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A B S T R A C T

Background: Flexible parametric survival models (FPMs) are commonly used in epidemiology. These are pre-
ferred as a wide range of hazard shapes can be captured using splines to model the log-cumulative hazard
function and can include time-dependent effects for more flexibility. An important issue is the number of knots
used for splines. The reliability of estimates are assessed using English data for 10 cancer types and the use of
online interactive graphs to enable a more comprehensive sensitivity analysis at the control of the user is de-
monstrated.
Methods: Sixty FPMs were fitted to each cancer type with varying degrees of freedom to model the baseline
excess hazard and the main and time-dependent effect of age. For each model, we obtained age-specific, age-
group and internally age-standardised relative survival estimates. The Akaike Information Criterion and
Bayesian Information Criterion were also calculated and comparative estimates were obtained using the Ederer
II and Pohar Perme methods. Web-based interactive graphs were developed to present results.
Results: Age-standardised estimates were very insensitive to the exact number of knots for the splines. Age-group
survival is also stable with negligible differences between models. Age-specific estimates are less stable espe-
cially for the youngest and oldest patients, of whom there are very few, but for most scenarios perform well.
Conclusion: Although estimates do not depend heavily on the number of knots, too few knots should be avoided,
as they can result in a poor fit. Interactive graphs engage researchers in assessing model sensitivity to a wide
range of scenarios and their use is highly encouraged.

1. Introduction

Flexible parametric survival models (FPMs), which were first in-
troduced by Royston and Parmar, have been used in a range of settings
[1,2]. The models have been used to estimate survival in epidemiolo-
gical studies with applications involving international comparisons [3]
and they have also been adapted to clinical trials settings [4]. The
methodology has been extended to the relative survival framework in
population-based data [5]. It has also been used to assess statistical cure
[6] and to estimate the loss in life expectancy due to a cancer diagnosis
[7].

Population-based studies that include all patients in a geo-
graphically-defined population provide a measure of the effectiveness
of the healthcare system in diagnosing and treating the cancers that
arise. A commonly reported measure of cancer survival is relative
survival, which compares the all-cause survival for a group of cancer
patients to the expected survival of a comparable group in the general

population that is free of the cancer of interest [8].
An increasing number of population-based studies perform analysis

by using FPMs rather than traditional methods [9–11]. The model is
fitted on the log cumulative excess hazard scale and directly models the
effect of time by using splines. Splines are flexible mathematical func-
tions defined by piecewise polynomials, which under constraints, form
a smooth function. The points at which the polynomials join are called
knots. The number of knots, or degrees of freedom (df) that is equal to
the number of knots minus 1, specified to create the splines determines
the number of parameters to model the hazard function [12].

A small debate exists on the number of knots used for the splines.
Sensitivity analyses are often conducted to ensure that the df does not
influence the estimates. A simulation study, showed that the estimated
relative effects are insensitive to the correct specification of the baseline
hazard and that, provided enough knots are selected, complex hazard
functions can be captured [13]. They also showed that absolute effects
are well captured. Another simulation study showed that time-
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dependent effects can also be captured accurately [14].
We assess how reliable estimates from FPMs are by choosing several

df to model the log cumulative baseline excess hazard and the main and
time-dependent effect of age using English cancer data. We also de-
veloped web-based interactive graphs, where users can compare the
estimates from different models.

2. Methods

2.1. Data resources

Data consist of National Cancer Registry Data, provided by Public
Health England, on all individuals in England diagnosed with one of the
cancers of interest between the start of 2007 and the end of 2013. We
included cancer types with both high and low survival after diagnosis
and varying characteristics such as age at diagnosis. The 10 cancer
types considered are bladder, lung, colon, rectum, stomach, melanoma,
prostate, breast, ovarian cancer and Hodgkin lymphoma. Individuals
were identified using International Classification of Diseases 10
(Table 1). For patients with multiple tumours only the first tumour for
each type of cancer is considered.

2.2. Flexible parametric survival models

In this application, we only consider FPMs that are fitted on the log-
cumulative hazard scale rather than the log hazard scale. An advantage
of this way of modelling is that the corresponding function is more
stable and the process of capturing the shape of the function is easier.
FPMs explicitly estimate the log cumulative hazard by using restricted
cubic splines for tln( ) [1,2,5,15]. See Appendix A for details on splines.
A proportional hazards FPM with knots k0 for the log baseline cumu-
lative hazard is

= +x γ k xβH t s tln[ ( )] (ln( )| , )0

where t is time, γ ks t(ln( )| , )0 is a restricted cubic spline function of log
time with γ values for the parameters, x are the covariates and β the
corresponding coefficients. FPM is an extension of the Weibull model
and if only 1 df is used for the baseline hazard function, then fitting a
FPM is equivalent to fitting a Weibull model.

This is a proportional hazards model and the interpretation of the
covariates is the same as for models on the log hazard scale e.g. a cox
model. Non-proportional hazards (time-dependent effects) are easily
incorporated in the model by including interactions between covariates
and spline functions for log time

∑= + +
=

x γ k xβ δ k xH t s t s tln[ ( )] (ln( )| , ) (ln( )| , )j j j
j

D

0
1

where D is the number of time-dependent effects and δ ks t(ln( )| , )j j is
the spline function for the j th time-dependent effect with δj values for
the parameters.

Modelling time-dependent effects usually requires fewer knots than
the baseline effects because we actually model departures from the
baseline hazard.

FPMs have been extended to estimate excess mortality and relative
survival which are commonly reported measures in cancer epide-
miology.

2.3. Excess mortality and relative survival

Excess mortality is equal with the difference between the observed
(all-cause) mortality in a population of cancer patients and the expected
mortality in a comparable group.

Relative survival is the survival analogue of excess mortality and is
given as the all-cause survival among the cancer patients divided by the
expected survival in a comparable group in the general population with
similar characteristics, who are assumed to be free of the cancer of
interest [8,16]. The expected survival is considered to be known and is
obtained from available life tables.

Relative survival aims to estimate survival in a hypothetical sce-
nario where the cancer of interest is the only possible cause of death
and with some assumptions is equivalent to what is known in the sta-
tistical literature as net survival, a useful measure for comparing sur-
vival between populations, such as countries, or for studying temporal
trends [17–19].

A major advantage of relative survival is that it circumvents pro-
blems caused by the inaccuracy or non-availability of death certificates
as it does not rely on the cause of death information [16].

2.4. Sensitivity analysis

We assessed the reliability of relative survival estimates by using
data for a range of cancer types. Age was included in the models as a
continuous variable but non-linearity was allowed by using splines.
Models on population-based studies usually have non-proportional
hazards. For example, the effect of age is bigger in the beginning of the
follow-up right. Thus, the time-dependent effect of age was included in
the models. We chose varying df to model the baseline excess hazard
(i.e. 3,4,5,6,7 df) and the main (i.e. 3,4,5 df) and time-dependent effect
of age (i.e. 2,3,4,5 df) resulting in 60 FPMs for each cancer type. The
knots for the baseline excess hazard and the time-dependent effect of
age were placed at equally distributed quantiles of the log of the event
times. Additional boundary knots were also placed at the minimum and
maximum of the distribution of the log of the event times. Similarly, the
knots for the main effect of age were placed in equally distributed
quantiles of the age distribution. The model estimates are usually not
sensitive to the location of the knots [20]. Expected mortality rates
were obtained from population mortality files stratified by sex, age and
calendar year [21]

Hodgkin lymphoma affects a smaller portion of the population and
is particularly common at younger ages. The small number of events
and the different profile of the youngest and the oldest patients caused
convergence issues for some models. To enable the models to fit and
compare different scenarios, even though we allowed time-dependent
effects for the effect of age, these were limited to the linear term of the

Table 1
Number and mean age of cancer patients diagnosed between 2007–2013 in
England, per cancer type.

Cancer Typea Gender N Age(mean)

Bladder Males 44,032 73.64
Females 16,641 75.64

Lung Males 131,252 71.85
Females 105,465 71.94

Colon Males 76,937 71.14
Females 69,989 72.68

Rectum Males 50,068 69.09
Females 30,322 70.42

Stomach Males 26,996 72.01
Females 14,318 73.99

Melanoma Males 35,099 63.06
Females 37,398 59.33

Hodgkins Males 5,548 47.37
Females 4,288 46.9

Prostate Males 249,184 71.04
Females – –

Breast Males – –
Females 273,988 62.85

Ovarian Males – –
Females 39,491 63.89

a International Classification of Diseases 10: bladder cancer (C67), lung
cancer (C34), colon cancer (C18), rectum cancer (C19, C20), stomach cancer
(C16),), melanoma (C43), Hodgkins lymphoma(C81), prostate cancer (C61),
breast cancer (C50), ovarian cancer(C56).
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splines.
For each model we obtained both 1-year and 5-year, age-specific,

age-group and internally age-standardised relative survival estimates
that are common measures for population-based studies. The age-spe-
cific estimates are given for ages 55, 65, 75 and 85. The groups used for
the age-group estimates were 18–44, 45–54, 55–64, 65–74 and 75+.
For prostate cancer were however obtained for groups 18–54, 55–64,
65–74, 75–84 and 85+, as prostate cancer is frequent in elderly men.
Internally age-standardised estimates were estimated as the weighted
average of relative survival in each age group, based on the age dis-
tribution within our study population. External age standardisation is
also possible using weights from standard cancer populations [22].

With continuous data is common to have less stable results in the
extremes due to the small number of observations. An issue with re-
lative survival might be that some patients have better survival than
expected and this may occur by chance when there are few numbers,
such as in the young or elderly. This might lead to negative excess
mortality and further issues with the models’ convergence. To make
estimates on the extremes more stable and help with convergence
problems, we forced patients who were younger than the age corre-
sponding to the 2nd percentile of the age distribution of each cancer
type to have the same relative survival as patients of this cut-off age.
The same was applied for patients who were older than the age cor-
responding to the 98th percentile of the age distribution. Thus, 96% of
the age distribution was modelled continuously.

The Akaike Information Criterion (AIC) and Bayesian Information
Criterion (BIC) were calculated for each model [23,24]. Furthermore,
we obtained estimates using the Ederer II and Pohar Perme non-para-
metric methods that require no modelling assumptions, for comparison
[8,17,25]. The model with 5, 3 and 3 df for the baseline excess hazard,
the main and the time-dependent effect of age respectively is used as
the reference model. This is not consider to be the correct model and it
was selected, based on what is usually used in FPMs, to make the il-
lustration and comparison to the AIC and BIC selection criteria easier.

A period analysis with a 3-year period window between 2011 and
2013 was conducted for all the models and therefore the analysis in-
cluded only the person time that is included in the window. Period
analysis has been shown to provide good predictions for the prognosis
of recently diagnosed patients [26,27].

All statistical analyses were conducted using Stata 14 [28]. See
Appendix C for Stata code.

2.5. Interactive graphs

We also developed web-based interactive graphs that help users
understand the effect of different df on the estimates by comparing the
estimations derived by different models. Survival and hazard functions
are given over years since diagnosis and the users can choose the
models they are interested in. Both age-standardised and age-specific
estimates are provided. A major advantage of interactive graphs is
being able to control what information is displayed. Further exploration
of findings is enabled and therefore users develops a better under-
standing of the results.

3. Results

Data includes a population of more than 1.2 million cancer patients.
Patients with Hodgkin lymphoma are the youngest with the average age
to be approximately 47 years (Table 1). The oldest are bladder cancer
patients, at the mean age of 76 and 74 years for females and males
respectively.

Tables 2A and 2B show the differences in the 1-year and 5-year
relative survival estimates between the reference model and the model
selected by the AIC or BIC criterion. For the age-standardised estimates,
absolute differences remain lower than 0.5 percentage point. In spe-
cific, absolute differences between the reference model and the model Ta

bl
e
2A

D
iff
er
en

ce
s
be

tw
ee
n
th
e
es
ti
m
at
es

of
su
rv
iv
al

of
th
e
re
fe
re
nc

e
m
od

el
w
it
h
th
e
on

e
w
it
h
th
e
m
in
im

um
A
IC

an
d
BI
C
re
sp
ec
ti
ve

ly
,f
or

fe
m
al
es

as
a
w
ho

le
po

pu
la
ti
on

(s
ta
nd

ar
di
se
d)
,f
em

al
es

in
ag

e-
gr
ou

ps
or

fe
m
al
es

ag
ed

55
,

65
,7

5
an

d
85

by
ty
pe

of
ca
nc

er
.

C
an

ce
r
Ty

pe
Ti
m
e
(y
ea
rs
)

St
an

da
rd
is
ed

G
ro
up

1a
G
ro
up

2a
G
ro
up

3a
G
ro
up

4a
G
ro
up

5a
55

65
75

85

A
IC

BI
C

PP
A
IC

BI
C

A
IC

BI
C

A
IC

BI
C

A
IC

BI
C

A
IC

BI
C

A
IC

BI
C

A
IC

BI
C

A
IC

BI
C

A
IC

BI
C

Bl
ad

de
r

1
0.
04

0.
37

0.
39

0.
05

0.
64

0.
05

0.
49

0.
04

0.
23

0.
04

0.
16

0.
04

0.
46

0.
04

0.
34

0.
04

0.
17

0.
03

0.
19

0.
03

0.
50

5
−
0.
01

−
0.
24

0.
54

0.
00

−
0.
61

0.
00

−
0.
43

0.
00

−
0.
10

0.
00

0.
05

−
0.
02

−
0.
35

0.
00

−
0.
25

0.
00

0.
00

0.
00

0.
05

−
0.
02

−
0.
42

Lu
ng

1
−
0.
24

−
0.
26

−
0.
05

−
0.
47

−
0.
47

−
0.
38

−
0.
38

−
0.
19

−
0.
19

−
0.
15

−
0.
16

−
0.
30

−
0.
33

−
0.
28

−
0.
28

−
0.
14

−
0.
14

−
0.
20

−
0.
22

−
0.
35

−
0.
38

5
0.
06

0.
07

0.
22

0.
10

0.
09

0.
05

0.
04

−
0.
04

−
0.
05

−
0.
02

−
0.
02

0.
16

0.
18

−
0.
01

−
0.
01

−
0.
06

−
0.
06

0.
05

0.
06

0.
22

0.
24

C
ol
on

1
−
0.
07

0.
08

0.
22

−
0.
23

0.
24

−
0.
38

0.
12

−
0.
46

0.
01

−
0.
30

0.
00

0.
21

0.
12

−
0.
45

0.
06

−
0.
44

−
0.
01

−
0.
07

0.
05

0.
34

0.
16

5
0.
11

−
0.
08

0.
40

0.
08

−
0.
05

0.
07

−
0.
03

0.
05

−
0.
03

0.
03

−
0.
06

0.
18

−
0.
11

0.
06

−
0.
03

0.
04

−
0.
04

0.
02

−
0.
09

0.
23

−
0.
13

R
ec
tu
m

1
0.
03

−
0.
08

0.
13

0.
20

0.
14

0.
09

0.
04

0.
00

−
0.
04

−
0.
04

−
0.
12

0.
07

−
0.
12

0.
04

−
0.
01

−
0.
03

−
0.
08

−
0.
05

−
0.
15

0.
09

−
0.
12

5
−
0.
09

−
0.
14

0.
09

0.
01

−
0.
07

−
0.
04

−
0.
11

−
0.
02

−
0.
08

0.
11

0.
07

−
0.
27

−
0.
30

−
0.
05

−
0.
11

0.
03

−
0.
02

0.
18

0.
14

−
0.
45

−
0.
48

Br
ea
st

1
−
0.
16

−
0.
17

−
0.
08

−
0.
08

−
0.
06

−
0.
05

−
0.
06

−
0.
02

−
0.
07

−
0.
30

−
0.
13

−
0.
33

−
0.
44

0.
05

−
0.
06

−
0.
23

−
0.
09

−
0.
17

−
0.
20

−
0.
18

−
0.
50

5
0.
03

0.
05

0.
22

0.
01

0.
03

−
0.
10

0.
03

0.
45

0.
02

−
0.
75

0.
04

0.
44

0.
11

0.
74

0.
02

−
0.
62

0.
03

0.
17

0.
05

0.
99

0.
13

St
om

ac
h

1
−
0.
10

0.
03

−
0.
02

−
2.
43

−
0.
27

−
1.
63

−
0.
17

−
0.
84

−
0.
11

−
0.
17

−
0.
14

0.
38

0.
17

−
1.
21

−
0.
13

−
0.
49

−
0.
10

0.
11

−
0.
18

0.
48

0.
23

5
0.
20

−
0.
11

0.
55

0.
89

−
0.
13

0.
56

−
0.
13

0.
22

−
0.
07

−
0.
01

0.
08

0.
20

−
0.
20

0.
38

−
0.
11

0.
09

−
0.
02

−
0.
06

0.
16

0.
36

−
0.
40

M
el
an

om
a

1
−
0.
01

−
0.
01

0.
11

0.
00

0.
00

−
0.
01

−
0.
01

0.
03

0.
03

0.
06

0.
06

−
0.
09

−
0.
09

0.
01

0.
01

0.
05

0.
05

0.
06

0.
06

−
0.
13

−
0.
13

5
0.
00

0.
00

0.
15

0.
02

0.
02

0.
03

0.
03

0.
04

0.
04

0.
03

0.
03

−
0.
08

−
0.
08

0.
03

0.
03

0.
04

0.
04

0.
01

0.
01

−
0.
10

−
0.
10

O
va

ri
an

1
−
0.
19

−
0.
13

0.
04

0.
36

0.
06

0.
03

0.
00

−
0.
25

−
0.
13

−
0.
61

−
0.
28

−
0.
10

−
0.
16

−
0.
15

−
0.
05

−
0.
35

−
0.
21

−
1.
02

−
0.
32

0.
47

−
0.
06

5
0.
18

0.
06

0.
35

0.
28

0.
01

−
1.
25

0.
08

0.
90

0.
17

0.
69

0.
19

−
0.
16

−
0.
13

−
0.
82

0.
12

2.
15

0.
21

−
1.
71

0.
10

1.
11

−
0.
26

H
od

gk
in
s

1
−
0.
10

−
0.
10

0.
28

−
0.
02

−
0.
02

−
0.
04

−
0.
04

−
0.
10

−
0.
10

−
0.
19

−
0.
19

−
0.
34

−
0.
34

−
0.
07

−
0.
07

−
0.
14

−
0.
14

−
0.
26

−
0.
26

−
0.
39

−
0.
39

5
−
0.
01

−
0.
01

0.
01

−
0.
01

−
0.
01

−
0.
01

−
0.
01

−
0.
02

−
0.
02

−
0.
02

−
0.
02

0.
00

0.
00

−
0.
02

−
0.
02

−
0.
02

−
0.
02

−
0.
01

−
0.
01

0.
00

0.
00

a
Th

e
fi
ve

gr
ou

ps
us
ed

fo
r
th
e
ag

e-
gr
ou

p
es
ti
m
at
es

w
er
e
18

–4
4,

45
–5

4,
55

–6
4,

65
–7

4
an

d
75

+
.

E. Syriopoulou et al. Cancer Epidemiology 58 (2019) 17–24

19



chosen by the AIC criterion, for females, have a median value of 0.083
and a mean of 0.091 percentage points. Similarly, differences with the
BIC model have a median and mean equal to 0.80 and 0.110 respec-
tively and differences between the reference model and the Pohar
Perme estimates have a median value of 0.182 and mean of 0.213. The
age-standardised estimates for colon cancer female patients and pros-
tate cancer patients can also be seen graphically in Fig. 1. The minor
differences observed show that the standardised estimates do not de-
pend heavily on the choice of df. The big size of the datasets results in
narrow 95% confidence intervals. Detailed plots of standardised re-
lative survival from 18 out of the 60 scenarios can be found in the
interactive graphs.

Differences for the age-group estimates are slightly larger (Tables
2A and 2B), however most of them are lower or close to 1 percentage
point. For females, the median and mean value for absolute differences
with the AIC model are equal to 0.083 and 0.229 percentage points
respectively. Differences for the younger groups are higher but this can
be partly explained by the smaller number of patients in these groups.

Age-specific estimates are, due to their nature, more sensitive to the
number of knots, and more caution is needed when we choose df for the
splines. However, the median and mean absolute differences between
the reference model and the selection criteria remain very low.
Differences with the AIC model for females have a median of 0.108 and
a mean of 0.271 percentage points. Similarly, the median and mean
absolute difference with the BIC model are equal to 0.106 and 0.140
percentage points respectively. Age-specific estimates for females with
colon cancer are given in Fig. 2. The 5-year relative survival of a patient
diagnosed at the age of 55 and 85 years old vary the most under dif-
ferent scenarios in comparison with the other ages. A similar pattern
was observed for the 1-year relative survival estimates (Appendix B, Fig
B1). More than 3 df might be needed to model the baseline excess
hazard (Fig. 2). However, the estimates are not over-sensitive to the
number of df and differences in relative survival estimates between the
reference model and the models chosen by AIC (i.e. model with 6,3,5 df
for the baseline excess hazard, the main and the time-dependent effect
of age respectively) and BIC (i.e. model with 4,3,2 df for the baseline
excess hazard, the main and the time-dependent effect of age respec-
tively) criteria are small (Table 2A).

A bigger variation is observed in 5-year age-specific estimates for
prostate cancer (Fig. 3). The largest differences are seen among dif-
ferent df for the main effect of age and for 75 and 85 years old esti-
mates. The selection criteria suggest that a more complicated model
will be more appropriate. The AIC chooses the model with 7,4 and 4 df
for the baseline excess hazard, the main and the time-dependent effect
of age respectively. The equivalent df for the BIC are 7,3 and 3 re-
spectively. However, the differences between the reference model and
the models chosen by the selection criteria remains lower than 1 per-
centage point for all ages (Table 2B). Smaller differences were observed
for 1-year relative survival (Appendix B, Fig B2).

The results are also presented in web-based interactive graphs
available at http://pclambert.net/interactivegraphs/model_sensitivity/
model_sensitivity, a snapshot of which can be found in Fig. 4. Users can
compare the estimates for a range of models by clicking a box. Both
estimates of relative survival and excess hazard functions over years
since diagnosis are given and there is also an option to choose marginal
or age-specific estimates. For example, by moving the slider in the age
histogram that can been seen in the bottom of Fig. 4, estimates of re-
lative survival for a 70 years old female with colon cancer are pre-
sented.

4. Discussion

We performed sensitivity analyses to assess the sensitivity of esti-
mates obtained from FPMs on the number of knots chosen for the
splines by using relative survival as an example. Even though we used
relative survival to conduct the sensitivity analysis, our conclusions canTa

bl
e
2B

D
iff
er
en

ce
s
be

tw
ee
n
th
e
es
ti
m
at
es

of
su
rv
iv
al

of
th
e
re
fe
re
nc

e
m
od

el
w
it
h
th
e
on

e
w
it
h
th
e
m
in
im

um
A
IC

an
d
BI
C
re
sp
ec
ti
ve

ly
,f
or

m
al
es

as
a
w
ho

le
po

pu
la
ti
on

(s
ta
nd

ar
di
se
d)
,m

al
es

in
ag

e-
gr
ou

ps
or

m
al
es

ag
ed

55
,6

5,
75

an
d
85

by
ty
pe

of
ca
nc

er
.

C
an

ce
r

Ty
pe

Ti
m
e

(y
ea
rs
)

St
an

da
rd
is
ed

G
ro
up

1a
G
ro
up

2a
G
ro
up

3a
G
ro
up

4a
G
ro
up

5a
55

65
75

85

A
IC

BI
C

pp
A
IC

BI
C

A
IC

BI
C

A
IC

BI
C

A
IC

BI
C

A
IC

BI
C

A
IC

BI
C

A
IC

BI
C

A
IC

BI
C

A
IC

BI
C

Bl
ad

de
r

1
−

0.
14

0.
02

0.
29

−
0.
13

0.
33

−
0.
13

0.
30

−
0.
12

0.
18

−
0.
12

0.
00

−
0.
17

−
0.
05

−
0.
12

0.
26

−
0.
12

0.
11

−
0.
13

−
0.
11

−
0.
18

−
0.
04

5
−

0.
02

−
0.
35

0.
23

0.
04

0.
01

0.
04

−
0.
01

0.
03

−
0.
06

0.
02

0.
09

−
0.
06

−
0.
73

0.
04

−
0.
04

0.
02

−
0.
03

0.
00

0.
25

−
0.
09

−
1.
25

Lu
ng

1
−

0.
25

−
0.
15

−
0.
11

−
2.
30

−
0.
13

−
1.
08

−
0.
10

0.
74

−
0.
03

−
0.
82

−
0.
05

−
0.
10

−
0.
28

0.
35

−
0.
06

−
0.
10

−
0.
02

0.
07

−
0.
13

−
0.
45

−
0.
39

5
0.
08

0.
06

0.
25

−
1.
57

0.
06

−
0.
49

0.
03

0.
80

−
0.
03

−
0.
58

−
0.
03

0.
38

0.
17

0.
69

0.
00

−
0.
07

−
0.
04

0.
30

0.
01

0.
30

0.
28

C
ol
on

1
−

0.
09

−
0.
07

0.
25

−
0.
74

0.
24

0.
44

0.
07

0.
27

−
0.
07

−
0.
45

−
0.
08

0.
00

−
0.
10

0.
83

−
0.
01

−
0.
71

−
0.
10

1.
06

−
0.
04

−
1.
09

−
0.
14

5
0.
03

0.
00

0.
33

−
2.
69

−
0.
01

1.
53

0.
04

1.
10

0.
05

−
1.
09

−
0.
03

0.
38

0.
00

2.
83

0.
06

−
1.
81

0.
03

2.
88

−
0.
10

−
1.
74

0.
08

R
ec
tu
m

1
−

0.
05

−
0.
04

0.
09

−
0.
28

1.
13

0.
09

0.
50

0.
17

−
0.
09

−
0.
44

−
0.
20

0.
18

−
0.
06

0.
25

0.
17

−
0.
08

−
0.
24

−
0.
32

−
0.
10

0.
42

−
0.
05

5
−

0.
02

−
0.
10

0.
25

−
2.
70

−
0.
32

1.
01

−
0.
19

0.
44

−
0.
06

−
0.
51

0.
00

0.
11

−
0.
18

2.
17

−
0.
12

−
1.
94

−
0.
01

1.
46

−
0.
01

−
0.
36

−
0.
32

St
om

ac
h

1
0.
05

0.
13

0.
62

−
1.
07

−
0.
03

−
0.
81

−
0.
01

−
0.
41

0.
01

0.
08

−
0.
03

0.
35

0.
29

−
0.
63

0.
01

−
0.
19

0.
00

0.
34

−
0.
04

0.
31

0.
52

5
0.
07

−
0.
08

0.
29

0.
19

0.
09

0.
18

0.
02

0.
14

−
0.
01

0.
05

0.
08

0.
05

−
0.
21

0.
17

−
0.
01

0.
11

0.
01

−
0.
01

0.
12

0.
11

−
0.
49

M
el
an

om
a

1
−

0.
01

−
0.
05

0.
17

−
0.
01

−
0.
07

−
0.
17

−
0.
03

0.
31

0.
05

−
0.
02

0.
11

−
0.
17

−
0.
27

0.
12

0.
00

0.
23

0.
09

−
0.
22

0.
08

−
0.
17

−
0.
44

5
−

0.
13

−
0.
15

0.
00

−
0.
02

−
0.
03

−
0.
26

−
0.
05

0.
41

−
0.
02

−
0.
21

−
0.
02

−
0.
48

−
0.
50

0.
19

−
0.
04

0.
12

0.
00

−
0.
13

−
0.
09

−
0.
71

−
0.
74

Pr
os
ta
te

1
−

0.
20

−
0.
19

−
0.
10

−
0.
10

−
0.
07

−
0.
04

−
0.
04

−
0.
09

−
0.
06

−
0.
21

−
0.
24

−
1.
17

−
1.
04

−
0.
07

−
0.
06

−
0.
04

−
0.
04

−
0.
16

−
0.
11

−
0.
55

−
0.
65

5
−

0.
01

0.
01

0.
08

−
0.
36

−
0.
02

0.
24

0.
00

−
0.
40

0.
00

0.
46

0.
00

−
0.
28

0.
12

−
0.
01

−
0.
01

0.
08

0.
00

−
0.
41

−
0.
01

0.
98

0.
06

H
od

gk
in
s

1
0.
13

0.
13

0.
27

0.
01

0.
01

0.
06

0.
06

0.
16

0.
16

0.
32

0.
32

0.
52

0.
52

0.
10

0.
10

0.
24

0.
24

0.
44

0.
44

0.
59

0.
59

5
0.
00

0.
00

0.
24

0.
00

0.
00

0.
00

0.
00

0.
01

0.
01

0.
01

0.
01

−
0.
01

−
0.
01

0.
01

0.
01

0.
01

0.
01

0.
00

0.
00

−
0.
02

−
0.
02

a
Th

e
fi
ve

gr
ou

ps
us
ed

fo
r
th
e
ag

e-
gr
ou

p
es
ti
m
at
es

w
er
e
18

–4
4,

45
–5

4,
55

–6
4,

65
–7

4
an

d
75

+
.A

ge
-g
ro
up

es
ti
m
at
es

fo
r
pr
os
ta
te

ca
nc

er
w
er
e
ho

w
ev

er
ob

ta
in
ed

fo
r
th
e
gr
ou

ps
18

–5
4,

55
–6

4,
65

–7
4,

75
–8

4
an

d
85

+
.

E. Syriopoulou et al. Cancer Epidemiology 58 (2019) 17–24

20

http://pclambert.net/interactivegraphs/model_sensitivity/model_sensitivity
http://pclambert.net/interactivegraphs/model_sensitivity/model_sensitivity


also be applied to other settings such as FPMs that do not incorporate
the expected mortality. We have also developed web- based interactive
graphs that allow the comparison of estimates from different models.
We advocate the use of interactive graphs for reporting findings as they
allow for additional exploration and improve understanding of results
[29–31].

The results of the sensitivity analysis indicate differences between
the reference model and the models chosen by the selection criteria for
the age-standardised estimates are negligible. Age-group relative sur-
vival is less stable, among models, with slightly larger differences for
the youngest group, of whom there are fewer patients. For most of the
cancers the df for the main and time-dependent effect of age vary the
least whereas 4 df seem adequate to capture the underlying baseline
excess hazard.

Age-specific estimates are more sensitive to the number of knots

chosen but perform well. For most of the cancer types, higher differ-
entiation is observed among models with different df for the splines of
the main effect of age. However, the differences between the reference
model and the models chosen by the selection criteria remain low.
Slightly larger differences were observed for the age of 55 years old at
diagnosis for male patients with colon and rectum cancers but this can
partly be explained by the smaller number of patients at that age. For
such cancer types choosing 3 df seems insufficient for capturing the
shape of the main effect of age and more are required. More caution is
needed when interest is in age-specific estimates and the choice for the
df for the splines should be given further thought, with the hazard and
survival function of the cancer considered.

In general, when too few df are specified, the estimation may be-
come problematic and is better to specify more knots. In the models
with the highest df used for the splines, the estimates are very close

Fig. 1. Age standardised estimates for 1-year and 5-year relative survival for A) female patients with colon cancer and B) males with prostate cancer. The dots
represent the point estimates and the lines either side the 95% confidence intervals. The vertical line, in each plot, represent the estimate obtained by the reference
model. Solid, dash and dotted horizontal lines represent 3, 4 and 5 degrees of freedom, respectively, for the main effect of age. (BL: degrees of freedom for the
baseline excess hazard, TVC: degrees of freedom for the time-dependent effect of age, A: model chosen by AIC, B: model chosen by BIC, PP: Pohar Perme estimate).
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with the estimates of the reference model and the models selected by
the AIC and BIC criteria. Of course too many df should be avoided as
they can result in overfitting, especially for datasets with a small
number of observations.

Our results are consistent with results from simulation studies that
pointed out that estimates are not influenced noticeably by the number
of knots, as long as a sensible number of knots is selected [13,14]. In
large datasets, the AIC and BIC will select models with high df when a
lower value for the df provide a similar fit. In our analysis, the selection
criteria chose more complicated models but the differences in the es-
timates between the models selected by the selection criteria and the
reference model were negligible.

A major strength of our analysis is the large number of patients
involved in each cancer type that enable reliable conclusions. The
cancer types chosen, allow the assessment of FPMs for cancers with
varying prognosis and other characteristics. Furthermore, the wide
range of df selected for the splines and the 60 FPMs for each type of
cancer provided a thorough evaluation of obtained estimates.

Although this study has noteworthy strengths, we should acknowl-
edge potential limitations. The population in our data includes only
patients enrolled in one of the cancer registries in England. Populations
from other countries may have different characteristics that affect their
survival. Moreover, patients above the 98th percentile and below the
2nd percentile of the age distribution were forced to take the same
relative survival as those patients at these respective cut-off points.
Using these constraints leads to more stable estimates in the extremes
where there is less data and helps with some model convergence issues.

5. Conclusions

FPMs overcome some of the limitations that traditional methods
encounter and they have the ability to capture the shape of complex
hazard functions by using restricted cubic splines. Time-dependent ef-
fects can easily be incorporated in FPMs. We showed that age-specific,
age-group and age-standardised estimates are not over-sensitive to the
specified number of knots and that the use of restricted cubic splines is a
valid approach for time-to-event data. We also highly recommend the
use of the webtool as an easy way to visualise the differences across
different scenarios.
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Fig. 2. Estimates for 5-year relative survival for female patients with colon cancer diagnosed at 55, 65, 75 and 85 years. The dots represent the point estimates and
the lines either side the 95% confidence intervals. The vertical line, in each plot, represent the estimate obtained by the reference model. Solid, dash and dot- ted
horizontal lines represent 3, 4 and 5 degrees of freedom, respectively, for the main effect of age. (BL: degrees of freedom for the baseline excess hazard, TVC: degrees
of freedom for the time-dependent effect of age, A: model chosen by AIC, B: model chosen by BIC).
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Fig. 3. Estimates for 5-year relative survival for male patients with prostate diagnosed at 55, 65, 75 and 85 years. The dots represent the point estimates and the lines
either side the 95% confidence intervals. The vertical line, in each plot, represent the estimate obtained by the reference model. Solid, dash and dotted horizontal
lines represent 3, 4 and 5 degrees of freedom, respectively, for the main effect of age. (BL: de- grees of freedom for the baseline excess hazard, TVC: degrees of
freedom for the time-dependent effect of age, A: model chosen by AIC, B: model chosen by BIC).

Fig. 4. Snapshot from the web-based interactive graphs.
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to be published.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the
online version, at doi:https://doi.org/10.1016/j.canep.2018.10.017.
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