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Abstract: Curved beam, plate, and shell finite elements are commonly used in the finite element
modeling of a wide range of civil and mechanical engineering structures. In civil engineering,
curved elements are used to model tunnels, arch bridges, pipelines, and domes. Such structures
provide a more efficient load transfer than their straight/flat counterparts due to the additional
strength provided by their curved geometry. The load transfer is characterized by the bending, shear,
and membrane actions. In this paper, a higher-order curved inverse beam element is developed for
the inverse Finite Element Method (iFEM), which is aimed at reconstructing the deformed structural
shapes based on real-time, in situ strain measurements. The proposed two-node inverse beam
element is based on the quintic-degree polynomial shape functions that interpolate the kinematic
variables. The element is C2 continuous and has rapid convergence characteristics. To assess the
element predictive capabilities, several circular arch structures subjected to static loading are analyzed,
under the assumption of linear elasticity and isotropic material behavior. Comparisons between
direct FEM and iFEM results are presented. It is demonstrated that the present inverse beam finite
element is both efficient and accurate, requiring only a few element subdivisions to reconstruct an
accurate displacement field of shallow and deep curved beams.

Keywords: curved beam; iFEM; structural health monitoring; shape sensing

1. Introduction

Civil engineering structures are commonly exposed to a series of loading and environmental
conditions that impair their structural performance, integrity, and durability. The direct implications
are detrimental social, environmental, and economic impacts. In this context, modern technologies that
fall into the general category of Structural Health Monitoring (SHM) can potentially detect real-time
information related to on-site structural conditions. The detection of unusual structural behavior
not only contributes to reducing the uncertainty related to the monitored structure but also allows
improving the efficiency of maintenance procedures. Therefore, it is necessary to develop an algorithm
suitable for SHM that uses measured data by installed sensors. Such an algorithm should be robust,
computationally stable, and accurate under a wide range of loads, material systems, and boundary
conditions. This is of particular interest for civil engineering structures such as bridges and dams,
as well as ships, aerospace vehicles, and many others. A key technology for SHM is commonly referred
to as “shape sensing”, which allows real-time reconstruction of the structural displacements, strains,
and stresses using a network of strain sensors.
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A novel algorithm that is well suited for SHM was originally developed by Tessler and
Spangler [1–3]. The methodology, called the inverse Finite Element Method (iFEM), is formulated on
the basis of a least-squares variational principle. The iFEM approach is general enough to model a wide
variety of structures and is aimed at reconstructing the full-field displacements and strains based on in
situ, discrete strain measurements. The formulation is based upon the minimization of a least squares
functional that defines the error between analytic and measured section strains. Unlike other inverse
methods, the iFEM algorithm involves only strain–displacement relations, and therefore, the structural
response can be reconstructed without the knowledge of mechanical properties and loading conditions.
Once the displacements and strains are reconstructed, the stresses can be computed using the relevant
constitutive relations. The iFEM approach can provide accurate, stable, and fast solutions for any type
of structural domain discretized by beam, frame, plate, or shell inverse finite elements. Originally,
Tessler and Spangler [2] employed Mindlin (first-order shear deformation) theory as the kinematic
basis for iFEM, and they developed a three-node triangular inverse shell element (iMIN3) to model
plate and shell structures. Cerracchio et al. [4] applied the iMIN3 element to model composite stiffened
shell structures subject to mechanical and thermal loads. Kefal et al. [5] developed a simple and
efficient four-node quadrilateral inverse-shell element (iQS4). The iFEM approach has been further
extended to multilayered composite and sandwich plates by Cerracchio et al. [6] and Kefal et al. [7,8].
Gherlone et al. [9,10] studied the shape-sensing of truss, beam, and frame structures by way of a 3D
inverse beam element based on Timoshenko beam theory. More recently, Savino et al. [11] developed
an iFEM formulation for beam and frame structures that behave according to Bernoulli–Euler beam
theory with a consequent reduction of input strain data. To assess the robustness and accuracy of
iFEM, various experimental and numerical studies have been performed for aerospace structures by
Tessler and Spangler [2], Tessler [12], Tessler et al. [13], Quach et al. [14], Gherlone et al. [15], and for
marine structures by Kefal et al. [16], Kefal and Oterkus [17,18].

The main focus of the present work is to extend the library of iFEM inverse elements and to develop
an inverse curved beam element. Curved beams are widely used in a variety of practical applications
such as arches, arch bridges, highway construction, tunnels, circumferential stiffeners, airplane wings,
blades, and springs. Such structures are commonly modeled using curved finite elements. Due to their
initial curvature, curved beams are more efficient in transferring the loads than straight beams, since the
transfer occurs through the combined action of bending and membrane stiffnesses. Importantly,
coupling between the bending and axial deformations is a source of difficulty in solving the governing
equations. Many approaches in the literature have addressed the modeling issues associated with the
bending–membrane coupling in curved finite elements. In particular, considerable attention has been
devoted to developing suitable element shape functions for curved finite elements that include proper
representations of rigid-body modes, bending–membrane coupling, and membrane and shear locking
stiffening effects. Consequently, many efforts have focused on the choice of shape functions that best
represent the curved beam behavior. The simplest modeling strategy for curved beams is an assembly
of relatively short straight beam elements (Cyrus et al. [19], Kikuchi [20]). Such an approach generally
requires a large number of elements to obtain converged solutions. To obtain an accurate solution
independent on the number of subdivisions, it is necessary to take into account the curvature effect by
solving the governing differential equations. Ashwell and Sabir [21] discussed the use and limitations
of shape functions with and without explicit terms of rigid-body displacements, with varying depth
of the arches. Convergent solutions using a low number of elements were obtained using thick
arches and shape functions with explicit terms of rigid-body motions. Ashwell et al. [22] proposed
an element based on simple strain functions that deals satisfactorily with arches of all proportions.
By integrating the strain–displacement equations, new shape functions were obtained containing
terms expressing rigid-body displacements and deformation components. It is now widely recognized
that to satisfy the convergence condition and to have good accuracy, an adequate representation
not only of the strain-inducing motions but also of strain-free motions is necessary (Dawe [23]).
Davis et al. [24] presented a constant curvature beam finite element starting not from the displacement
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assumptions but from an integration of the exact differential equations of an infinitesimal element
in equilibrium. Dawe [25,26] investigated different curved beam finite elements, up to the quintic
polynomial order, based on independently interpolated displacement components. Computational
studies have demonstrated that using higher-order polynomials for both the radial and circumferential
displacements guarantees improved predictions even without the need to explicitly represent the
rigid-body displacements. Meck [27] showed that it is not sufficient that the displacement function
satisfies only the boundary conditions, but it should also satisfy the coupling between normal and
tangential displacements. He suggested the use of an independent interpolation of a higher order
for the radial displacement than the circumferential one to take into account the coupling and obtain
good results. However, the formulation based on displacement fields often leads to excessively stiff
behavior in thin regimes. In such analyses, the phenomenon of shear and membrane locking takes
place when lower order shape functions are used. Therefore, much attention has been focused to
overcome the locking phenomena. Stolarki and Belytschko [28] showed a complex interdependence
between shear and membrane under-integration. Hybrid-stress formulations aimed to avoiding
locking were explored as an alternative method based on equilibrium equations, constitutive relations,
and variation of the related energy function (Stolarki and Belytschko [28], Saleeb [29]). Saffari and
Tabatabaei [30], to avoid shear and membrane locking phenomena, considered the curved-beam finite
element formulation by the trigonometric function for curvature. Gimena et al. [31] proposed a new
system of twelve differential equations expressed in the global Cartesian coordinate system to simulate
the structural behaviour of a general curved beam element. The lower-triangular form permits the
determination of analytical results through successive simple integrations row by row. More recently,
Tufekci et al. [32] presented a finite element formulation for in-plane static problems of curved beams
with a continuously varying curvature and cross-section using the exact solution of the governing
differential equations of in-plane behavior of curved beams defined by Tufekci and Arpaci [33].

To achieve accurate curved beam elements capable of rigid-body motion and locking-free
behavior, higher-order polynomials are used to interpolate the element kinematics. In this study,
the iFEM theory is based upon the minimization of a least-squares functional using the kinematic
assumptions of Bernoulli–Euler curved beam theory that accounts for the membrane and bending
deformations. The curved beam element is initially formulated in a local curvilinear coordinate system
and subsequently transformed into a global Cartesian coordinate system to enable the curved beam
structures to be analyzed. The accuracy of the inverse element is assessed by way of several numerical
examples: (a) shallow, thick arch, (b) shallow, thin arch, (c) deep, thick arch, and (d) deep, thin arch.
To simulate the experimentally measured strains and to provide an accurate reference solution for
displacements and strains, high-fidelity FEM solutions are obtained using Bernoulli–Euler beam
elements. For the inverse FEM, the effects of mesh refinement are also studied.

2. Governing Equations of the Elastic Theory

The geometry of a planar curved beam under consideration is depicted in Figure 1. The curved
beam is defined by the Young’s modulus E, moment of inertia about the z axis I, cross-sectional area A,
and length L.

The differential element of the axial beam coordinate ds can be readily defined using the curvilinear
coordinates R and β (defined positive in the clockwise direction) by the equation

ds = R·dβ (1)

where R is the constant curvature radius.
The kinematics of every cross-section of the beam can be described by the circumferential

displacement u (tangential to the s coordinate), radial displacement v (orthogonal to the s coordinate),
and rotation ϕ positive in the counter clockwise direction (refer to Figure 1). Due to the intrinsic
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curvature, the kinematic equations take into account further angle variation, axial expansion,
and curvature variation, which lead to the following generalized strain–displacement relationsSensors 2020, 20, x FOR PEER REVIEW 4 of 17 
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γ = −
dv
ds

+
u
R
+ϕ (2)

ε =
du
ds

+
v
R

(3)

χ =
dϕ
ds

. (4)

Assuming the Bernoulli–Euler hypothesis that neglects shear deformation (γ = 0), and introducing
Equation (1), the two non-zero strain components become

ε =
1
R

(
du
dβ

+ v
)

(5)

χ =
1

R2

(
−

du
dβ

+
d2v

dβ2

)
. (6)

It can be seen that in the curved beam analysis, the two displacements u and v are coupled within
the strain–displacement relations.

The section strains that define the kinematic model are contained in the vector (henceforth,
bold free letters will denote matrices and vectors)

e(u) = {ε, χ}T. (7)

The constitutive relations between the stress resultants and strain for a curvilinear beam with
linear elastic behavior are

N = EA·ε (8)

M = EI·χ (9)

where EA is the axial stiffness and EI is the bending stiffness, N is the tangential force, and M is the
bending moment.
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Considering an infinitesimal length of a curved beam ds, subjected to both axial (p) and
orthogonal (q) distributed loads, the tangential, radial, and rotational equilibrium equations are
given by

1
R

dN
dβ

+
T
R
+ p = 0 (10)

1
R

dT
dβ
−

N
R

+ q = 0 (11)

1
R

dM
dβ
− T = 0 (12)

where the independent variable is the angular coordinate β, and T is the radial shear force.
The membrane-bending interaction is clearly manifested in the equilibrium equations.

3. Inverse Finite Element Method for Curved Beams

In this section, the general framework of the iFEM approach is presented. The iFEM methodology
reconstructs the deformed shape of a structure by minimizing a weighted least-squares functional Φ

with respect to the unknown degrees of freedom (DOF). For a single element, the error functional
between the section strains obtained by in situ strains measurements and analytical section strain is
expressed by

Φe(u) =
∣∣∣|ε(u) − εε|∣∣∣2 + ∣∣∣|χ(u) − χε|∣∣∣2 (13)

where the squared error norms corresponding to the membrane and bending deformations are given as

∣∣∣|ε(u) − εε|∣∣∣2 =
Le

n
·

n∑
i=1

(
ε(βi) − ε

ε
i

)2
(14)

∣∣∣|χ(u) − χε|∣∣∣2 =
Ie
z Le

Ae n
·

n∑
i=1

(
χ(βi) − χ

ε
i

)2
(15)

where Le, Ae, and Ie
z are the length of the element, the cross-sectional area, and moment of inertia

with respect to the z-axis of the section (see Figure 1), and n is the number of locations also named as
“station points” where the section strains are evaluated with coordinates βi.

The kinematic variables u are interpolated within a finite element using a set of suitable shape
functions N(β)

u(β) = N(β)·ue (16)

where ue denotes the nodal DOF of the element consistent with respect to the order of interpolation.
Thus, in the case of discretization with m elements, the total least squares functional is given by the sum

Φ =
m∑

e=1

Φe (17)

Substituting Equation (16) into Equations (14) and (15) gives the analytic section strains in terms
of the nodal DOF

e(u) = B(β)·ue (18)

where the matrix B(β) contains the derivatives of the shape functions N(β). Considering in
Equations (14) and (15) the section strain in analytical form, and minimizing the element functional
(Equation (13)) with respect to the nodal DOF, leads to the inverse element matrix equation

Se
·ue = he (19)
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where the matrix Se depends on the strain sensors locations, whereas the vector he is a function of the
measured section-strain values (Savino et al. [11]). Then, the local matrices of the discretized structure
are assembled into a global linear system of equations, performing the usual finite element assembly
operations and transformations into a global coordinate system, resulting in

S·u = h. (20)

By prescribing problem-specific displacement boundary conditions, a non-singular system matrix
provides the solution for the unknown nodal DOF. Since for a given distribution of strain sensors,
S remains unchanged, it needs to be inverted only once during the monitoring process. Consequently,
Equation (20) can be solved for the unknown displacement DOF vector, u, very efficiently. However,
the h vector is dependent on the measured strain values; thus, it needs to be updated during any
deformation cycle. The key aspect of the inverse element formulation is the choice of suitable shape
functions. In addition, a suitable number and location of strain sensors and their locations along the
structure have to be established. Finally, the reconstructed displacement field along the individual
inverse elements enables the direct calculations of element strains and stresses.

4. Element Shape Functions

The inverse curved element developed herein uses quintic polynomials to interpolate the
displacement variables to avoid problems of rigid body motions or locking. The initial configuration
of the element has at the two end nodes six DOF, which are u and v and their first and second-order
derivatives (Figure 2).

Figure 2. Two node inverse finite element.

The vector of nodal DOF is expressed as

ue =
{
u1, u′1, u′′1 , v1, v′1, v′′1 , u2, u′2, u′′2 , v2, v′2, v′′2

}T
. (21)

The displacement interpolations are expressed as the second order Hermite polynomials given in
terms of non-dimensional coordinates ξ ∈ [0, 1]

u(ξ) =
2∑

i=1

(H(2)
0i (ξ)·ui + H(2)

1i (ξ)·u′i + H(2)
2i (ξ)·u′′i ) (22)

v(ξ) =
2∑

i=1

(H(2)
0i (ξ)·vi + H(2)

1i (ξ)·v′i + H(2)
2i (ξ)·v′′i ) (23)

where H(2)
ki (i = 1, 2; k = 0, 1, 2) are the quintic Hermite polynomials (Appendix A). Thus, continuity

up to the second derivative is ensured between two adjacent elements. From Equations (5) and (6),
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it can be seen that these shape functions lead to a quintic membrane strain and a quartic curvature.
Therefore, a minimum of five station points (i.e., strain sensor positions) for each inverse element are
required to have consistency with respect to the bending curvature. In the present study, the minimum
number of station points is used.

5. Section Strain Measurements

A key step in the iFEM implementation is the evaluation of the experimental section strains
from strain-sensor measurements. Taking into account a centroid reference system of the generic
cross-section (Figure 3b), the fiber deformation in the point (zi, yi) needs to be defined (Figure 3a).
Referring to the beam differential element between sections A and A’ (Figure 3a), the length of an
undeformed fiber located at (zi, yi) is represented by

dsi =
(
R + yi

)
dβ (24)

and the length of the centroidal fiber is given by

dsG = Rdβ. (25)

Figure 3. (a) Curved beam segment; (b) Cross-section.

Starting from the assumption that plane sections remain plane and using the principle of
the superposition effect, the cross-sectional strains are given by both the axial and bending
strain contributions.

Considering only a planar beam problem, i.e., cylindrical bending in the (y, s) plane, the fiber
lengths in the deformed configuration is given by

dsG = dsG + ε0dsG (26)

dsi = dsi + dsG − dsG − yidϕ (27)

where the overmarked quantities depict the final lengths and ε0 is the centroidal axial strain.
Consequently, the fiber deformation at the point (zi, yi) is obtained by the equation

εs,i =
dsi − dsi

dsi
=
ε0dsG − yidϕ(

R + yi

)
dβ

=
R

R + yi

(
ε0 − yi

dϕ
dsG

)
. (28)
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Assuming that the length of the beam segment equals the length of the centroidal fiber, the curvature
can be defined according to Equation (4)

χ =
dϕ
dsG

. (29)

Substituting Equation (29) into Equation (18), the following equation for the generic fiber can
be obtained

εs =
R

R + y
(ε0 − yχ). (30)

Considering a configuration of two strain sensors placed on the external surface for each
cross-section (±h/2), the following system of equations is readily solved to obtain the experimental
section strains 

ε∗s,sup = R
R+ h

2

(
εε0 −

h
2χ

ε
)

ε∗s,inf =
R

R− h
2

(
εε0 + h

2χ
ε
) (31)

where ε∗s,sup and ε∗s,inf represent the input strain from the i-th strain sensor at location yi, while εε0 and
χε are the experimental section strains for the plane beam problem.

6. Numerical Examples

The study is focused on the mesh convergence and the influence of the membrane-bending terms.
The element formulation is first validated using a single curved member with a constant curvature
for a combination of slenderness ratio (R/h) and subtended angle (β), according to the classification
reported in Krishnan and Suresh [34]:

1. A thick, shallow arch clamped at one end
2. A thin, shallow arch clamped at one end
3. A thick, deep arch clamped at two ends
4. A thin, deep arch clamped at two ends.

The iFEM reconstruction analysis uses the input strain data obtained by the direct FEM analysis
performed with LUSAS software [35]. Subsequently, the iFEM predictions are assessed by the average
percent difference between the predicted and reference FEM (“computational experiment”) quantities,
given as

PD(x) = 100%

 1
n

n∑
i=1

xiFEM
i − xFEM

i

xFEM
max

 (32)

where x indicates the quantity of interest and n indicates the number of the output points. The direct
FEM model is composed of 20 beam elements based on Bernoulli–Euler theory. The element used is a
parabolically curved beam element in which the tangential and radial displacements are approximated
along the element as quadratic and cubic functions, respectively. The beam is modeled using a linear
elastic isotropic material with Young’s modulus E = 30 GPa and Poisson’s ratio υ = 0.2.

6.1. A Thick, Shallow aRch Clamped at One End

The configuration shallow-thick arch is validated by considering a curved beam of R = 5 m,
opening angle of β = 35◦, and rectangular cross-section with b = 0.3 m and h = 0.5 m (R/h = 10).
The load q = 1 KN/m is applied uniformly along the entire length of the member (Figure 4).

In the iFEM analysis, the beam is modeled using a single inverse element restrained with the
boundary conditions described above and five station points spaced by 8.75◦ (Figure 5).
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Figure 4. Boundary conditions of the shallow–thick arch.

Figure 5. Inverse finite element.

The tangential u and radial v displacements are compared with those obtained using the direct
FEM analysis. As it can be seen from the diagrams reported in Figure 6, a good agreement is achieved
using only one inverse element.

Figure 6. Comparison between inverse Finite Element Method (iFEM) and FEM results: u and
v displacements.

The accuracy of the method is evaluated also in terms of percent differences for the two
displacement components with PD(u) = 0.02% and PD(v) = 0.81%.

6.2. A Thin, Shallow Arch Clamped at One End

The shallow moderately thin arch is studied using a curved beam with radius of curvature R = 5 m,
opening angle of β = 35◦, and rectangular cross-section with the base b = 0.3 and height h = 0.1 m
(R/h = 50). The remaining properties and boundary conditions shown in Figure 7 are the same as in
the case of the shallow, thick arch example.

In this example, the iFEM analysis is performed using only a single inverse element with five
station points spaced by 8.75◦ (Figure 5). The comparison between the iFEM displacements with those
obtained by the direct FEM analysis shows the high accuracy of the present element (Figure 8).
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Figure 7. Boundary conditions of the shallow, thin arch.

Figure 8. Comparison between iFEM and FEM results.

The low difference percentage is confirmed also in this case for both tangential PD(u) = 0.06% and
radial PD(v) = 0.09% displacements.

6.3. A Thick, Deep aRch Clamped at Both Ends

The deep curved arch is considered to assess the applicability of the present element to model an
arch with a large subtended angle. The deep arch is modeled with a curved beam clamped at each end,
subjected to uniformly distributed load q = 1 KN/m. The beam is considered to have a radius R = 5 m,
an opening angle β = 180◦, and a rectangular cross-section with height h = 0.5 m (R/h = 10) and width
b = 0.3 m (Figure 9). The mechanical properties remain unchanged with respect to the previous cases.

Figure 9. Geometry, loading, and boundary conditions of the thick, deep arch.

In this case, the iFEM solutions give satisfactory results with only two inverse elements. Figure 10
shows the element discretization and station points for one, two, and three inverse-element meshes.
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Figure 10. (a) Modeling with one, (b) two, and (c) three inverse elements.

In Figure 11, the iFEM results are compared with those obtained by the direct FEM.

Figure 11. Comparison between iFEM and FEM solutions.

A slight error is observed when a single inverse element is used. In particular, the tangential
displacement is slightly overestimated, whereas the radial displacement is slightly underestimated
as compared to the direct FEM solution. However, a close agreement is achieved in the case of two
inverse elements.

The convergence plots of the average percent difference of the tangential PD(u) and radial PD(v)
displacements, as the number of elements increases, are shown in Figure 12.

Figure 12. Convergence of the tangential and radial displacements.
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As can be seen, the solutions convergence rapidly, and with only two elements, the error is less
than 1%.

6.4. A Thin, Deep Arch Clamped at Two Ends

A thin, deep arch with a radius of 5 m, thickness of 0.1 m (R/h = 50), and subtended angle of 180◦

is subjected to a uniform pressure q. All the other boundary conditions are the same as for the thick
arch problem (Figure 13).

Figure 13. Boundary conditions of the deep, thin arch.

As in the previous example, the arch is discretized using one, two, and three inverse finite elements
(Figure 14), which allows assessing the convergence of the reconstructed displacement field.

Figure 14. (a) Modeling with one, (b) two, and (c) three inverse elements.

In Figure 15, the tangential u and radial v displacements are plotted versus the angular coordinate.
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Figure 15. Comparison between iFEM and FEM solutions.

In Figure 16, the PD(u) and PD(v), corresponding to the u and v variables, are plotted against the
number of elements in the iFEM discretization.

Figure 16. Convergence diagram.

It is evident from the validation studies that the present inverse element is well suited for modeling
both thin and thick curved beams, enabling accurate reconstruction of the displacement field with only
a few inverse finite elements.

7. Conclusions

The inverse Finite Element Method (iFEM) is a robust and efficient computational method
that is designed to perform shape-sensing analysis on a wide range of structures. Based on a
variational principle that compares the analytic and measured section strains in a least-square sense,
iFEM reconstructs the full-field displacements and strains using only the discrete strain-sensor
measurements and structural topology. In this effort, the iFEM framework was used to develop a
higher-order curved inverse beam element that was subsequently applied to study the shape sensing
of circular arches. Due to the curved geometry, the inverse element was designed with reference to
rigid-body modes, bending–membrane coupling, and membrane locking. To this end, the quintic
interpolations were chosen in defining the shape functions, resulting in a two-node element with six
degrees of freedom at each node. Linear strain–displacement relations of Bernoulli–Euler curved
beam theory including membrane and bending deformations were considered without invoking
material mechanical properties and load conditions. The shape sensing capability for curved elements
was demonstrated on a simple cantilevered curved beam with different values of thickness, radius,
and subtended angle. To simulate the in situ strain sensors and provide the reference displacement
field, a direct FEM analysis was performed by adopting a high-fidelity mesh. The iFEM shape sensing
analysis highlighted the efficiency and effectiveness in predicting the structural response of arch
structures. Accurate predictions were obtained by considering few elements and station points without
showing locking and convergence problems. The full-field reconstruction of the strain field also implies
knowledge of the stress field, thus allowing for real-time damage predictions of curved structures.
Future work will examine the effectiveness of the curved inverse beam element for the cases of
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more complex loading as in geotechnical or aerodynamic configurations. Furthermore, on-field and
experimental tests will be performed in order to verify the effectiveness of the present iFEM formulation
when dealing with actual noisy data and localized strains.
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Appendix A

The second-order Hermite polynomials, which referred to the one-dimensional case with two
interpolation points, can be expressed as follows:

f(ξ) =
2∑

i=1

2∑
k=0

H(2)
ki (ξ)f

(k)
i (A1)

where f(ξ) represents the generic functions to be interpolated, the subscript i refers to the interpolation
points where the function f(ξ) is defined, the subscript k concerns the derivative degree, and H(2)

ki (ξ)

represents the quintic Hermite polynomials given by

dr H(2)
ki

dξr

(
ξp

)
= δip δkr. (A2)

Considering the combinations between p (p = 1, 2) and r (r = 0, 1, 2), Equation (A2) gives the six
conditions to calculate the unknown coefficients of the generic polynomial function

H(2)
ki (ξ) = a1 + a2ξ+ a3ξ

2 + a4ξ
3 + a5ξ

4 + a6ξ
5. (A3)

By imposing the conditions given by Equation (A2), the following quintic Hermite polynomials
can be obtained

H(2)
01 (ξ) = 1− 10ξ3 + 15ξ4

− 6ξ5 (A4)

H(2)
11 (ξ) = L

(
ξ− 6ξ3 + 8ξ4

− 3ξ5
)

(A5)

H(2)
21 (ξ) =

L2

2

(
ξ2
− 3ξ3 + 3ξ4

− ξ5
)

(A6)

H(2)
02 (ξ) = 10ξ3

− 15ξ4 + 6ξ5 (A7)

H(2)
12 (ξ) = L

(
−4ξ3 + 7ξ4

− 3ξ5
)

(A8)

H(2)
22 (ξ) =

L2

2

(
ξ3
− 2ξ4 + ξ5

)
(A9)

where ξ = φ/β ∈ [0, 1] is the non-dimensional angular coordinate with φ ∈ [0, β].
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