs. These drugs present
Frontiers in Pharmacology | www.frontiersin.org 9
equal clinical efficacy compared to nonselective NSAIDs and
improved gastric tolerability, as assessed by short-term (Lanza
et al., 1999) or long-term (Simon et al., 1999; Hawkey et al., 2000)
endoscopic studies and by GI outcomes studies (Bombardier
et al., 2000; Silverstein et al., 2000). On the contrary, long
exposures with coxibs and nonselective NSAIDs cause similar
prevalence of small bowel damage, indicating a role for COX-2 in
maintaining the mucosal integrity in the small intestine (Maiden
et al., 2007; Maiden, 2009). However, selective COX-2 inhibitors
may cause less severe mucosal lesions than nonselective NSAIDs
(Maehata et al., 2012).

Although Cox-1 or Cox-2 deficient mice do not present
spontaneous intestinal ulcers, Cox-1 deficient mice and mice
treated with a COX-1 or a COX-2 inhibitor retarded healing of
pre-existing ulcers (Blikslager et al., 2002; Hatazawa et al., 2006).
It is noteworthy to mention that of the healing process, PGE2 is
produced mainly by COX-2, while in the late phase PGE2 is
produced mainly by COX-1 activity (Hatazawa et al., 2006;
Takeuchi and Amagase, 2018).

The effect of PGE2 in mediating the healing of small bowel
lesions occurs mainly through PGE2 receptor 4 (EP4), and this
effect is functionally associated with stimulation of angiogenesis
via the up-regulation of vascular endothelial growth factor
expression (Takeuchi et al., 2010b; Takeuchi, 2014). Indeed,
supplementation with PGE2 analogs prevents NSAID-induced
enteropathy and promotes the healing of intestinal ulcers in
animal models (Kunikata et al., 2001; Kunikata et al., 2002;
Hatazawa et al., 2006), however, the FDA-approved oral PGE1
analogue misoprostol showed mixed results in clinical studies
(Bjarnason et al., 1989; Davies et al., 1993; Watanabe et al.,
2008b; Fujimori et al., 2009; Kyaw et al., 2018; Taha et al., 2018).
In addition, misoprostol has often shown unfavorable side effects
such as diarrhea, abdominal pain, or bloating, and therefore, it is
not generally suitable for its long-term use (Handa et al., 2014).

The abundance and the diversity of bacteria present in the
small intestine play an important role in the pathogenesis of
NSAID-induced enteropathy. NSAID use can modify the
composition of the gut microbiota and induce mainly the
overgrowth of Gram-negative and anaerobic bacterial species,
which, possibly through release of endotoxin or microbial
metabolites, lower mucosal defense and increase the
susceptibility to intestinal damage (Hagiwara et al., 2004; Lanas
and Scarpignato, 2006; Scarpignato, 2008; Syer et al., 2015).
Germ-free rodents develop little or no intestinal lesions after
NSAID exposure, but when colonized by specific Gram-negative
or Gram-positive bacteria, these animals become sensitive to
NSAID-induced small intestinal damage. For example, germ-free
rats are resistant to indomethacin-induced enteropathy, in
contrast germ-free rats colonized with Escherichia coli develop
severe lesions in the gut (Robert and Asano, 1977). Moreover, a
COX inhib i tor , 5 -bromo-2- (4-fluoropheny l ) -3 - (4-
methylsulfonylphenyl) thiophene (BFMeT), is unable to induce
ulcers in germ-free rats and in gnotobiotic rats mono-associated
with Lactobacillus acidophilus or Bifidobacterium adolescentis;
whereas BFMeT induces ileal ulcers in gnotobiotic rats colonized
with Eubacterium limosum or Escherichia coli (Uejima et al.,
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1996). Several studies (Table 3) have reported that the treatment
with large spectrum antibiotics can reduce the severity of
NSAID-induced intestinal damage in animal models (Kent
et al., 1969; Uejima et al., 1996; Koga et al., 1999; Leite et al.,
2001) and in humans (Bjarnason et al., 1992; Scarpignato et al.,
2017). For example, indomethacin-induced intestinal damage is
partially prevented by the pre-treatment with poorly absorbed
antibiotics in rats (Konaka et al., 1999; Fornai et al., 2016). Also,
naproxen causes a significant shift in the microbiota composition
of rats, and treatment with a cocktail of antibiotics reduces the
severity of naproxen-induced small intestinal ulceration (Syer
et al., 2015). Diclofenac-induced enteropathy is reduced by
rifaximin, a broad-spectrum oral antibiotic, through both anti-
bacterial and anti-inflammatory activities in rats (Colucci et al.,
2018). In addition, some studies propose that antibiotic
treatment may also facilitate the healing of intestinal lesions
(Kent et al., 1969; Zwolinska-Wcislo et al., 2011). In addition,
Frontiers in Pharmacology | www.frontiersin.org 10
metronidazole, an antimicrobial targeting most Gram-negative
and Gram-positive anaerobic bacteria, reduces the occurrence of
NSAID-induced enteropathy in rats and in humans (Bjarnason
et al., 1992; Yamada et al., 1993). However, the fact that
antibiotics cannot completely prevent the NSAID-induced
ulceration indicates that additional factors are involved in
causing the initial intestinal damage.

The use of other drugs co-prescribed with NSAIDs, like for
example PPIs, can have deleterious effects on small-bowel
lesions, possibly through a combination of intestinal dysbiosis
and increased intestinal permeability. In rats, PPIs significantly
exacerbate naproxen- and celecoxib-induced intestinal
ulceration and bleeding by causing a reduction of the jejunal
content of Actinobacteria and Bifidobacteria, probably through
changes of the pH in the GI tract over an extended period of time
(Wallace et al., 2011). In germ free mice, the colonization with
Bifidobacteria-enriched intestinal flora prevents the NSAID and
TABLE 3 | In vivo studies reporting the impact of antibiotic treatment on NSAID disposition, toxicity and efficacy.

NSAID Antibiotic treatment Specie Changes on NSAID disposition, toxicity
and efficacy

Reference

5-bromo-2‐(4‐fluorophenyl)‐3‐(4‐
methylsulfonylphenyl) thiophene
(BFMeT, 500–1,500 mg/kg, p.o.)

bacitracin, neomycin, streptomycin
(200 mg/kg)

Rat ↓ ileal ulcers Uejima et al., 1996

Aspirin
(5 mg/kg, p.o.)

ampicillin
(250 mg/kg)

Rat ↑ absorption
↑ Cmax
↑ bleeding time

Kim et al., 2016

Aspirin
(37.5 mg/kg, p.o.)

amoxicillin (157.5 mg/kg) Rat ↑ absorption
↑ Cmax

Zhang et al., 2019

Diclofenac (4 mg/kg, BID, p.o.) rifaximin (50 mg/kg, BID, p.o.) Aged Rat
(males)

↓ length of ileum lesions
↓ intestinal inflammation
↓ intestinal permeability
↑ hemoglobin

Colucci et al., 2018

Indomethacin (7.5 mg/kg, s.c.) metronidazole (100 mg/kg, i.g.) Rat
(males)

↓ intestinal permeability
↓ bacterial translocation to mesenteric
lymph nods

Yamada et al.,
1993

Indomethacin
(5–40 mg/kg, p.o. or i.m.)

neomycin sulfate
(1.3 g/L),
polymvxin B sulfate
(60 mg/L), bacitracin (30,000 U./L)

Rat ↓ ulcer severity in the distal jejunum and the
ileum

Kent et al., 1969

Indomethacin (10 mg/kg, s.c.) ampicillin
(800 mg/kg, p.o.)

Rat ↓ n. of enterobacteria in the mucosa
↓ occurrence of intestinal lesions

Konaka et al., 1999

Indomethacin
(24 mg/kg, rectal injection)

kanamycin sulfate (1, 10, 100 mg/day) Rat ↓ Incidence of small intestinal ulcers Koga et al., 1999

Indomethacin
(7.5 mg/kg, p.o.)

metronidazole (60 mg/kg/dose) Rat ↓ intestinal damage
↓ intestinal permeability

Leite et al., 2001

Indomethacin (10 mg/kg, p.o.) neomycin (1 g/L),
vancomycin (0.5 g/L)

Mouse
(males)

↓ drug elimination
↓ half-life
↓ drug plasma concentration
↓ inhibition prostanoids

Liang et al., 2015

Indomethacin, (1.5 mg/kg BID) rifaximin (50 mg/kg BID, i.g.) Rat ↓ Intestinal lesions in the jejunum and in the
ileum
↓ Intestinal inflammation and tissue
peroxidation

Fornai et al., 2016

Indomethacin (10 mg/kg, p.o.) neomycin (250mg/kg), polymycin (9 mg/kg),
metronidazole (50 mg/kg)

Mouse ↑ mortality Xiao et al., 2017

Naproxen (20 mg/kg, p.o.) ampillicin (1 g/L), vancomycin (500 mg/L),
neomycin (1 g/L), metronidazole (1 g/L)

Rat ↓ Intestinal damage score Syer et al., 2015

NSAIDs metronidazole (800 mg/day, p.o.) Human ↓ intestinal inflammation
↓ blood loss

Bjarnason et al.,
1992

Diclofenac (75 mg) + omeprazole
(20 mg)

rifaximin
(400 mg, p.o.)

Human ↓ proportion of subjects developing at least
1 small-bowel mucosal break

Scarpignato et al.,
2017
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PPI-induced small intestinal damage, whereas the colonization
with bacteria from PPI-treated rats facilitates the development of
NSAID-induced enteropathy (Wallace et al., 2011). Similarly, a
recent study reports that PPIs aggravates indomethacin induced-
enteropathy by reducing the population of Lactobacillus
Johnsonii in the small intestine of mice (Nadatani et al., 2019).
Consistent with the results of these animal studies, human data
revealed that PPI use represents a risk factor for NSAID-induced
small intestinal damage (Watanabe et al., 2013; Endo et al., 2014;
Lué and Lanas, 2016; Washio et al., 2016). In addition, a meta-
analysis of clinical studies comparing small intestinal bacterial
overgrowth (SIBO) risk among adult users of PPIs vs nonusers
indicates that the use of PPIs is associated with SIBO, a condition
that can cause excessive fermentation and inflammation, leading
to a variety of clinical complaints including bloating and diarrhea
(Lo and Chan, 2013). Thus, dysbiosis secondary to PPI use may
exacerbate the NSAID-enteropathy.

The involvement of Gram-negative bacteria in the pathogenesis
of NSAID-induced enteropathy seems to be linked to the activation
of toll like receptor (TLR)4 that enhances inflammation and
contributes to intestinal lesions (Watanabe et al., 2008a; Nadatani
et al., 2012; Higashimori et al., 2016). Increased intestinal
permeability, migration of bacteria through the epithelium into
the deeper layers of the mucosa, and mucosal inflammatory and
immune response can be observed when the mucosal barrier
function is disrupted by NSAID-mediated topical effects and
prostanoid inhibition. Lipopolysaccharide (LPS) and high mobility
group box 1 (HMGB1), when present in the lumen, can activate
NLRP3 inflammasome through the binding to TLR4 in the
intestinal cells, causing infiltration of neutrophils and
macrophages and resulting in deep ulceration of the small
intestinal mucosa. The activation of macrophages causes the
release of pro-inflammatory cytokines such as TNF-a, IL-1b,
neutrophil recruiting chemokines, and nitric oxide, which then
induce neutrophil infiltration into the intestinal mucosa and
submucosa. Neutrophil activation damages the small intestine
through the release of cytotoxic agents like reactive oxygen
species, elastases, and proteases (Bertrand et al., 1998; Konaka
et al., 1999; Whittle, 2003; Hagiwara et al., 2004; Watanabe et al.,
2008a; Nadatani et al., 2012; Whitfield-Cargile et al., 2016). A recent
study also indicates a role for Gram-positive microorganisms in the
pathogenesis of NSAID-induced enteropathy since increased
protein expression of both TLR2 (which binds the outer
membrane of Gram-positive bacteria) and TLR4 (which binds
major cell wall components of Gram-negative bacteria) and an
increased biosynthesis of IL-1b have been reported in a rat model of
diclofenac-induced small intestinal damage (Colucci et al., 2018).

Neutrophils are important effector cells involved in NSAID-
induced small intestinal damage since depletion of neutrophils
from mice or rats reduced intestinal lesion formation in response
to NSAIDs (Chmaisse et al., 1994; Watanabe et al., 2008a). On
the other hand, macrophages that reside in the small intestine
regulate the integrity of the epithelial barrier via secretion of IL-
10 (Morhardt et al., 2019). This anti-inflammatory cytokine
plays a critical role in intestinal homeostasis and in the
restoration of the epithelial barrier after NSAID-driven
Frontiers in Pharmacology | www.frontiersin.org 11
damage, in a process that does not seem to be directly
regulated by T and B cells or the gut microbiota (Morhardt
et al., 2019). T cells seem dispensable to trigger NSAID-induced
enteropathy since both euthymic and athymic nude rats develop
intestinal ulcers following administration of indomethacin to the
same degree than conventional rats (Koga et al., 1999). However,
deficiency in specific T-cell subsets like, gd T-cells in intestinal
intraepithelial lymphocytes (IEL), leads to an increased
sensitivity to NSAID-induced small intestinal damage in mice
(Sumida et al., 2017). Additionally, GPR55-deficiency or
antagonism protects mice from indomethacin-induced
intestinal leakage since GPR55 acts as a negative regulator of
gd T-cell IEL accumulation and homing to the small intestine,
and it also antagonizes indomethacin-induced gd T-cell egress
from Peyer’s patches (Sumida et al., 2017). Moreover, Peyer’s
patches play protective roles in indomethacin-induced
enteropathy through the induction of immune-regulatory
CD103+ dendritic cells and IL-10-expressing CD4+ T cells in
the gut-associated lymphoid tissue (Hiyama et al., 2014).

Most NSAIDs, including derivatives of enolic acid
(piroxicam), propionic acid, (such as ketoprofen, naproxen,
ibuprofen and flurbiprofen), and acetic acid (such as diclofenac
and indomethacin), are detoxified by addition of glucuronic acid
moieties by UDP-glucuronosyltransferase (UGT) in the liver and
excreted in the bile via the conjugate export pump multidrug
resistance-associated protein 2 (Mrp2; Treinen-Moslen and
Kanz, 2006). In the gut, the glucuronic acids are enzymatically
cleaved from drug conjugates by microbial b-glucuronidase,
encoded by the inducible gus gene (Little et al., 2018). All
major bacterial phyla present in the mammalian GI tract
(Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria,
Clostridium, and Bifidobacterium) express the gus gene (Pollet
et al., 2017; Curro`, 2018). However, b-glucuronidase activity
varies depending on the bacterial species and the anatomical
location along the small intestine (Mani et al., 2014). The
reactivation of previously detoxified NSAIDs conjugates via
enterohepatic circulation plays an important role in the
pathogenesis of NSAID-induced enteropathy. Enterohepatic
recirculation of NSAID determines repeated and prolonged
exposures of the intestinal mucosa to relatively higher
concentrations of the active molecules (Reuter et al., 1997;
Seitz and Boelsterli, 1998; Boelsterli et al., 2013; Liang et al.,
2015; Zhong et al., 2016).

Studies with b-glucuronidase inhibitors further support the
hypothesis that enterohepatic circulation is an important factor in
the development of NSAID-induced enteropathy. A small molecule
inhibitor of bacterial b-glucuronidase, Inh1, can reduce the number
and size of intestinal ulcers in mice treated systematically with
diclofenac, without modifying the pharmacokinetics of diclofenac
(LoGiudice et al., 2012). Similarly, Inh1 alleviates ketoprofen-or
indomethacin-induced enteropathy in mice, without interfering
with the biliary excretion of NSAID conjugates (Saitta et al.,
2014). Inh1 is specific for b-D-glucuronidase and it does not
affect mammalian orthologue b−glucuronidases (which are
essential for proper lysosomal storage) and does not kill bacteria
or mammalian cells (Wallace B. D. et al., 2010), indicating that the
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bacterial form is the major target (LoGiudice et al., 2012). Moreover,
intestinal bacterial enzymes, including b-glucuronidase and 7a/b-
dehydroxylase, are involved in the deconjugation and
dehydroxylation of primary bile acids, synthetized by the liver,
into the more cytotoxic secondary bile acids. NSAID-induced
changes in the microbiota can elevate secondary bile acid ratio,
favoring intestinal damage (Blackler et al., 2015). Furthermore,
bacterial enzymes that produce large quantities of secondary bile
acids can as well amplify the damage against the intestinal mucosa
by increasing the enterohepatic circulation of NSAIDs (Duggan
et.al., 1975; Seitz and Boelsterli, 1998; Zhou et al., 2010). Thus, the
severity of NSAID enteropathy is correlated with the amount of
drug excreted in the bile and the rate of enterohepatic circulation
(Duggan et al., 1975). Indeed, ligation of the bile duct prevents
NSAID-induced intestinal damage in mice and in rats (Yamada
et al., 1993; Jacob et al., 2007). Moreover, intestinal damage by
diclofenac is prevented in rats lacking the hepatocanalicular
conjugate export pump, a protein required for the excretion of
conjugated NSAIDs into the bile (Seitz and Boelsterli, 1998). Finally,
the use of NSAIDs that do not undergo enterohepatic recirculation
is not being associated with enteropathies (Reuter et al., 1997;
Somasundaram et al., 1997).

In summary, these studies provide clear evidence that the
complex pathogenesis of NSAID-induced enteropathy is
determined by a combination of NSAID-topical effects, COX
inhibition, drug–host–microbiota interconnectedness,
enterohepatic recirculation of the drug, and the effect of
secondary bile acids.
THERAPEUTIC INTERVENTIONS
TARGETING THE GUT MICROBIOTA

The gut microbiota represents a target for therapeutic
intervention since altering its functionality and metabolic
Frontiers in Pharmacology | www.frontiersin.org 12
capability may improve NSAID efficacy and/or to reduce
NSAID side effects. Specifically several studies have reported
the beneficial effects of targeting the gut microbiota against
NSAID-induced small intestinal injury (Lanas and Scarpignato,
2006; Otani et al., 2017).

Some poorly absorbable antibiotics that target Gram-negative
bacteria prevent NSAID-induced enteropathy in mice (Uejima
et al., 1996; Koga et al., 1999; Watanabe et al., 2008a; Colucci
et al., 2018) and in humans (Bjarnason et al., 1992; Davies et al.,
1993; Scarpignato et al., 2017). However, these treatments are
inconsistently effective in limiting intestinal damage (Syer et al.,
2015). Furthermore, the use of antibiotics for extended periods of
time may be deleterious since it could increase the risk of the
development of multi-drug resistant bacteria and/or antibiotic-
associated enteritis. Consequently, alternative agents or modes to
alter the gut microbiota could represent better candidates for
preventing or treating NSAID-induced enteropathy (Steidler,
2003; Mani et al., 2014; Syer et al., 2015; Gallo et al., 2016).

Supplementation with probiotics (rational selection of specific
probiotic strains) in chronic users of NSAIDs may help to restore
an altered intestinal microbiota (Mani et al., 2014, Table 4). Pre-
treatment with viable Lactobacillus casei strain Shirota (LcS)
improves indomethacin-induced enteropathy by suppressing of
neutrophil infiltration and gene expression of inflammatory
cytokines (Watanabe et al., 2009). Similarly, L-lactic acid
produced by LcS suppresses indomethacin-induced small
intestinal damage in rats (Watanabe et al., 2009). Moreover,
culture supernatants of Lactobacillus acidophilus or
Bifidobacterium adolescentis reduce NSAID-induced ileal
damage by repressing unbalanced growth of aerobic bacteria
and lipid peroxidation in rats (Kinouchi et al., 1998).
Furthermore, the administration of Bifidobacterium
adolescentis or Faecalibacterium prausnitzii prior naproxen
treatment results in a significant reduction of the intestinal
damage in rats, probably through an effect on the biosynthesis
of cytoprotective short-chain fatty acids (Syer et al., 2015).
TABLE 4 | In vivo studies reporting the effect of probiotics on NSAID-induced enteropathy.

NSAID Intervention Specie Outcome Reference

Indomethacin (10 mg/kg; p.o.) Lactobacillus casei strain Shirota Rat ↓ small intestinal injury and
intestinal inflammation

Watanabe et al., 2009

5-bromo-2-(4-fluorophenyl)-3-(4-
methylsulfonylphenyl) thiophene
(BFMeT; 1,000 mg/kg; o.s.)

Culture supernatant of Lactobacillus acidophilus or
Bifidobacterium adolescentis

Rat ↓ reduction of ileal ulcer formation Kinouchi et al., 1998

Naproxen (20 mg/kg, p.o.) Bifidobacterium adolescentis or Faecalibacteriaum
prausnitzii

Rat ↓ severity small intestinal ulceration Syer et al., 2015

Diclofenac (4 mg/kg, BID, p.o) Bifidobacterium Longum plus Lactoferrin Aged
rat
(males)

↓ length of ileum lesions
↓ intestinal inflammation
↑ hemoglobin

Fornai et al., 2020

Aspirin (100 mg daily, p.o.)
plus omeprazole (20 mg daily, p.o.)

Lactobacillus Casei Human ↓ number of mucosal breaks
↓ capsule endoscopy score

Endo et al., 2011

Low dose aspirin daily (p.o.) Lactobacillus gasseri Human ↓ number of mucosal breaks
↓ reddened lesions

Suzuki et al., 2017

Aspirin (300 mg, daily, p.o) Bifidobacteriumbreve Human ↓ number intestinal lesions
↓ intestinal inflammation

Mortensen et al., 2019

Indomethacin (50 mg, p.o.) VSL#3 Human ↓ intestinal inflammation Montalto et al., 2010
Indomethacin (50–75 mg, p.o.) Lactobacillus plantarum Human No effect of intestinal permeability Mujagic et al., 2017
Indomethacin (75 mg, p.o.) Lactobacillus GG Human No effect on intestinal permeability Gotteland et al., 2001
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Recently, it has been reported that the combination of lactoferrin
with Bifidobacterium longum protects against diclofenac
induced-enteropathy in rats partially by modulating the TLR-
2/-4/NF-kB pathways (Fornai et al., 2020).

So far, few studies have been performed in humans to investigate
whether modulation of the gut microbiota with probiotics is an
effective therapeutic approach against NSAID-induced enteropathy,
and the results of these studies are discordant (Montalto et al.,
2013). Lactobacillus casei significantly decreases the number of
intestinal mucosal lesions in patients in the low-dose aspirin
group compared to those in the control group (Endo et al., 2011).
Furthermore, the administration of yogurt containing Lactobacillus
gasseri reduces aspirin-induced small bowel injuries and mitigates
GI symptoms in a double blind study in patients (Suzuki et al.,
2017). A probiotic mixture consisting of eight different live bacteria
(VSL#3) significantly decreases fecal calprotectin concentration, a
marker of intestinal inflammation and enteropathy, in healthy
volunteers treated with indomethacin compared to those treated
with placebo in a randomized double-blind, placebo controlled
cross-over trial (Montalto et al., 2010). Bifidobacterium breve
protects against aspirin induced small-intestinal damage in a
randomized, double-blind trial of healthy volunteers (Mortensen
et al., 2019). On the contrary, Lactobacillus plantarum strains did
not improve the intestinal permeability altered by indomethacin in a
small randomized placebo controlled cross-over study in healthy
volunteers (Mujagic et al., 2017). Similarly, ingestion of live
Lactobacillus GG reduces alteration of the integrity of the gastric,
but not the intestinal, mucosal barrier induced by indomethacin in
healthy subjects (Gotteland et al., 2001).
Frontiers in Pharmacology | www.frontiersin.org 13
In addition to the use of probiotics, rebamipide, a mucosal
protective agent clinically used for treating gastritis and peptic
ulcers, can prevent NSAID-induced small intestinal damage and
improve intestinal healing mainly by regulating the intestinal
microbiota in animals (Mizoguchi et al., 2001; Diao et al., 2012;
Tanigawa et al., 2013; Kurata et al., 2015; Lai et al., 2015) and in
humans (Niwa et al., 2008; Fujimori et al., 2011; Mizukami et al.,
2011; Kurokawa et al., 2014; Watanabe et al., 2015; Ota et al.,
2016; Table 5). Several mechanisms mediate the protective effect
of rebamipide against NSAID small intestinal injuries, including
its ability to upregulate alpha-defensin 5 gene and protein
expression in the ileal tissue, which increases the abundance of
Gram-positive bacteria and reduces Gram negative microbes, as
reported in mice (Tanigawa et al., 2013).

Additionally, as discussed earlier, inhibition of the hydrolytic
cleavage of NSAID conjugates by targeting bacterial b-
glucuronidase with small molecule reagents could represent an
alternative effective intervention to improve NSAID safety
profiles (Boelsterli et al., 2013).

In summary, therapeutic intervention targeting the gut
microbiota is a promising approach to prevent NSAID-induced
small intestinal injury, but additional data are needed from larger
clinical long term longitudinal studies to assess its clinical benefits.
Thus, well-designed trials taking in consideration physical activity
and eating habits of the volunteers and time of administration of the
probiotic should be performed to evaluate the actual role of agents
targeting the microbiota to prevent NSAID enteropathy. This will
also help to clarify the eventual differences among probiotic strains,
dose-response relationships, and the optimal duration of therapy.
TABLE 5 | In vivo studies reporting the effect of rebamipide on NSAID-induced enteropathy.

NSAID Intervention Specie Outcome Reference

Indomethacin (10 mg/kg, s.c.) Rebamipide (30–300 mg/kg, p.o.) Rat ↓ intestinal damage
↓ oxidative stress
↓bacterial translocation

Mizoguchi et al.,
2001;

Diclofenac (2.5 mg/kg, p.o.) Rebamipide (100–400 mg/kg, p.o.) Mouse ↓ intestinal permeability
↓ oxidative stress
↑ inter-cellular tight junctions

Diao et al., 2012;

Indomethacin (10 mg/kg, p.o.) Rebamipide (100 or 300 mg/kg, p.o.) Mouse ↓ intestinal damage
↑ Lactobacillales
↓ Bacteroides and Clostridium
↑ a-defensin 5 gene expression

Tanigawa et al., 2013;

Aspirin (200 mg/kg, p.o.) Rebamipide (320 mg/kg, p.o.) Mouse ↓ intestinal damage
↑ COX-2, b-catenin, and c-myc gene expression
↑ PGE2 level

Lai et al., 2015;

Indomethacin (10 mg/Kg, p.o.) Rebamipide (30 and 100 mg/Kg,
p.o.)

Rat ↓ intestinal damage
↓ Enterococcaceae and Enterobacteriaceae
↓ mucosal inflammation

Kurata et al., 2015

Diclofenac (75 mg, p.o.) Rebamipide (300 mg p.o.) Human ↓ small-intestinal mucosal injury Niwa et al., 2008
Diclofenac (75 mg, p.o.) Rebamipide (300 mg p.o.) Human No effect on small-intestinal mucosal injury Fujimori et al., 2011
Low-dose aspirin (p.o.) Rebamipide (300 mg p.o.) Human ↓ mucosal breaks on the ileum Mizukami et al., 2011
Low-dose aspirin and/or NSAID
(p.o.)

Rebamipide (300 mg p.o.) Human ↓ small-intestinal mucosal injury Kurokawa et al., 2014

Enteric coated aspirin (100 mg, p.o.) Rebamipide (900 mg p.o.) Human ↓ mucosal breaks
↓ intestinal damage

Watanabe et al., 2015

Enteric coated aspirin (100 mg, p.o.) Rebamipide (300 or 900 mg p.o.) Human No effect on intestinal lesions and intestinal
inflammation

Ota et al., 2016
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LIMITATIONS/FUTURE STUDIES

In this review, we have discussed studies that provide insight into
the reciprocal NSAID–gut microbiota interactions in animal
models and in humans. Such interactions are identified mostly
through studies using germ-free mice and animals treated with
antibiotic cocktails or colonized with specific bacterial consortia.
Additional evidence for NSAID–gut microbiota interconnectedness
may arise from metagenomics-based associations, microbiota
environment-mimicking culture-based experiments, biochemical
characterization of gut microbiota enzymes, and functional studies.

The investigation of the microbiota in animal models often fails
to predict the results obtained in humans. This is due to many
factors, including species-specific differences in gastrointestinal
anatomy, physiology and microbiota profiles; reduced microbiota
diversity and dynamics due to laboratory conditions; and genetic
similarity of used rodent strains (Nguyen et al., 2015). However, the
use of traditional animal models in microbiota studies allows
perturbations of the intestinal microbial taxa (i.e. abiotic and
gnotobiotic animals) that are necessary to help in assessing
causality of the complex host-microbiota interconnectedness and
in developing mechanistic hypotheses. Indeed, there are several
examples of gut microbiota–drug interactions characterized in mice
that have been further validated in humans, including studies with
digoxin (Saha et al., 1983; Haiser et al., 2013) and proton pump
inhibitors (Hung et al., 2015; Imhann et al., 2016).

Some of the studies discussed in this review are limited by the
fact that they often focus on fecal metagenomics. The luminal
content and different anatomical intestinal locations are
characterized by significantly different microbial communities
that also play a role into the host–gut microbiota metabolic
interactions. Moreover, 16S ribosomal RNA sequencing profiles
provide information only on the bacteria present in the gut
microbiota and not on nonbacterial members of the gut
community, like fungi, archaea, and viruses, which are also
Frontiers in Pharmacology | www.frontiersin.org 14
candidate modulators of drug metabolism and govern the
dynamic microbiota composition and functionalities.
Therefore, a holistic analysis that includes the archaea, the
virome, the phageome, and the mycobiome may provide a
more complete picture of host–microorganism-drug
interconnectedness. Indeed, fungi and parasites can metabolize
AA and produce immunomodulatory lipid mediators, including
PGE2, PGD2 and leukotrienes, some of which modulates
microbial fitness during pathogenesis (Noverr et al., 2001;
Noverr et al., 2002; Hervé et al., 2003; Tsitsigiannis et al., 2005;
Valdez et al., 2012; Kim et al., 2014).
CONCLUDING REMARKS

The investigation of the impact of selective and nonselective
NSAIDs on host/gut microbiota interactions provide new
insights into the pharmacology and metabolism of NSAIDs
and into the molecular mechanisms contributing to their
efficacy and toxicity. Despite the important consequences of
this interconnectedness for the host, the specific gut microbial
strains, genes, and metabolic pathways that mediate NSAID
disposition, efficacy and toxicity are still poorly understood. It
still remains a challenge to link microbial biotransformation to
specific enzymes and to elucidate their biological effects. Thus,
further studies to improve our understanding of how host–gut
microbiota and NSAIDs interact are needed to identify
individual factors that influence the outcome of NSAID therapy.
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