
CPT Pharmacometrics Syst Pharmacol. 2022;11:149–160.	 		 		 |	 149www.psp-journal.com

Received:	7	July	2021	 |	 Revised:	30	September	2021	 |	 Accepted:	25	October	2021

DOI:	10.1002/psp4.12741		

A R T I C L E

An introduction to the full random effects model

Gunnar Yngman1 |   Henrik Bjugård Nyberg1 |   Joakim Nyberg2 |   E. Niclas Jonsson2 |   
Mats O. Karlsson1,2

Gunnar	Yngman	and	Henrik	Bjugård	Nyberg	contributed	equally	to	this	work.	

1Department	of	Pharmacy,	Uppsala	
University,	Uppsala,	Sweden
2Pharmetheus	AB,	Uppsala,	Sweden

Correspondence
Mats	O.	Karlsson,	Department	of	
Pharmacy,	Uppsala	University,	
Uppsala,	Sweden.
Email:	mats.karlsson@farmaci.uu.se

Funding information
No	funding	was	received	for	this	work.

Abstract
The	 full	 random-	effects	 model	 (FREM)	 is	 a	 method	 for	 determining	 covariate	
effects	in	mixed-	effects	models.	Covariates	are	modeled	as	random	variables,	de-
scribed	by	mean	and	variance.	The	method	captures	the	covariate	effects	in	esti-
mated	covariances	between	individual	parameters	and	covariates.	This	approach	
is	robust	against	issues	that	may	cause	reduced	performance	in	methods	based	
on	estimating	 fixed	effects	 (e.g.,	 correlated	covariates	where	 the	effects	 cannot	
be	simultaneously	identified	in	fixed-	effects	methods).	FREM	covariate	param-
eterization	and	transformation	of	covariate	data	records	can	be	used	to	alter	the	
covariate-	parameter	relation.	Four	relations	(linear,	log-	linear,	exponential,	and	
power)	 were	 implemented	 and	 shown	 to	 provide	 estimates	 equivalent	 to	 their	
fixed-	effects	 counterparts.	 Comparisons	 between	 FREM	 and	 mathematically	
equivalent	full	fixed-	effects	models	(FFEMs)	were	performed	in	original	and	sim-
ulated	data,	in	the	presence	and	absence	of	non-	normally	distributed	and	highly	
correlated	covariates.	These	comparisons	show	that	both	FREM	and	FFEM	per-
form	well	in	the	examined	cases,	with	a	slightly	better	estimation	accuracy	of	pa-
rameter	interindividual	variability	(IIV)	in	FREM.	In	addition,	FREM	offers	the	
unique	advantage	of	letting	a	single	estimation	simultaneously	provide	covariate	
effect	coefficient	estimates	and	IIV	estimates	for	any	subset	of	the	examined	co-
variates,	including	the	effect	of	each	covariate	in	isolation.	Such	subsets	can	be	
used	to	apply	the	model	across	data	sources	with	different	sets	of	available	covari-
ates,	or	to	communicate	covariate	effects	in	a	way	that	is	not	conditional	on	other	
covariates.

Study Highlights
WHAT	IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Most	 existing	 methods	 for	 covariate	 modeling	 estimate	 fixed	 effects	 in	 full	
model	approaches	or	stepwise	model	building.	The	performance	of	these	meth-
ods	 is	well-	documented,	but	 they	also	have	well-	known	downsides,	such	as	 is-
sues	 with	 correlated	 covariates	 and	 potential	 multiple-	testing	 problems.	 Their	
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INTRODUCTION

Covariate	modeling	 is	 an	 integral	part	of	pharmacomet-
rics,	 where	 understanding	 the	 observed	 interindividual	
variability	(IIV)	is	central.	The	inclusion	of	subject-	specific	
predictors	on	model	parameters	can	explain	this	variabil-
ity	by	attributing	it	to	individual	features,	and	can	thereby	
improve	model	predictions.	This	can	in	turn	enable	infer-
ence	 within	 and	 between	 populations,	 and	 enhance	 the	
ability	 of	 model-	informed	 analyses	 to	 answer	 scientific	
and	clinical	questions.

Covariate	 models	 can	 be	 built	 by	 adding	 fixed-	effects	
parameter-	covariate	relations	step-	by-	step	to	gradually	ex-
plain	portions	of	the	IIV	with	covariate	effects.	The	parame-
ter	IIV	without	any	covariate	effects	represents	the	total	IIV	
parameter	variability	(TPV),	and	each	included	covariate-	
parameter	 relation	 explains	 a	 portion	 of	 this	 variability,	
leaving	 a	 gradually	 altered	 unexplained	 IIV	 parameter	
variability	 (UPV).	Stepwise	selection	of	 the	best	covariate	
model	from	multiple	competitors,	according	to	likelihood-	
ratio	tests,	has	been	automated	in	stepwise	covariate	mod-
eling.1	Although	this	approach	can	be	successful,	stepwise	
selection	 processes	 have	 a	 multiple	 testing	 problem,	 and	
may	 overestimate	 covariate	 effects	 due	 to	 selection	 bias	
and	inflated	type-	I	error,2,3	problems	that	are	exacerbated	if	
correlated	covariates	are	considered.4,5	Imposing	stringent	
selection	criteria	(α	<	0.05)	reduces	the	risk	of	type-	I	error,	
but	does	so	at	the	cost	of	reduced	power.2,6

The	full	covariate	model	has	been	suggested	as	an	alter-
native	to	stepwise	procedures	(Gastonguay5;	A	full	model	
estimation	approach	for	covariate	effects:	Inference	based	
on	 clinical	 importance	 and	 estimation	 precision,	 2004).	
In	this	approach,	which	we	will	refer	to	as	the	full	fixed-	
effects	model	(FFEM),	a	set	of	noncorrelated	covariates	is	

identified	prior	to	model	evaluation.	That	full	set	is	then	
implemented	 with	 simultaneously	 estimated	 fixed-	effect	
coefficients	 for	 each	 covariate-	parameter	 relation,	 thus	
avoiding	the	multiple	testing	problem.	If	a	more	parsimo-
nious	model	is	desired	from	the	FFEM,	e.g.,	for	prediction,	
then	 stepwise	 backward	 elimination	 can	 be	 performed	
based	 on	 statistical	 and	 clinical	 significance,7	 although	
this	may	curtail	 the	benefits	of	 the	full	model	approach.	
Alternatively,	 the	 model	 can	 be	 reduced	 by	 simultane-
ously	removing	all	relations	with	effect	coefficients	below	
a	 certain	 threshold,8	 which	 better	 maintains	 the	 advan-
tages	of	the	full	model	approach	but	does	not	account	for	
correlations	that	may	hide	a	larger	compound	effect	of	the	
removed	relations.

The	full	random-	effects	model	(FREM)	originally	pro-
posed	by	Karlsson9	also	makes	use	of	a	predefined	set	of	
covariates	in	a	full	model.	However,	instead	of	capturing	
covariate	effects	in	fixed-	effect	coefficients,	FREMs	takes	
each	 covariate	 as	 observations	 of	 individual	 deviations	
from	 a	 population	 value.	 It	 estimates	 a	 full	 IIV	 random	
effect	covariance	matrix	that	contains	parameter	IIV,	co-
variate	 IIV,	 and	 the	 covariances	 between	 the	 two.	 The	
covariate	effects	are	captured	in	the	covariances	between	
covariate	 IIV	and	parameter	 IIV.	Unlike	FFEM,	 this	 im-
plementation	of	covariate	effects	does	not	rely	on	estimat-
ing	multiple	fixed	effects	on	the	same	parameter	and	can	
therefore	 include	 correlated	 covariates	 in	 the	 analysis.	
There	are	several	successful	applications	of	FREM	in	lit-
erature10–	12	and	a	description	of	the	handling	of	missing	
covariate	data	using	FREM,13	but	an	 introduction	to	 the	
method	has	been	lacking.

An	FREM	model	estimates	the	TPV	and	the	covariate	
IIV,	and	the	estimates	cannot	be	immediately	interpreted	
in	the	same	way	as	FFEM	estimates.	To	aid	in	interpreting	

interpretation	is	also	limited	to	the	exact	set	of	covariates	included.	A	full	random	
effects	approach	that	addresses	some	of	these	limitations	has	been	proposed,	but	
a	detailed	presentation	is	lacking	in	literature.
WHAT	QUESTION DID THIS STUDY ADDRESS?
This	work	provides	a	more	detailed	introduction	to	the	full	random-	effects	model	
(FREM)	and	demonstrates	its	performance	compared	with	full	fixed-	effects	mod-
els	(FFEMs)	in	several	real	and	simulated	data	scenarios.
WHAT	DOES THIS STUDY ADD TO OUR KNOWLEDGE?
Compared	with	FFEMs,	FREM	is	less	restrictive	in	the	selection	of	covariates	to	
include	in	the	analysis,	and	much	more	informative	from	a	single	estimation.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
Covariate	effects	can	be	better	described,	better	communicated,	and	more	eas-
ily	carried	forward	to	new	analyses.	The	appropriate	covariate	sets	for	inference,	
prediction,	or	comparison	to	other	studies	may	be	different,	but	they	can	all	be	
extracted	from	a	single	FREM	estimation.
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the	 results,	 coefficients	 and	 UPV	 IIV	 variances	 that	 are	
equivalent	 to	 those	 from	 a	 corresponding	 FFEM	 can	 be	
calculated	from	the	FREM	matrix.	Although	this	involves	
an	 extra	 step	 compared	 to	 FFEMs,	 it	 also	 offers	 a	 lot	 of	
flexibility	because	the	user	can	choose	what	covariates	to	
include	at	that	stage.	The	coefficients	and	parameter	IIV	
for	any	covariate	subset	can	be	calculated	from	that	same	
estimation	of	the	full	FREM	matrix,	from	the	full	set	down	
to	the	univariate	coefficients,	the	isolated	impact	of	each	
covariate.	By	contrast,	any	interpretation	of	the	FFEM	is	
restricted	to	that	exact	model.	Each	additional	model	must	
be	 estimated	 separately,	 which	 can	 be	 time-	consuming,	
and	can	lead	back	to	multiple	testing	issues	if	the	models	
are	 compared	 statistically.	The	 FREM	 is	 mathematically	
equivalent	to	the	FFEM	for	a	wide	range	of	covariates	and	
parameter-	covariate	 relations,	 but	 challenges	 remain	 in	
handling	 time-	variations,	 nonlinearities,	 and	 covariates	
with	multinomial	distributions.

This	work	seeks	to	provide	the	definition	and	practical	
demonstration	of	the	FREM	method	that	has	been	miss-
ing	in	literature.	We	will	describe	the	FREM	approach	in	
further	 detail	 and	 compare	 its	 performance	 to	 FFEM	 in	
real	and	simulated	data.	We	will	specifically	examine	es-
timation	accuracy	in	the	presence	and	absence	of	highly	
correlated	 covariates.	 Because	 of	 how	 FREM	 represents	
covariates	using	normal	distribution	means	and	variances,	
we	 will	 also	 investigate	 the	 impact	 of	 including	 non-	
normally	 distributed	 covariates	 and	 explore	 how	 some	
common	 parameter-	covariate	 relation	 parameterizations	
can	be	implemented	in	FREM.

METHODS

FREM introduction

Consider	 an	 FFEM	 example	 model	 that	 expresses	 some	
quantity	y	 for	observation	 j	 in	 individual	 i	as	a	 function	
of	two	parameters	(P1,P2),	time	(t),	and	residual	error	(�),

with	 IIV	 and	 linear	 relationships	 with	 two	 covariates	
(C1, C2	)	on	both	parameters,

where	�P	is	the	population	value	for	parameter	P,	�CP	is	the	
coefficient	for	the	effect	of	covariate	C	on	parameter	P,	C	is	
the	population	mean	of	covariate	C,	�′

P,i
	is	the	IIV	random	

effect	for	the	UPV	(unexplained	parameter	variability	after	
covariate	 inclusion)	 on	 parameter	P,	 and	Ω�

par	 is	 the	 UPV	
random	effect	covariance	matrix.	Note	that	two	fixed-	effect	
coefficients	on	the	same	parameter	will	not	be	independently	
identifiable	if	the	two	covariates	are	highly	correlated.

In	 FREM,	 the	 data	 records	 of	 a	 covariate	 are	 consid-
ered	individual	observations	of	a	dependent	variable.	An	
FREM	 that	 is	 equivalent	 to	 the	 FFEM	 in	 Equations  1–	4	
expresses	yi,j,	C1,i,	and	C2,i,

where	�C,i	is	the	individual	deviation	from	the	covariate	pop-
ulation	value	�C	(here	�C = C),	and	�P,i	 is	the	IIV	random	
effect	for	the	TPV	(total	parameter	variability	including	IIV	
explained	by	covariates)	of	parameter	P.

For	 the	 purposes	 of	 this	 work,	 we	 assume	 a	 single	
error-	free	observation	of	each	covariate	for	each	individ-
ual,	and	use	normally	distributed	random	effects	to	cap-
ture	properties	of	the	covariate	distribution.	It	is	expected	
that	when	covariate	observations	are	error-	free,	the	calcu-
lation	of	means,	variances,	and	covariances,	which	is	the	
aim	of	the	estimation,	is	independent	of	the	actual	covari-
ate	 distribution.	 Because	 of	 this,	 FREM	 can	 be	 used	 for	
covariates	of	any	underlying	distribution.

The	 FREM	 approach	 captures	 covariate-	parameter	
relations	in	the	full	IIV	covariance	matrix	ΩFREM,	which	
consists	of	the	IIV	random	effect	covariance	matrices	for	
parameters	 (Ωpar),	covariates	 (Ωcov),	and	the	covariances	
between	parameter	random	effects	and	covariate	random	
effects	(Ωpar,cov),	(i.e.,	for	this	example):

(1)yi,j=P1,itj+P2,i+�i,j, �i,j∼N(0, �
2)

(2)

P1,i = �P1 + �C1P1

(
C1,i − C1

)
+ �C2P1

(
C2,i − C2

)
+ ��P1,i

(3)

P2,i = �P2 + �C1P2

(
C1,i − C1

)
+ �C2P2

(
C2,i − C2

)
+ ��P2,i

(4)

[
𝜂�
P1,i

𝜂�
P2,i

]
∼ N

(
�⃗0 ,Ω�

par

)

(5)
⎧⎪⎨⎪⎩

yi,j=P1,itj+Pi+�i,j, �i,j∼N
�
0, �2

�
C1,i=�C1 +�C1,i

C2,i=�C2 +�C2,i

(6)P1,i = �P1 + �P1,i

(7)P2,i = �P2 + �P2,i

(8)

⎡⎢⎢⎢⎢⎣

𝜂P1,i

𝜂P2,i

𝜂C1,i

𝜂C2,i

⎤⎥⎥⎥⎥⎦
∼ N

�
�⃗0 ,ΩFREM

�

(9)ΩFREM =

�
Ωpar Ωcov,par

Ωpar,cov Ωcov

�
=

⎛
⎜⎜⎜⎜⎜⎝

�2P1
�P2P1 �C1P1 �C2P1

�P1P2 �2P2
�C1P2 �C2P2

�P1C1 �P2C1 �2C1
�C2C1

�P1C2 �P2C2 �C1C2 �2C2

⎞⎟⎟⎟⎟⎟⎠
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From	 this	 matrix,	 we	 can	 calculate	 the	 covariate-	
parameter	 relation	 coefficients	 and	 UPV	 for	 any	 com-
bination	 of	 included	 covariates	 (i.e.,	 the	 parameter	
distributions	conditional	on	any	subset	of	covariates).	In	
the	 present	 example,	 the	 coefficients,	 conditional	 on	 C1	
and	C2,	are	available	as	the	matrix	B:

For	the	simplest	case	where	the	effect	of	one	covariate	
is	 considered	 in	 isolation,	 the	coefficients	are	 calculated	
from	FREM	results	as	the	ratios	of	the	parameter-	covariate	
covariances	and	the	variance	of	the	covariate,	i.e.,	condi-
tional	only	on	C1:

These	 are	 the	 univariate	 coefficients	 that	 capture	 the	
effects	of	a	single	covariate	without	the	influence	of	any	
other.	The	corresponding	UPV,	conditional	only	on	C1,	can	
be	similarly	calculated:

For	a	more	in-	depth	description	of	conditional	coeffi-
cients,	see	Supplementary	Material	SC.

The	 FREM	 in	 Equations  5–	8	 is	 equivalent	 to	 a	 lin-
ear	 covariate-	parameter	 relation.	 Other	 FREMs	 that	 are	
equivalent	to	other	fixed-	effect	covariate	effect	models	can	
be	formulated	by	altering	the	IIV	parameterization	in	the	
FREM,	 by	 transforming	 the	 covariate	 observation	 data,	
or	by	a	combination	of	the	two.	Four	common	covariate-	
parameter	 relations	were	 implemented	 in	 this	work	and	
are	shown	in	Table 1.

Experiments

A	 previously	 developed	 model	 of	 circulating	 neutrophil	
counts	after	docetaxel	treatment	with	original	data	from	
601	patients,14	was	selected	as	a	test	case	for	investigating	
FREM	 and	 comparing	 it	 to	 FFEM.	 The	 model	 incorpo-
rated	five	compartments	(3	transit	compartments),	addi-
tive	 and	 proportional	 residual	 error,	 and	 four	 structural	
parameters:	neutrophil	baseline	(base),	mean	transit-	time	
(MTT),	slope	of	drug	effect	(slope),	and	feedback	mecha-
nism	power	(γ).	To	shorten	runtimes	γ	was	fixed	to	0.154.	
The	remaining	three	parameters	were	parameterized	with	
exponentially	distributed	IIV.

Five	 covariates	 were	 available	 in	 the	 original	 data:	
age	(years),	sex	(male	or	female),	serum	level	of	α1-	acid-	
glycoprotein	(AAG;	g/L),	performance	status	grade	(perf;	
0,	1,	or	2),	and	prior	chemotherapy	(yes	or	no).	Five	pa-
tients	had	no	performance	status	observations	and	were	
excluded	from	all	experiments,	leaving	596	patients	with	
no	 missing	 covariate	 observations.	 All	 covariate	 correla-
tions	were	low	(<40%).

The	 FREM	 implementation	 considers	 only	 continu-
ous	 and	 dichotomous	 covariates,	 and	 the	 trichotomous	
perf	 covariate	 was	 therefore	 dummy-	coded15	 according	
to	 Equation  13	 into	 perf01	 and	 perf12,	 for	 a	 total	 of	 six	
covariates.

All	 simulations	 and	 estimations	 were	 performed	 using	
NONMEM16	 with	 the	 stochastic	 simulation	 and	 estima-
tion	 procedure	 from	 Perl-	speaks-	NONMEM.17	 Importance	

(10)B=

(
�C1P1 �C2P1
�C1P2 �C2P2

)
=Ωpar,covΩ

−1
cov

(11)�C1P1 =�C1P1∕�
2
C1
, �C1P2 =�C1P2∕�

2
C1

(12)�2
�

P1
=�2P1

−�C1P1�C1P1 , �2
�

P2
=�2

�

C1P2
−�C1P2�C1P2

(13)perf01=

⎧⎪⎨⎪⎩

1, ifperf=0

1, ifperf=1

0, ifperf=2

, perf12=

⎧⎪⎨⎪⎩

0, ifperf=0

1, ifperf=1

1, ifperf=2

T A B L E  1 	 Equivalent	FFEM	and	FREM	parameterizations	of	four	common	continuous	covariate-	parameter	relations

Covariate- parameter relation

FFEM FREM

IIV parameterization IIV parameterization Covariate data transformation

Linear Pi = �P + �CP
(
Ci − C

)
+ ��

P,i
Pi = �P + �P,i
Ci = C + �C,i

–	

Log-	linear Pi = �P + �CP
(
lnCi − lnC

)
+ ��

P,i
Pi = �P + �P,i
Ci = lnC + �C,i

Log-	transformed

Exponential Pi = �Pe
�CP(Ci−C)+��P,i Pi = �Pe

�P,i

Ci = C + �C,i

–	

Power
Pi = �P

(
Ci
CGM

)�CP
e�

�
P,i

Pi = �Pe
�P,i

Ci = lnC + �C,i

Log-	transformed

Abbreviations:	�CP,	covariate-	parameter	effect	coefficient;	CGM,	covariate	population	geometric	mean;	Ci,	individual	covariate	value;	C,	population	mean	
of	covariate;	FFEM,	full	fixed-	effects	model;	FREM,	full	random-	effects	model;	IIV,	interindividual	variability;	lnC,	population	mean	of	log-	transformed	
covariate;	�P,	population	parameter	value;	�′

P,i
,	individual	deviation	from	population	value	unexplained	by	covariates;	�i,	total	individual	deviation	from	

population	value;	Pi,	individual	parameter	value.



   | 153AN INTRODUCTION TO FREM

sampling	with	mode	a	posteriori	(IMPMAP)	was	the	main	
estimation	method.	In	order	to	estimate	FREMs	without	re-
sidual	error	on	the	covariate	model	in	NONMEM,	an	addi-
tive	residual	error	with	a	very	small,	fixed	variance	was	added	
to	 the	 covariate	 observation	 model	 (see	 Supplementary	
Material	SA).	Data	analysis	and	transformations	were	per-
formed	in	R18	with	figures	by	ggplot219	and	corrplot.20

Original data comparison to FFEM

To	demonstrate	the	FREM	method,	and	its	ability	to	pro-
duce	coefficients	and	variability	 for	any	covariate	subset	
from	a	single	estimation,	FREM	coefficient	values	for	the	
complete	set	of	covariates	and	two	covariate	subsets	were	
compared	 to	 the	 corresponding	 fixed-	effects	 estimates.	
Three	FFEMs	were	estimated	with	covariate	effects	on	all	
estimated	structural	parameters,	one	including	all	six	co-
variates,	one	including	a	three-	covariate	set	(AAG,	perf01,	
and	perf12)	and	one	including	a	single	covariate	(AAG).	
The	conditional	coefficients	and	UPV	for	the	full	set	and	
the	two	subsets	were	calculated	from	a	single	FREM	es-
timation	 including	all	 six	covariates	 (see	Supplementary	
Material	SA).

Simulated data comparison to FFEM

The	consistency	of	FREM	compared	to	FFEM	was	examined	
in	 a	 simulation	 experiment.	 An	 FFEM	 simulation	 model	
with	18	covariate-	parameter	relations	(see	Supplementary	
Material	SB)	was	used	to	generate	150	datasets.	The	simu-
lated	datasets	were	then	re-	estimated	using	both	FFEM	and	
FREM	(initialized	similarly),	and	the	covariate-	parameter	
relation	coefficients	and	UPV	were	compared	with	respect	
to	accuracy	and	agreement	between	methods.

High correlation

To	 investigate	 FREM	 performance	 in	 the	 presence	 of	
highly	correlated	covariates,	a	simulation	experiment	was	
performed	with	AAG	and	a	highly	correlated	derived	bi-
nary	covariate,	AAGhi:

The	breakpoint	(1.35)	was	chosen	such	that	half	of	the	
individuals	were	assigned	 to	each	category,	and	resulted	
in	 76%	 correlation	 between	 AAG	 and	 AAGhi.	 An	 FFEM	
simulation	model	with	six	covariate-	parameter	relations,	

AAG	 and	 AAGhi	 on	 each	 of	 base,	 MTT,	 and	 slope	 (see	
Supplementary	 Material	 SB)	 was	 used	 to	 generate	 228	
datasets.	Similarly	initialized	FREM	and	FFEM	methods	
were	then	re-	estimated	on	each	dataset,	and	the	covariate-	
parameter	relation	coefficients	and	UPV	were	compared.

Parameterizations

The	four	covariate-	parameter	relations	defined	in	Table 1,	
linear,	log-	linear,	exponential,	and	power,	were	applied	to	
the	two	continuous	covariates,	age	and	AAG.	Equivalent	
FREM	and	FFEM	estimates	of	covariate-	parameter	effect	
coefficients	and	UPV	were	compared.

Non- normal covariate distributions

The	 robustness	 of	 the	 FREM	 approach	 when	 applied	 to	
covariates	 of	 non-	normal	 distributions	 was	 tested	 by	
comparing	estimates	for	original	data	and	data	with	log-	
transformed	observations	of	the	two	available	continuous	
covariates,	age	and	AAG.	An	FREM	model	with	age	and	
AAG,	and	log-	normally	distributed	parameters,	was	esti-
mated	on	the	two	datasets,	and	the	estimates	of	covariate-	
parameter	effect	coefficients	and	UPV	were	compared.

RESULTS

Original data comparison to FFEM

The	FREM	and	FFEM	methods	were	successfully	applied	
to	 the	original	data.	The	estimated	FREM	matrix	 is	pre-
sented	on	correlation	scale	in	Figure 1,	together	with	a	co-
variate	correlation	matrix	from	R	for	comparison.

Covariate-	parameter	 relation	 coefficients	 and	 UPV	
covariance	matrices	 for	all	 three	scenarios	could	be	accu-
rately	calculated	from	this	single	FREM	estimation,	closely	
matching	 the	results	of	 the	 three	FFEM	estimations.	The	
AAG	coefficients	and	UPV	matrices	from	the	three	FFEM	
models	are	compared	to	their	FREM	equivalents	in	Table 2.

Simulated data comparison to FFEM

The	 common	 model	 parameters,	 structural	 parameters,	
residual	 error,	 and	 IIV	 covariance	 matrix	 showed	 no	
relevant	 differences	 in	 re-	estimation	 accuracy	 between	
FREM	 and	 FFEM,	 although	 FREM	 IIV	 covariance	 ma-
trix	estimates	had	a	tendency	toward	higher	precision,	as	
shown	in	Figure 2.	The	mean	of	the	root	mean	squared	er-
rors	(RMSEs)	of	the	18	coefficient	estimators	were	0.0272	

(14)AAGhi=

{
0, if AAG<1.35

1, if AAG≥1.35
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F I G U R E  1  Correlation	matrix	of	parameters	(base,	MTT,	and	slope)	and	covariates	(age,	AAG,	sex,	perf01,	perf12,	and	PC;	framed)	from	
FREM	estimation	on	original	data	(left),	as	compared	to	empirical	correlation	matrix	of	covariates	from	R	(right).	MTT,	mean	transit-	time;	
PC,	prior	chemotherapy;	PERF,	performance	status	grade

T A B L E  2 	 AAG	covariate-	parameter	relation	coefficients	and	UPV	matrices	from	FREM	and	FFEM	for	three	covariate	sets

Covariate set Method

AAG effect coefficients UPV covariance matrix

βAAG,base βAAG,MTT βAAG,slope ωbase ωMTT ωslope

Full	set	(age,	AAG,	sex,	perf01,	perf12,	PC) FREM 0.290 −0.0247 −0.480 ωbase 0.106

ωMTT −0.00359 0.0224

ωslope −0.019 0.015 0.145

FFEM 0.291 −0.0247 −0.481 ωbase 0.106

ωMTT −0.00356 0.0224

ωslope −0.019 0.015 0.144

Three	covariates	(AAG,	perf01,	perf12) FREM 0.336 −0.0211 −0.490 ωbase 0.117

ωMTT −0.00325 0.0225

ωslope −0.0226 0.0154 0.148

FFEM 0.335 −0.0215 −0.491 ωbase 0.117

ωMTT −0.00333 0.0225

ωslope −0.022 0.0158 0.148

One	covariate	(AAG) FREM 0.372 −0.0246 −0.506 ωbase 0.121

ωMTT −0.00356 0.0226

ωslope −0.0247 0.0155 0.149

FFEM 0.372 −0.0249 −0.507 ωbase 0.122

ωMTT −0.00357 0.0226

ωslope −0.0239 0.016 0.149

The	FREM	results	were	calculated	from	a	single	estimation	using	the	full	set	of	covariates,	while	the	FFEM	results	are	estimated	separately	for	each	covariate	set.
Abbreviations:	AAG,	serum	level	of	α1-	acid-	glycoprotein;	FFEM,	full	fixed-	effects	model;	FREM,	full	random-	effects	model;	MTT,	mean	transit-	time;	perf,	
performance	status	grade;	UPV,	unexplained	parameter	variability.
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and	0.0271	for	FFEM	and	FREM,	respectively.	The	ratio	
of	 the	mean	of	 the	standard	deviation	(of	 the	coefficient	
estimates)	 was	 1.0015	 (FFEM/FREM).	 See	 Figure  3	 for	
a	 graphical	 overview	 of	 the	 FFEM,	 multivariate	 FREM	
(conditional	 on	 all	 6	 covariates),	 and	 univariate	 FREM	
coefficient	 estimation	 accuracy.	 The	 higher	 precision	 of	
the	univariate	FREM	coefficients	is	due	to	correlated	co-
variates	being	disregarded,	and	the	univariate	coefficients	
describing	the	effect	of	that	single	covariate	in	isolation.

High correlation

Multivariate	coefficients	and	UPV	estimates	from	FREM	
and	FFEM	were	very	similar.	The	mean	of	the	RMSEs	of	
the	six	coefficient	estimators	were	0.0412	for	both	FFEM	
and	FREM,	and	the	ratio	(FFEM/FREM)	of	the	mean	of	
the	 standard	 deviation	 of	 the	 coefficient	 estimators	 was	
1.0005.	 Univariate	 covariate-	parameter	 coefficients	 cal-
culated	from	the	FREM	estimation,	demonstrates	higher	
estimation	 precision	 than	 multivariate	 estimates	 (see	
Figure  4),	 showing	 how	 univariate	 coefficients	 can	 be	
utilized	in	the	presence	of	highly	correlated	covariates.	A	
similar	 trend	 was	 seen	 for	 the	 previous	 experiment,	 see	
Figure 3,	although	the	effect	is	not	as	pronounced	there,	
due	to	the	covariates	being	less	correlated.

Parameterizations

The	 four	 covariate-	parameter	 relation	 implementa-
tions	all	produced	coefficients	and	UPV	estimates	to	the	

equivalent	FFEM	models,	as	shown	in	Table 3.	Parameter	
uncertainty	was	small	for	both	methods,	at	most	4.77%	co-
efficient	 of	 variation	 in	 FREM	 (�AAG,MTT)	 and	 4.27%	 in	
FFEM	(�AAG,MTT	)	for	log-	normally	distributed	parameters.

Non- normal covariate distributions

The	 expected	 empirical	 age–	AAG	 covariance	 matrix,	
given	the	current	FREM	parameterization,	was	accurately	
estimated	 using	 both	 original	 and	 log-	transformed	 data.	
See	 the	 linear	 and	 log-	linear	 FREM	 results	 in	 Table  3,	
where	accurate	estimates	of	coefficients	and	UPV	are	de-
pendent	on	accurate	covariate	covariance	matrices.

DISCUSSION

Experiments	in	both	original	and	simulated	data	show	that	
both	 FREM	 and	 FFEM	 can	 accurately	 estimate	 the	 base	
model	parameters,	 the	IIV,	and	the	covariate	effects.	The	
results	of	the	simulation	data	comparison	suggest	that	the	
FREM	estimate	of	the	parameter	IIV	covariance	matrix	is	
slightly	more	precise,	particularly	the	off-	diagonal	elements	
of	 the	 UPV	 IIV	 covariance	 matrix	 (see	 Figure  2).	 This	 is	
likely	due	to	FREM	estimating	the	TPV,	which	is	more	pre-
cise	than	the	UVP	IIV	obtained	after	 including	structural	
covariate	relationships.	The	same	behavior	was	observed	in	
the	high	correlation	experiment	(results	not	shown).

A	unique	feature	of	FREM	is	its	ability	to	provide	coef-
ficient	estimates	for	any	subset	of	covariates	from	a	single	
estimation.	The	first	conditional	coefficients	to	consider	

F I G U R E  2  Re-	estimation	accuracy	for	structural	parameter	population	values	and	residual	error	(left),	and	the	unexplained	parameter	
variability	(UPV)	covariance	matrix	(right).	Accuracy	is	here	calculated	as	estimated	mean	value	minus	the	true	value,	divided	by	the	true	
value.	FFEM,	full	fixed-	effects	model;	FREM,	full	random-	effects	model;	IIV,	interindividual	variability
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are	the	univariate	FREM	coefficients.	These	provide	pre-
cise	measures	of	the	explanatory	effect	of	each	covariate	
in	isolation,	making	them	very	useful	tools	in	covariate	
analyses.	They	are	especially	helpful	in	communicating	
covariate	effects,	because	 it	 is	not	necessary	 to	 include	
any	caveats	or	conditional	assumptions	regarding	other	
covariates.	The	accuracy	of	these	univariate	coefficients	
is	seen	in	Figures 3	and	4,	where	the	multivariate	coeffi-
cients	are	less	accurate	due	to	the	inclusion	of	correlated	
covariates.	 One	 aim	 of	 removing	 correlated	 covariates	

in	 FFEM	 is	 to	 obtain	 coefficient	 estimates	 that	 are	 es-
sentially	 univariate,	 but	 their	 highly	 correlated	 nature	
means	that	either	many	covariates	must	be	excluded,	or	
some	correlations	must	be	accepted.	To	acquire	similar	
metrics	in	fixed-	effects	methods,	the	effects	of	each	co-
variate	 must	 instead	 be	 estimated	 separately,	 resulting	
in	a	large	number	of	models,	and	potentially	introduc-
ing	bias	and	uncertainty.

Beyond	the	univariate	coefficients,	we	have	also	shown	
how	 the	 results	 of	 any	 covariate	 subset	 can	 be	 retrieved	

F I G U R E  3  Re-	estimation	accuracy	for	parameter-	covariate	relation	coefficients	estimated	by	FFEM	and	FREM,	as	well	as	univariate	
FREM	coefficients	calculated	from	the	FREM	estimation.	Each	column	of	panels	presents	one	parameter,	and	each	row	one	covariate.	
Accuracy	is	here	calculated	as	estimated	coefficient	value	minus	the	true	coefficient	value,	divided	by	the	standard	deviation	of	the	covariate.	
The	reason	for	normalizing	to	the	standard	deviation	is	to	be	able	to	compare	univariate	and	multivariate	coefficients.	FFEM,	full	fixed-	
effects	model;	FREM,	full	random-	effects	model;	PC,	prior	chemotherapy;	Perf,	performance	status	grade
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from	 a	 single	 FREM	 estimation.	 The	 ability	 to	 include	 a	
large	set	of	covariates	 in	 the	FREM	estimation,	and	 then	
condition	the	analysis	on	different	subsets,	has	several	ap-
plications.	The	results	of	the	full	set	may,	for	example,	be	
more	relevant	for	inference,	whereas	a	limited	set	may	be	
more	useful	for	prediction.	High	quality,	covariate-	rich	data	
may	provide	 the	opportunity	 to	estimate	many	predictive	
relationships	in	a	particular	model,	but	only	some	of	these	
may	be	available	in	a	specific	population	where	the	model	is	
to	be	applied.	Such	adjustments	are	possible	from	the	single	
FREM	estimation.	The	impact	of	knowing	different	sets	of	
covariates	can	also	be	elucidated	without	making	changes	
to	the	model,	which	in	turn	can	help	consolidate	data	from	
different	trials	or	guide	the	design	of	future	trials.

The	final	subset	to	consider	is	the	empty	set	(i.e.,	 the	
FREM	IIV	estimates	conditioned	on	no	covariates).	It	may	
be	argued	that	this	is	obtainable	from	estimating	the	base	
model	 without	 covariate	 effects,	 but	 two	 subtleties	 need	
to	be	considered:	 (i)	 the	estimation	uncertainty	may	dif-
fer,	 especially	 because	 covariate	 observations	 add	 infor-
mation;	and	(ii)	TPV	is	not	necessarily	equal	to	explained	
parameter	 variability	 +	 unexplained	 parameter	 variabil-
ity.21	The	differences	of	uncertainty	in	FFEM	and	FREM,	
as	well	as	the	different	approaches	to	retrieve	uncertainty	
of	 the	calculated	measures	of	FREM	(conditional	coeffi-
cients	 and	 variability),	 have	 not	 been	 explored	 and	 war-
rants	further	study.	Either	propagation	of	uncertainty	or	
empirical	simulation	retrieval	may	be	attempted.	For	the	
latter,	 the	 differences	 in	 explained	 and	 unexplained	 pa-
rameter	variability	have	not	been	explored	in	depth	either.	
However,	 the	perspectives	 that	 the	natural	separation	of	
TPV	and	UPV	provide	is	an	advantage	of	FREM.

Although	 the	 effects	 of	 any	 covariate	 subset	 on	 all	
parameters	 can	 be	 extracted	 from	 the	 FREM	 estimates,	

it	 is	 not	 trivial	 to	 exclude	 specific	 relations.	This	 means	
that	 physiologically	 improbable	 effects,	 such	 as	 creati-
nine	clearance	on	absorption	rate,	will	be	present	 in	the	
FREM	method	as	long	as	there	is	a	non-	zero	correlation	
between	 individual	 values	 of	 the	 parameter	 and	 the	 co-
variate.	Keeping	all	relations	maintains	the	benefits	of	the	
full	model	approach,	acknowledges	 imperfections	 in	 the	
data,	and	avoids	bias.	Specific	covariate	effects	with	strong	
support,	 such	 as	 maturation	 of	 clearance	 or	 allometric	
scaling,	can	be	implemented	before	FREM	is	applied.

We	 have	 shown	 how	 to	 implement	 four	 common	
parameter-	covariate	relations	in	FREM	and	obtain	coeffi-
cient	estimates	equivalent	to	fixed-	effect	implementations.	
Although	additional	relations	can	undoubtedly	be	imple-
mented,	 there	 are	 relations	 that	 cannot	 be	 formulated	
for	FREM.	This	does	not	exclude	the	use	of	FREM,	but	it	
means	 that	 calculated	 coefficients	 have	 a	 different	 scale	
than	those	from	an	FFEM	method	would.	This	restriction	
does,	however,	come	with	some	subtle	advantages.	For	ex-
ample,	a	parameter	restricted	to	[0,1]	with	logit-	normally	
distributed	IIV	requires	no	extra	consideration	for	restrict-
ing	the	effects	to	the	same	domain.

As	observed	 in	 the	non-	normal	covariate	distribution	
experiment,	covariates	are	not	required	to	be	normally	dis-
tributed	for	FREM	to	produce	the	expected	results.	This	is	
also	supported	by	the	accurate	estimation	of	coefficients	
for	categorical	covariates	in	other	experiments.	All	that	is	
required	 is	 that	 the	 estimation	 method	 can	 produce	 the	
arithmetic	mean	and	variance	of	 the	covariates	 (i.e.,	 the	
normal	 distribution	 parameterization),	 even	 if	 the	 true	
distribution	is	not	a	multivariate	normal.

The	 presented	 examples	 do	 not	 address	 data	 with	
multiple	 covariate	 observations	 per	 subject	 or	 missing	
covariate	observations.	Multiple	observations	can	simply	

F I G U R E  4  Re-	estimation	accuracy	
for	multivariate	parameter-	covariate	
relation	coefficients	estimated	by	FFEM	
and	FREM,	as	well	as	univariate	FREM	
coefficients	calculated	from	the	FREM	
estimation.	Accuracy	is	here	normalized	
to	the	standard	deviation	of	the	covariate	
in	order	to	compare	the	multivariate	and	
univariate	coefficients.	FFEM,	full	fixed-	
effects	model;	FREM,	full	random-	effects	
model;	MTT,	mean	transit-	time
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be	ignored	by	using	a	baseline	or	average	value,	but	there	
may	be	valuable	information	in	these	variations	that	can	
be	 extracted	 in	 several	 ways.	 Random	 variations	 can	
be	captured	by	introducing	a	residual	error	term	in	the	
FREM	 covariate	 model,	 and	 any	 time-	dependence	 of	
time-	varying	covariates	can	be	modeled	there	as	well.	It	
is	also	possible	to	consider	observations	at	different	oc-
casions	as	separate	covariates	and	estimating	their	cova-
riance	with	interoccasion	random	effects.11	For	missing	
covariate	observations,	 there	 is	an	inherent	support	 for	
the	handling	of	these	in	the	covariate	covariance	matrix	
estimated	 by	 FREM.	 This	 topic	 is	 further	 explored	 by	
Nyberg	et	al.13

Estimation	efficiency	was	not	an	aim	of	this	work,	and	
all	 estimations	 used	 identical	 IMPMAP	 settings	 for	 par-
simonious	reasons.	Both	gradient-	based	estimation	meth-
ods,	 such	 as	 first-	order	 conditional	 estimation	 (FOCE),	
and	 expectation	 maximization	 (EM)	 methods,	 such	 as	
IMPMAP,	can	be	suitable	for	FREM	estimation.	The	au-
thors	 have	 observed	 minimization	 issues	 with	 FOCE	 in	
some	 models.	This	 may	 be	 caused	 by	 the	 FREM	 matrix	
having	a	small	positive-	definite	space,	and	can	sometimes	
be	alleviated	by	using	an	EM	method.	Another	reason	to	
consider	EM	methods	is	that	the	FREM	method	adds	ad-
ditive	 random	 effects	 with	 known	 means	 and	 sampling	
variances,	 which	 enables	 efficient	 Markov	 chain	 Monte	
Carlo	sampling.	The	FREM	may	also	be	suitable	 for	 lin-
earization	around	the	population	estimates,22	a	principle	
that	has	previously	been	successfully	applied	to	step-	wise	
covariate	modeling.23

CONCLUSION

We	 have	 proposed	 FREM,	 a	 full	 random	 effects	 ap-
proach	to	covariate	modeling.	We	have	demonstrated	its	
unique	 advantages	 over	 full	 models	 of	 fixed	 effects,	 and	
have	discussed	its	current	 limitations	regarding	the	data	
and	 covariate-	parameter	 relations	 that	 it	 supports.	 The	
advantages	 include	 covariate	 correlation	 management	
and	 conditional	 interpretations	 of	 covariate	 effects.	 Our	
results	 support	FREM	as	a	more	 informative	alternative	
to	FFEM.	We	have	also	highlighted	areas	where	 further	
study	is	warranted,	such	as	time-	variant	covariates,	miss-
ing	data,	and	covariates	measured	with	error.
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