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Pyroptosis and necroptosis are two recently identified forms of immunogenic

cell death in the tumor microenvironment (TME), indicating a crucial

involvement in tumor metastasis. However, the characteristics of necroptosis

and pyroptosis that define tumor microenvironment and prognosis in ccRCC

patients remain unknown. We systematically investigated the transcriptional

variation and expression patterns of Necroptosis and Pyroptosis related genes

(NPRGs). After screening the necroptosis-pyroptosis clusters, the potential

functional annotation for clusters was explored by GSVA enrichment analysis.

The Necroptosis-Pyroptosis Genes (NPG) scores were used for the prognosis

model construction and validation. Then, the correlations of NPG score with

clinical features, cancer stem cell (CSC) index, tumor mutation burden (TMB),

TME, and Immune Checkpoint Genes (ICGs) were also individually explored to

evaluate the prognosis predictive values in ccRCC. Microarray screenings

identified 27 upregulated and 1 downregulated NPRGs. Ten overall survival

associated NPRGs were filtered to construct the NPG prognostic model

indicating a better prognostic signature for ccRCC patients with lower NPG
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scores (P< 0.001), which was verified using the external cohort. Univariate and

multivariate analyses along with Kaplan-Meier survival analysis demonstrated

that NPG score prognostic model could be applied as an independent

prognostic factor, and AUC values of nomogram from 1- to 5- year overall

survival with good agreement in calibration plots suggested that the proposed

prognostic signature possessed good predictive capabilities in ccRCC. A high-/

sNPG score is proven to be connected with tumor growth and immune-related

biological processes, according to enriched GO, KEGG, and GSEA analyses.

Comparing patients with a high-NPG score to those with a low-NPG score

revealed significant differences in clinical characteristics, growth and

recurrence of malignancies (CSC index), TME cell infiltration, and

immunotherapeutic response (P< 0.005), potentially making the NPG score

multifunctional in the clinical therapeutic setting. Furthermore, AIM2, CASP4,

GSDMB, NOD2, and RBCK1 were also found to be highly expressed in ccRCC

cell lines and tumor tissues, and GASP4 and GSDMB promote ccRCC cells’

proliferation, migration, and invasion. This study firstly suggests that targeting

the NPG score feature for TME characterization may lend novel insights into its

clinical applications in the prognostic prediction of ccRCC.
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Introduction

Renal cell carcinoma (RCC) is one of the most common

malignancies of the urinary system, and it is also the most

common type of kidney cancer in adults. Based on the

GLOBOCAN estimates of cancer incidence and mortality

produced by the International Agency for Research on Cancer

(IARC), an estimated 431,288 new cases of RCC were diagnosed

and 179,368 deaths were recorded worldwide in 2020 (1).

Additionally, the mortality rate of RCC is decreasing in the

majority of developed countries while not in the less-developed

regions where access to optimal therapies is still constrained (2).

In the United States, the American Cancer Society estimates that

79,000 new cases and 13,920 deaths were estimated in 2022 (3),

but the mortality rate from kidney cancer decreased by 2.5% per

year between 2015 to 2019 (4). In China, the estimation of new

cases and deaths of kidney cancer were 50,088 and 46,345

respectively (5). According to a recent study based on age-

period-cohort analysis, the kidney cancer mortality rate

displayed a significant increasing trend, with an increase of

2.85% for men and 1.25% for women (6).

RCC consists of many heterogeneous subtypes, and it is

canonically categorized into three major histological subtypes,

including clear cell RCC (ccRCC), papillary RCC, and

chromophobe RCC (7, 8). Clear cell renal cell carcinoma
02
(ccRCC) is the most prevalent histological subtype that

accounts for approximately 75% of all RCC cases (9), which is

characterized by malignant epithelial cells, arising from the

epithelial cells of renal proximal tubules (10, 11). Usually,

patients with early stages of RCC do not have signs or

symptoms, and the pathologies and carcinogenesis

mechanisms are still unclear (12, 13). Additionally, symptoms

are hard to identify until kidney cancer has spread to other parts

of the body, usually the lymph nodes, lungs, or long bones (14).

Currently, surgical intervention remains the primary treatment

for RCC patients, especially in the early stages (15). As one of the

most lethal urologic malignancies, it has been reported that over

30% of RCC patients relapsed after surgery, around 20%-30% of

RCC patients were diagnosed with metastatic disease, and more

than 40% of RCC patients died from it eventually (16, 17). Using

Surveillance Epidemiology and End Results (SEER) registry a

data source sampled to represent the entire US population,

found that the prognosis for patients with advanced and

metastatic disease is poor, with only 13.6% 5-year survival

(18). Accordingly, the introduction and development of

specific RCC treatments have improved patients’ outcomes,

and integrating surgery or ablative strategies with targeted

therapies has been becoming the optimal adjuvant therapy for

patients with metastatic RCC (19). In order to ensure

appropriate treatment selection for patients, it is necessary to
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develop a signature to accurately predict the overall survival of

ccRCC patients.

Considering that RCC is also an immunogenetic tumor that

contains many immune cells such as tumor-infiltrating

lymphocytes (TIL) and tumor-infiltrating immune cells

(TIICs) (20–22), an alternative to antiangiogenic therapy is

targeted as a selection of immunotherapy in RCC patients.

Recent findings concluded that treatment with immune

checkpoint inhibitors (ICIs) like Nivolumab alone could

prolong the overall survival (OS) rate and reduce the grade 3

or 4 adverse events (23). When combined with anti-cytotoxic T-

lymphocyte antigen-4 (CTLA4) and anti-programmed death 1

(PD-1) for treatment, the OS and response rates significantly

improved (24). Studies have highlighted the importance of

tumor microenvironment (TME) to RCC therapy and

advocated combination treatment of antiangiogenics and

targeted immunotherapy to overcome resistance. It has been

recognized as a first-line therapy option currently (25, 26).

Pyroptosis and necroptosis are two recently characterized

forms of immunogenic cell death (ICD) in the TME, and they

are expected to stimulate the immunogenicity of tumors and

induce the effectiveness of anti-tumor immune responses (27).

Unlike apoptosis, pyroptosis and necroptosis belong to

programmed forms of necrosis (28), and they could protect

against infections in the TME and be initiated by host and

pathogen molecules (29). Currently, the underlying mechanisms

of programmed forms of necrosis in RCC are still not fully

understood. TME plays an essential role in tumor survival and

promotion function in which the tumor cells could disseminate

from the primary site to distant locations invasively,

which results in cancer metastasis (30), thus, with more

understanding of pyroptosis and necroptosis characteristics in

the TME and identifying non-apoptotic cell death biomarkers in

RCC prognosis predictions could benefit the development of

anti-cancer treatment and next-generation chemotherapeutic

medicines through targeting at powerful anti-tumor adaptive

immune response (31).

In this study, the Gene expression data and clinical

information datasets related to ccRCC and healthy control

(HC) samples were downloaded from Gene Expression

Omnibus (GEO) and The Cancer Genome Atlas (TCGA)

databases, aiming to screen the differentially-expressed

necroptosis- and pyroptosis- related genes (DE-NPRGs).

Then we appl ied the bioinformatics methods and

techniques to get the Necroptosis-Pyroptosis Clusters (NP-

Clusters) and constructed the Necroptosis-Pyroptosis Genes

(NPG) score for prognosis and functions analysis in ccRCC

carcinogenesis and prognosis pathways, which could provide

a reliable basis for pathological mechanisms of ccRCC and

evidence for the therapeutic targets in clinical treatment

and applications.
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Methods

Acquisition of date and identification
of differentially expressed
necroptosis-related genes and
pyroptosis-related genes (DE-NPRGs)

Gene expression data and clinical information of ccRCC

patients were extracted from TCGA database (http://

cancergenome.nih.gov/) and the GEO database (https://www.

ncbi.nlm.nih.gov/geo/) (32–34). A total of 539 ccRCC samples

and 72 normal samples with transcriptional data (HTSeq-

FPKM), single nucleotide polymorphism (SNP), copy number

variation (CNV), and clinical information were obtained from

the TCGA database. The clinical pathological characteristics of

these patients are shown in Table S1 and Table S2. The FPKM

values of TCGA-KIRC were transformed into transcripts per

kilobase million (TPM) for subsequent analysis. In addition, the

gene expression profile data and clinical information of the

external validation cohort were downloaded from the Gene

Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/

geo/, ID: GSE29609) (35).

Necroptosis-related genes and pyroptosis-related genes

(NPRGs) were extracted following the summary of previous

research and reviews (36–40). A total of 60 necroptosis- and

pyroptosis- related genes (NPRGs) were obtained and provided

in Table S3. The “Limma” R package was applied to identify DE-

NPRGs between ccRCC samples and normal samples (41). False

Discovery Rate (FDR)< 0.05 and |log2 Fold Change| ≥ 1 were

regarded as the threshold of differential expression. A protein-

protein interaction (PPI) network for the DE-NPRGs was

constructed by Search Tool for the Retrieval of Interacting

Genes (STRING v11.0, https://string-db.org/) (42).
Screening of necroptosis-pyroptosis
clusters (NP-Clusters) by nonnegative
matrix factorization (NMF)

Based on the expression of DE-NPRGs, the NMF algorithm

was employed to perform unsupervised clustering using the

“NMF” R package (43). K-value was determined when the

magnitude of the cophenetic correlation coefficient began to

decrease. Next, principal component analysis (PCA) was

performed to show the classification of common responsive

genes (CRG) clusters. We then investigated the correlation

between NP-Clusters with the clinical characteristics and

prognosis. The differences in overall survival (OS) between

different NP-Clusters were determined with Kaplan–Meier

analysis obtained by the “survival” and “survminer” R

packages. To investigate the differences of NPRGs in biological
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functions, gene set variation analysis (GSVA) was conducted

with the gene set “c2.cp.kegg.v7.2” obtained from the MSigDB

database (https://www.gsea-msigdb.org/gsea/msigdb/) (44, 45).

An adjusted P value less than 0.05 was considered statistical

significance. Then, single-sample gene-set enrichment analysis

(ssGSEA) algorithm was used to quantify the status of immune

cell infiltration in ccRCC TME (46).
Construction and validation of NPG
prognostic model

DE-NPRGs were subjected to univariate Cox regression

analysis to extract the genes that were associated with OS.

First, we excluded the genes with adjusted P values over 0.001.

Then, the least absolute shrinkage and selection operator

(LASSO) Cox regression analysis was performed to avoid the

overfitting problem and construct the NPG score signature using

the R package “glmnet” (47). The penalty parameter (l) was

selected by applying 10-fold cross-validation according to the

minimum criteria. Next, we calculated the NPG score for each

sample us ing the fo l lowing formula : NPG _ score =

on
i=1Coefi � Expi, with Coef indicating the coefficient and

Exp referring to the expression level of each NPRG. The

prognostic scoring system for ccRCC patients was established,

and the median value of the predicted NPG scores was regarded

as the cut-off. PCA and t-distributed stochastic neighbor

embedding (t-SNE) analyses were conducted by “stats” and

“Rtsne” R packages. The R package “survival” and “survminer”

was applied to compare the survival probability between the two

groups via Kaplan-Meier (K-M) analysis. The R package

“timeROC” was employed to perform 1-, 3- and 5- year

receiver operating characteristic (ROC) analysis and calculate

the value of area under curve (AUC). The external validation

GEO cohort was employed to verify the NPG score signature.

Patients in the GEO cohort were also divided into high- and low-

risk groups. The K-M plot and time-dependent ROC plot were

also made.
Functional annotation of the DEGs
between high- and low-risk groups

After dividing patients into high-risk and low-risk groups,

we applied the criteria of FDR<0.05 and |log2 Fold Change| ≥1

to screen the DEGs between high- and low-risk groups using the

“Limma” R package. On the basis of these DEGs, Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

analyses were carried out with the “clusterProfiler” package (48–

50). Gene Set Enrichment Analysis (GSEA) was performed by

“clusterProfiler” R package to determine whether prior defined

functional or pathway sets of genes differ significantly between

high- and low-risk groups (51). The annotated gene sets
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“h.all.v7.2.symbols” and “c5.bp.v7.2.symbols” from the

MSigDB database were adopted in our analysis. Enrichments

of gene sets with an adjusted P value less than 0.05 were regarded

to be significant.
Independent prognostic analysis and
establishment of a nomogram

We extracted the clinical characteristics, including age,

pathological stage, and sex of ccRCC patients in the TCGA

cohort. These variables, in combination with the NPG score,

were analyzed in univariate and multivariable Cox regression

analysis. “survival” and “forest” R packages were used for

analysis and visualization. In order to provide an applicable

tool for clinicians and patients, we establish a nomogram by

applying “rms” R package. Age, sex, pathological stage, and NPG

score were involved. Time-dependent ROC analysis for survival

probability to assess the prognostic accuracy and the calibration

plots were applied to compare nomogram-predicated

probability with observed outcomes. The clinical usefulness of

the nomograms was evaluated by decision curve analysis (DCA).
Correlation of NPG score with clinical
features, cancer stem cell (CSC) index,
and tumor mutation burden (TMB)

We conducted a stratified analysis to explore whether the

NPG score signature retained its predictive value according to

pathological stage I to II and III to IV. Kaplan-Meier analysis (K-

M analysis) was applied to compare the difference between high-

and low-risk groups. Furthermore, the RNAss file named

“StemnessScores_RNAexp_20170127.2.tsv” was downloaded.

The tumor stem cell characteristics were obtained from the

transcriptome and epigenetics of the samples and then used to

evaluate the stem cell-like features of tumors. We performed a

correlation analysis to investigate the association between NPG

score and Cancer Stem Cell (CSC) index, mutation status, and

TMB. The somatic mutation data were obtained from the TCGA

database, and the waterfall plots were made employing by

“maftools” R package (52).
Correlation of NPG score with TME,
immune checkpoint genes (ICGs)

Two computational methods, ssGSEA, and Cell-type

Identification by Estimating Relative Subsets of RNA

Transcripts (CIBERSORT), were chosen for immune

deconvolution analyses (53). ssGSEA takes the sample

gene expression values as the input and computes an

overexpression measure for the given gene list of immune cell
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type relative to all other genes in the transcriptome. CIBERSORT

also takes gene expression values as the input but uses a gene

expression signature matrix of particular immune cell types

instead to compute the infiltration level of each immune cell

type. Additionally, we employed the R package “ESTIMATE” to

evaluate the TME score (stromal score, immune score, and

estimate score) levels between high- and low- risk groups (54).

We also investigated the correlations between high- and low-risk

groups of the expression levels of ICGs. The Spearman

correlation analysis between NPG score and PDCD1/CTLA4

was performed. Additionally, to analyze the response to immune

checkpoint therapy, we downloaded immunophenoscore (IPS)

data from The Cancer Immunome Atlas (https://tcia.at/ )

(55, 56).
Therapeutic response prediction

The immunophenoscore (IPS) based on the expression of

major immunocompetence determinants was obtained from

The Cancer Immunome Atlas (https://tcia.at/) for predicting

the clinical benefits of immunotherapy (57, 58). Four types of

IPS, including IPS, IPS-CTLA4 blocker, IPS-PD-1/PD-L1/PD-

L2 blocker, IPS-CTLA4, and PD-1/PD-L1/PD-L2 blocker, were

calculated from the TCGA-KIRC database. Moreover, we

explored differences in the chemotherapeutic effects of drugs

in ccRCC patients between high- and low-risk groups. Semi-

inhibitory concentration (IC50) of anticancer drugs commonly

used to treat ccRCC were calculated using the “pRRophetic” R

package (59).
Cell culture and clinical samples

HK-2, 786-O, 769-P, ACHN, A498, CAKI-1, CAKI-2 and

OSRC2 were purchased from Proce l l (Proce l l L i fe

Science&Technology Co., Ltd). HK2, A498 were cultured in

MEM medium supplemented with 10% fetal bovine serum

(FBS), 786-O, 769-P, OSRC2 were grown in RPMI-1640

medium with 10% FBS, ACHN was raised in DMEM medium

supplemented with 10% fetal bovine serum (FBS), CAKI-1,

CAKI-2 were maintained in McCoy’s 5 A medium with 10%

FBS. All cells were cultured in a humidified incubator with 5%

CO2 at 37°C. All cell lines were authenticated by the short

tandem repeat DNA profiling test and tested negative for

mycoplasma contamination.

We selected 20 renal cancer tissues and 20 normal tissues

from clinical tissue biopsy in The First Affiliated Hospital of Sun

Yat-sen University from 2020 to 2022. All the patients were

detected by CT and MRI scans of the body and pathology

methods. Before collecting samples, the patients were not

treated with drugs or radiotherapy. All the studies involving

human participants were reviewed and approved by the
Frontiers in Immunology 05
Institutional Ethics Committee for Clinical Research and

Animal Trials Ethical of the First Affiliated Hospital of Sun

Yat-sen University [(2021)144], and the Informed Consent

Forms were provided and signed by participated patients. All

participants agreed on the use of clinical specimens for medical

research. The study methodologies conformed to the standards

set by the Declaration of Helsinki. One of our authors had access

to information that could identify individual participants during

or after data collection. In the end, tissues were obtained from 20

ccRCC patients.
Plasmid construct and
siRNA interference

Recombinant plasmids of overexpressing GSDMB and

CASP4 were synthesized and constructed by Tsingke (Tsingke

Biotechnology Co., Ltd). Lentiviral packaging plasmids and the

negative control plasmids were purchased from GeneCopoeia

(Rockville, USA). 293 T cells were transfected with GSDMB and

CASP4 overexpressing plasmids using Lipofectamine 2000

(Invitrogen, CA, USA); 48 h after the transfection, supernatants

containing overexpressing GSDMB and CASP4 lentivirus were

collected to transfect 786-O and 769-P cells. Puromycin (5mg/ml)

was used for selecting the stably transfected cell lines, and qPCR

was used to quantify the efficiency of overexpressing plasmids.

Small interference RNA (siRNA) of GSDMB and CASP4 and

corresponding negative control were chemically synthesized by

RiboBio (RiboBio Co., Ltd China) for further research. The siRNA

target sequence is shown in Supplementary Table S5.
RNA isolation and quantitative
real-time PCR (qRT-PCR)

Total RNA was extracted using TRIzol Reagent (Invitrogen,

USA) according to the manufacturer’s instructions. NanoDrop

was used to detect RNA concentration by A260/A280 ratio.

PrimeScript RT reagent kit (EZBioscience, China), and SYBR

Green PCR reagent (EZBioscience, China) were used to perform

cDNA synthesis and further conduct qRT-PCR according to the

manufacturer’s protocol. The reaction was incubated at 95°C for

10 min followed by 40 cycles of 95°C for 15 seconds and 60°C for

1 minute. GAPDH was used as an internal control. The primer

sequences were exhibited in Supplementary Table S4. Data were

analyzed using the 2-DDCT relative quantification method.
Immunohistochemistry (IHC) and
western blot (WB)

First, the expression of AIM2, CASP4, GSDMB, NOD2, and

RBCK1 in ccRCC patients was examined by IHC. Antibodies
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used for IHC were as follows: AIM2 (Proteintech: #20590-1-AP),

CASP4 (Proteintech, #11856-1-AP), GSDMB (Proteintech,

#12885-1-AP), NOD2 (Abcam, # ab31488) and RBCK1

(Proteintech, #26367-1-AP). Second, Western blotting analysis

was performed with the standard protocol. ccRCC cells were

lysed with NP-40 lysis buffer, and the protein concentration of

each sample was measured using a BCA Protein assay kit

(Beyotime, China). Equivalent protein was then separated by

10% Tris-Tricine SDS-PAGE and transferred onto

polyvinylidene fluoride (PVDF) membranes. After being

blocked in 5% fat-free milk, the PVDF membranes were

incubated with primary antibodies overnight at 4°C. Primary

antibodies included GAPDH (Proteintech, #60004-I-Ig), H3

(Abcam, #ab1791), AIM2 (Proteintech: #20590-1-AP), CASP4

(Proteintech, #11856-1-AP), GSDMB (Proteintech, #12885-1-

AP), NOD2 (Abcam, # ab31488) and RBCK1 (Proteintech,

#26367-1-AP). Then membranes were incubated with

secondary antibody (HRP-conjugated anti-rabbit IgG, Abcam)

at room temperature for 1 hour. Finally, the bands on the

membranes were observed with a western blot substrate kit

(Tanon, Shanghai, China).
CCK8 and colony formation assays

For CCK8 assays, a total of 1500 ccRCC cells were seeded per

well in the 96-well plate. The freshly prepared CCK-8 detection

solution was added to the well and incubated for 2 hours at 37 °

C. The OD value was detected with a spectrophotometer reader

at 450 nm. For colony formation assays, a total of 1000 cells were

seeded per well in a 6-well plate. After being cultured for 2

weeks, the colonies were fixed with 4% paraformaldehyde for

20 min at room temperature and then stained with 0.1% crystal

violet. The number of colonies (>50 cells) was counted.
Transwell assays

Transwell migration assays and matrigel invasion assays

were performed using a 24-well transwell chamber (Corning,

NY, USA) with or without matrigel (Corning, NY, USA). About

50,000 cells were resuspended in serum-free medium and seeded

onto the upper chamber, and the lower chamber was added with

10% FBS-containing medium as the chemo-attractant. The cells

that migrated through the membrane or invaded through the

matrigel were fixed, stained, and then counted under a

light microscope.
Statistical analysis

All statistical analyses were performed using R software

(Version 4.1.1) and GraphPad Prism (Version 9.0.0). To
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compare variables between two groups, we employed the

independent sample t-tests for normally distributed

continuous variables and Mann-Whitney U tests for

nonnormally distributed continuous variables. One-way

ANOVA and Kruskal-Wallis tests were used to perform

difference comparisons of three or more groups. The survival

analysis was conducted via the Kaplan-Meier method, and log-

rank tests were employed to identify the significance of

differences. Correlation coefficients were evaluated by

Spearman analysis. The statistical significance was defined

with P< 0.05.
Results

Identification of candidate
NPRGs in ccRCC

A total of 60 NPRGs were obtained and provided in

Supplementary Table S3. RNA expression levels of 60 NPRGs

between normal and tumor samples were presented in

Figure 1A. The expression levels of AIM2, CASP1, CASP4,

CASP5, GSDMA, GSDMB, GSDMC, GZMA, GZMB, IFI16,

MEFV, MLKL, NAIP, NLRC4, NLRP1, NLRP6, NLRP7,

NLRP12, NOD2, PYCARD, RBCK1, TLR3, TNIP1, TRADD,

TRAF2, ZBP1 were upregulated in tumor samples, while only

the expression level of NLRP2 was downregulated in tumor

samples. The interactions of DE-NPRGs were analyzed by the

PPI network according to the STRING database using a

confidence of 0.9 as the threshold (Figure 1B). The

comprehensive landscape of DE-NPRGs interactions,

connections, and their prognostic values in ccRCC patients

was exhibited in a co-expression network (Figure 1C). Then,

28 DE-NPRGs were subjected to univariate Cox regression

analysis to select Candidate NPRGs for model construction. A

total of 14 NPRGs were retrieved as candidate genes with the

adjusted P value cutoff of 0.001 (Figure 1D).
Screening of NP-clusters by NMF

In order to explore the expression features and potential

biological characteristics of NPRGs in ccRCC, we performed

unsupervised clustering analysis to classify patients into distinct

NP-Clusters using the NMF algorithm based on the expression

levels of 28 DE-NPRGs. The cophenetic correlation coefficient

and visual inspection of the consensus matrix suggest the best

cluster number was 3 (Figures 2A, B, S1). Patients with ccRCC

in TCGA cohort were categorized into 3 NP-Clusters (cluster A,

n=154; cluster B, n=106; cluster C, n=279). PCA was conducted

and showed an obvious different distribution among NP-

Clusters (Figure 2C). Kaplan-Meier OS curves showed that

patients in NP-Custer A had the shortest OS time, whereas
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patients in NP-Cluster C had the superior OS time (Figure 2D).

Figure 2E shows the different expressions of NPRGs and

clinicopathological characteristics among NP-Cluster A to C.

To further explore the functional annotation among 3 NP-

Clusters, we conducted GSVA enrichment analysis (Figure 2F).

NP-Cluster B presented enrichment pathways related to immune

activation, including the B cell receptor signaling pathway, T cell
Frontiers in Immunology 07
receptor signaling pathway, NOD like receptor signaling

pathways, and Toll like receptor signaling pathways. Next, NP-

Cluster A and NP-Cluster C showed an association with immune

inhibition compared with NP-Cluster B. NP-Cluster A enriched

in nerve conduction related pathways and NP-Cluster C enriched

in metabolic-related biological processes. Subsequently, we

compared the relevant abundance of immune cells among 3
B

C D

A

FIGURE 1

Screening necroptosis and pyroptosis related genes (NPRGs) in ccRCC. (A) Heat map of 60 NPRGs. (B) PPI network for the cross talks of NPRGs
according to STRING database (cross talk score = 0.9). (C) The association network landscape of differentially Expressed NPRGs (DE-NPRGs):
red dot, down-regulation; grey dot, up-regulation; purple dot, risk factors; green dot, favourable factors; pink line, positive correlation with
P < 0.001; blue line, negative correlation with P< 0.0001; the size of dots represents the significance of the correlation. (D) Univariate Cox
regression analysis of candidate NPRGs with the 14 ones were significantly selected in the model (P < 0.001).
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NP-Clusters to explore the potential function of NPRGs in the

immune infiltration of ccRCC by ssGSEA (Figure 2G). We

observed NP-Cluster B was significantly enriched in immune

cell activation, including the higher immune infiltration levels of

activated B cells, activated CD4+T cells, activated CD8+T cells,

and activated dendritic cells.
Frontiers in Immunology 08
Construction and validation of NPG
prognostic model

We performed LASSO Cox regression analysis for 14 OS-

related DE-NPRGs, and 10 genes were obtained to establish the

NPG prognostic model in the TCGA cohort based on the
B C
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G

A

FIGURE 2

Risk classifications and related functional annotation based on the DE-NPRGs. (A, B) Consensus clustering matrix in ccRCC patients with best
cluster number of three (k = 3). (C) ccRCC patients in TCGA cohort were stratified into three groups. (D) Kaplan-Meier curves for the three
clusters. (E) Heatmap showing the clinicopathologic characteristics formed by DE-NPRGs and clinical features in three NP-clusters. (F) Heatmap
of GSVA enrichment scores comparisons for the differentially expressed pathways in three NP-clusters. (G) Comparison of ssGSEA scores for
immune infiltration of ccRCC in three NP-clusters and results visualization. *** P< 0.001; ns, no significance.
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minimum criteria to predict the prognosis of ccRCC patients

(Figure 3A). The corresponding coefficients were acquired from

LASSO Cox regression analysis. NPG score can be calculated as

following: NPG_score = (0.009877* AIM2) + (0.042783*

CASP4) + (0.134083* GSDMB) + (0.016047* IFI16) +

(0.085619* NOD2) + (0.007173* RBCK1) - (0.024375* TLR3)
Frontiers in Immunology 09
- (0.006708* TNIP1) + (0.073096* TRAF2) - (0.169280* ZBP1).

Then, 10 genes were subjected to multivariate Cox regression

analysis, and we found GSDMB (HR=1.1435, P<0.05), RBCK1

(HR=1.0072, P<0.05), and TLR3 (HR=0.9759, P<0.05) were

independent prognostic factors (Figure 3B). Then patients

were divided into high-risk (NPG score > median value) and
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FIGURE 3

NPG prognostic model construction and validation. (A) Cross-verification for fine-tune the selection of parameters in LASSSO regression and 10
NPRGs were obtained in TCGA cohort for the NPG prognostic model construction. (B) Multivariate Cox regression analysis of NPRGs for NPG
score calculation in TCGA cohort. (C, D) PCA map and t-SNE plots for high- and low- risk groups based on the NPG score (red dot, high risk
class; green dot, low risk class). (E, F) risk plot of NPG score The survival rate (low-NPG score group: on the left side of the dotted line;
high-NPG score group: on the right side of the dotted line) and time (red dot, dead subjects; green dot, alive subjects) for each patient in TCGA
cohort. (G) Correlation of NPG score and vital status of ccRCC patients. (H) Kaplan–Meier curves for comparison of NPG score risks between
low-NPG score and high-NPG score groups in TCGA cohort. (I) ROC curves with the NPG score prediction efficiency in TCGA cohort.
(J) Kaplan–Meier curves for comparison of NPG score risks between low-NPG score and high-NPG score groups in external validation cohort
(GEO cohort). (K) ROC curves with the NPG score prediction efficiency in external validation cohort (GEO cohort).
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low-risk (NPG score< median value) groups accordingly. PCA

and t-SNE plots demonstrated an obvious differential

distribution between high and low-risk groups in the TCGA

cohort (Figures 3C, D). The risk plot of NPG scores revealed that

groups with high NPG scores had increased fatal events and

shorter survival times (Figures 3E, F). Correlation evaluation

demonstrated that a low NPG score was linked to a higher

percentage of alive patients at follow-up, while a high NPG score

was related to a higher percentage of dead patients (Figure 3G) at

follow-up. In the TCGA cohort, Kaplan–Meier OS curves

showed that patients in the high-risk group had a shorter OS

than low-risk patients (P< 0.001) (Figure 3H). The 1-, 3-, and 5-

year survival probability of NPG score were represented by AUC

values of 0.763, 0.707, and 0.728, respectively (Figure 3I).

To further verify the performance of the prognostic model,

we applied an external validation cohort. Similarly, we calculated

the NPG score for each sample and divided them into high- and

low-risk groups. Kaplan–Meier analysis also showed a

significantly better prognosis in the low-risk group compared

to that in the high-risk group (Figure 3J). ROC curves also

verified the accuracy of our signature. As shown in Figure 3K,

the AUC of the GEO cohort indicated a score of 0.741 at 1 year,

0.780 at 3 years, and 0.828 at 5 years.
Functional annotation of the DEGs
between high- and low-risk groups

To elucidate the potential biological functions and signaling

pathways associated with high NPG scores, 1536 DEGs between

high- and low-risk groups were identified in the TCGA cohort

for functional enrichment analysis. The results of GO showed

DEGs were enriched in immune-related biological processes

(antimicrobial humoral response, humoral immune response,

acute inflammatory response, and acute-phase response) and

iron-related and signal transport biological processes and

molecular functions (organic anion transport, signaling

receptor activator activity, and metal ion transmembrane

transporter activity) (Figure 4A). The results of the KEGG

pathway showed that DEGs were associated with pathways

including complement and coagulation cascades, cytokine-

cytokine receptor interaction, viral protein interaction with

cytokine and cytokine receptor, IL-17 signaling pathway,

staphylococcus aureus infection, and steroid hormone

biosynthesis (Figure 4B). Furthermore, GSEA indicated that a

high NPG score is predominantly associated with tumor

progression and immunity, including (Figures 4C, D):

reactome chemokine receptors bind chemokines, reactome

regulation of insulin like growth factor igf transport and

uptake by insulin like growth factor binding proteins igfbps,

reactome immunoregulatory interactions between a lymphoid

and a non lymphoid cell, hallmark kras signaling dn, hallmark

epithelial mesenchymal transition, hallmark coagulation.
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Independent prognostic analysis and
establishment of a nomogram

To determine whether the NPG score was an independent

prognostic predictor for OS, we combined clinical characteristics

(pathological stage, age, and sex) and NPG score to perform

univariate and multivariate Cox regression analysis. In univariate

Cox regression analysis, higher NPG score (HR=3.0080, 95%

CI =2.1500−4.2083, P<0.0001), more advanced pathological

stage (HR=3.8832, 95% CI =2.8134−5.3598, P<0.0001), and

older age (HR=1.6915, 95% CI =1.2401−2.3073, P=0.0009) were

significantly related to OS (Figure 5A). In multivariate Cox

regression analysis, after adjusting for other confounding

factors, the NPG score is still confirmed to be an independent

predictor for OS (HR=2.6165, 95% CI= 1.8596−3.6814,

P<0.001) (Figure 5B). Furthermore, comparisons of the

clinicopathological characteristics in the high- and low-risk

groups revealed significant differences in NPRGs expression and

clinicopathological features (Figure 5C). High NPG scores were

related to advanced pathological stages and more death events.

Moreover, the expression of TRAF2, GSDMB, ZBPQ, RBCK1,

IFI16, AIM2k, and CASP4 were upregulated in the high-

risk group.

To better apply the NPG score prognostic model, we

constructed a nomogram based on the TCGA cohort to

exhibit a quantitative method to predict the 1-, 3-, and 5-year

overall survival. The nomogram contained NPG score and

clinical information, including age and pathological stage

(Figure 5D). AUC values of the nomogram were calculated,

and calibration analysis was performed to estimate the predictive

ability of the nomogram for prognosis. Figure 5E showed the

relationship between AUC (0.72 to 0.76) and predicting survival

time (from 1 year to 5 years). We plotted DCA curves to

illustrate the clinical benefits of the nomogram (Figure 5F).

The calibration plots showed good agreement between

nomogram-predicated probability and the observed outcomes

(Figures 5G–I).
Correlation of NPG score with clinical
features, CSC index, and TMB

We first analyzed the association between NP-Clusters and

NPG score, and observed NP-Cluster C had the lowest median

NPG score, which was consistent with the K-M analysis of NP-

Clusters (Figure 6A). However, there was no significance between

NP-Cluster A and B (P=0.25). Stratified analysis was conducted to

evaluate whether the NPG score retained its predictive ability in

different pathological stages (stage I–II and stage III–IV). The

result showed significantly lower OS in patients in the high-risk

group compared to those in patients with low-risk scores for both

stage I–II (P<0.001) and stage III–IV (P<0.001) (Figures 6B, C).
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Previous studies demonstrated that CSC could drive the growth

and recurrence of tumors and are resistant to many current

treatments (60, 61). A mild but significant negative correlation

(R = -0.11, P = 0.013) was observed between NPG score and CSC

index (Figure 6D). Furthermore, we described the landscape of

somatic mutation between high- and low- risk groups. Patients

with high NPG scores had higher mutation frequencies of TTN,

SETD2, BAP1, MTOR, LRP2, SPEN, and FLG, while VHL and

PBRM1 mutation frequencies were much higher in patients with

low NPG scores (Figures 6G, H). However, there was no

significant difference in TMB between high- and low-risk
Frontiers in Immunology 11
groups (Figure 6E). Additionally, Spearman correlation analysis

revealed no significant correlation between NP-Clusters and

TMB (Figure 6F).
Correlation of NPG score
with TME cell infiltration

Then, we employed 2 computational methods, ssGSEA and

CIBERSORT, to investigate the correlation between NPG score and

TME cell infiltration. Using ssGSEA, we observed the immune
B
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A

FIGURE 4

Functional annotation of the DEGs between high- and low- NPG score groups. (A) The GO analysis with GO terms of biological processes, cell
components, and molecular functions. (B) KEGG pathway enrichment analyses of DEGs between high- and low- NPG score groups. (C, D) GSEA
analysis of tumor progression and immunity between low- and high- NPG score groups.
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FIGURE 5

Independent prognostic validation and establish of nomogram. (A) Univariate cox regression for TCGA cohort based on the clinical
characteristics (pathological stage, age, and sex) and NPG score. (B) Multivariate analysis for TCGA cohort. (C) Heatmap showing the
clinicopathologic characteristics formed by 10 NPRGs and clinical features in low- and high- NPG score groups. (D) Nomogram. (E) ROC curves
illustrating the prediction efficiency of nomogram (AUC, 0.72 to 0.76). (F) DCA curves illustrating the clinical effectiveness of the nomogram.
(G–I) Nomogram to predict 1-, 3-, and 5- year overall survival rates of ccRCC patients. Calibration plots showed overall survival nomogram
model to compare the nomogram-predicted probability (blue line) with ideal nomogram (grey line).
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infiltration levels of B cells, CD8 T cells, DCs, macrophages, pDCs,

T helper cells (P<0.001), Tfh, Th1 cells, Th2 cells, TIL, Treg in the

high-risk group were significantly higher than those in the low-risk

group, while the infiltration levels of mast cells in the high-risk

group was lower than that low-risk group (Figure 7A). The

immune-related functions’ scores include APC co-stimulation,

CCR, checkpoint, cytolytic activity, inflammation-promoting,

parainflammation, T cell co-inhibition, T cell co-stimulation,

Type-I IFN response, and Type-II IFN response were also

significantly higher in high-risk group (Figure 7B). The difference

in immune cell infiltration levels evaluated by CIBERSORT was

consistent with ssGSEA (Figures 7C, D). Meanwhile, Macrophage

M0, Plasma cells, T cells CD4 memory activated, T cells CD8, T
Frontiers in Immunology 13
cells follicular helper and Tregs were positively correlated with NPG

score, while B cells naïve, Dendritic cells resting, Macrophage M1,

Macrophage M2, Mast cells activated, Monocytes, Neutrophils, and

T cells CD4 memory resting were negatively correlated with NPG

score (Figure 7E). TME scores, including the Stromal, Immune, and

ESTIMATE scores, were significantly higher in the high-risk

group (Figure 7F).
Therapeutic response prediction

Considering that the expression levels of ICGs have been

reported to associate with the clinical benefit of checkpoint
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FIGURE 6

Correlation of NPG score with clinical features, CSC index, and TMB. (A) Comparison plot illustrating the differences of NPG score in three NP-
Clusters. (B, C) Kaplan–Meier curves for comparison of NPG score risks between low-NPG score and high-NPG score groups by stratified
analysis of pathological stages. (D) Correlation of NPG score and CSC index. (E, F) Tumor mutation burden analysis. (G, H) Landscape of tumor
mutation burden between high- and low- NPG score groups.
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blockade immunotherapy, we compared the difference in ICGs

expression between high- and low-risk groups. The expression

levels of 19 ICGs containing BTLA, CD274, CD276, CD40,

CTLA4, and PDCD1 were upregulated in the high-risk group,

while HAVCR2 and HHLA2 were downregulated (Figure 8A).

The expression levels of PDCD1 and CTLA4 also increased

with the increasing NPG score (Figures 8B, C). Subsequently,

we explored the correlation between NPG score and response
Frontiers in Immunology 14
to immunotherapy. No significant differences of PD-L1 or PD-

L2 expression in the groups of low- NPG and high- NPG score

groups (P>0.05 Figure S2). However, IPS difference showed

that patients with higher NPG scores, who received single

CTLA4 blocker treatment (P=0.038) or CTLA4 and PD-1/

PD-L1/PD-L2 combined therapy (P=0.0028), could have a

better therapeutic effect than those with lower NPG score

(Figures 8D–G). It revealed that patients with high NPG
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FIGURE 7

Correlation of NPG score with TME cell infiltration. (A) ssGSEA analysis of NPG score and immune infiltration levels in ccRCC. (B) Comparison of
immune-related functions scores in low- and high- NPG score groups. (C, D) Difference in immune cell infiltration levels evaluated by
CIBERSORT in ccRCC. (E) The relationship of NPG score and different immune cell infiltration levels. (F) Correlation analysis between TME
scores and NPG score in ccRCC *P < 0.05; ** P < 0.01; *** P< 0.001; ns, no significance.
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scores were more suitable for immune checkpoint inhibitor

combined therapy. We next obtained chemotherapy drugs

currently used for the treatment of ccRCC to estimate the

sensitivities of patients in the low- and high-risk groups to
Frontiers in Immunology 15
these drugs (Figure 8H). We observed that the patients in the

high-risk group had lower IC50 values for Sunitinib,

Rapamycin, and Temsirolimus. The IC50 value of Lapatinib

was higher in patients with a high NPG score
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FIGURE 8

Therapeutic response prediction. (A) Comparison the difference of ICGs expression between high- and low-NPG score groups. (B, C) The
relationship of NPG score and PDCD1 and CTLA4. (D–G) Correlation analysis between NPG score and response to immunotherapy.
(H) Comparison of the sensitivities to the chemotherapy drugs currently used for ccRCC treatment. *P < 0.05; ** P < 0.01; *** P < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1021935
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fu et al. 10.3389/fimmu.2022.1021935
The expression levels of AIM2, CASP4,
GSDMB, NOD2, and RBCK1

Then, we investigated the expression levels of AIM2, CASP4,

GSDMB, NOD2, and RBCK1 in cell lines and tumor tissues by

qRT-PCR, IHC. As shown in Figures 9A, B, qRT-PCR showed

that the expression of AIM2, CASP4, GSDMB, NOD2, and

RBCK1 was significantly upregulated in tumor samples. In our

validation results in cell lines, the expression tendency of 5 genes

was consistent with prediction results (Figure 9C). Additionally,

oligo sequences used in quantitative real-time PCR were

displayed in Supplementary Table S4. IHC staining validated

that the protein levels of AIM2, CASP4, GSDMB, NOD2, and

RBCK1 in tumor tissues were much higher than that in adjacent

normal tissues (Figure 9D). To further confirm these findings,

their protein expression levels were examined using WB in 10

paired RCC tissues (Figures 9E, F). The expression levels of

AIM2, CASP4, GSDMB, NOD2, and RBCK1 were frequently

higher in RCC tissues.
CASP4 and GSDMB have promoting
effects on the proliferation, migration,
and invasion of ccRCC cells

To explore the role of CASP4 and GSDMB in

ccRCC proliferation, migration, and invasion in vitro, we

constructed two siRNA specifically targeting CASP4

(siCASP4-1, si-CASP4-2) and GSDMB (siGSDMB-1,

siGSDMB-2) respectively, and overexpressing vector (OE-

CASP4 and OE-GSDMB) (Figures 10A, B). CCK-8 assays and

colony formation assays showed that silencing CASP4 and

GSDMB significantly reduced the proliferative capabilities of

ccRCC cells (786-O and 769-P) while overexpressing CASP4 and

GSDMB promoted cell proliferation (Figures 10C, D). Moreover,

transwell assays showed that the migration and invasion abilities

of ccRCC cells (786-O and 769-P) were significantly reduced

when CASP4 and GSDMB were silenced. In contrast, increasing

the expression level of CASP4 and GSDMB increased the

migration and invasion rate of cells (Figure 10E). In summary,

these results collectively confirmed that CASP4 and GSDMB

have promoting effects on the proliferation, migration, and

invasion of ccRCC cells.
Discussion

In the present study, from the 60 DE-NPRGs identified as

associated with overall survival (OS) in the TCGA cohort., 26

upregulated genes and only one downregulated gene were

discovered from the ccRCC samples, compared to the normal

kidney samples. Through PPI network analysis based on the
Frontiers in Immunology 16
STRING database and co-expression network analysis among

the DE-NPRGs above, 14 DE-NPRGs were significantly

screened as hub genes in the ccRCC group. All of these genes

except TLR3 (HR=0.9626) and TNIP1 (HR=0.9985) were

associated with increased risk with a hazard ratio over 1. To

obtain an in-depth understanding of the expression features in

the tumor microenvironment and potentially predictable

prognosis characteristics for these DE-NPRGs in ccRCC

carcinogenesis, three NP-Clusters were identified with different

lengths of the OS periods and pathways enrichments in ccRCC.

NP-Cluster B was considerably enriched in immune cell

activation, including greater numbers of activated B cells,

CD4+ T cells, CD8+ T cells, and dendritic cells. Subsequently,

the NPG prognostic model was constructed by multivariate Cox

regression analysis with 10 genes (AIM2, CASP4, GSDMB, IFI16,

NOD2, RBCK1, TLR3, TNIP1, TRAF2, ZBP1) that were selected

and confirmed with LASSO regression. Then GSDMB

and RBCK1 were proved to be harmful prognostic factors,

while TLR3 was expected to be a good prognostic factor

independently. This finding is consistent with the report from

previous research. Cui et al. found that upregulation of GSDMB

in ccRCC is associated with immune infiltration and poor

prognosis (62); Yu et al. showed that RBCK1 could indicate

the poor prognosis in RCC patients via promoting p53

degradation and ubiquitination (63); another recent study

from Liao et al. reported TLR3 could be a promising

prognostic biomarker for RCC microenvironment by immune

infiltration (64). By the NPG prognostic model we constructed,

the TCGA cohort patients were divided into high-risk and low-

risk groups, and it is evident that the higher NPG score was

significantly associated with worse OS as an independent

prognosis predictor in ccRCC patients. The K-M plot of the

validation dataset of GEO cohort showed a strongly consistent

and comparable result with the TCGA cohort, with AUC of

0.741 at 1 year, 0.780 at 3 years, and 0.828 at 5 years survival,

indicating a good prediction of OS by NPG score.

Furthermore, we displayed the calculated NPG score showed

1) significantly positive associations with different pathological

stages (stage I–II and stage III–IV); 2) significant but mild

correlations with the CSC Index that could promote the

growth and recurrence of malignancies of tumors; 3)

significant positive correlation with the TME score that

contains stromal, immune, and ESTIMATE scores, which was

approved by ssGSEA and CIBERSORT consistently; 4) positively

suitable to ICIs combined treatment; and the high-NPG score

could indicate more sensitive to the chemotherapy drugs of

Sunitinib, Rapamycin, and Temsirolimus. This study

demonstrated the significance of the NPG score in defining

the TME characteristics and predicting the prognosis in ccRCC.

It is well known that TME consists of immune and non-immune

stromal components related to tumor oncogenesis and

malignant behavior (65). Therefore, the abundant immune

components in TME could help to estimate immune and
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stromal cell infiltration, such as ESTIMATE scores (66).

Consistently, the NPG score from this study showed that a

higher NPG score indicated higher stromal, immune, and

ESTIMATE scores in ccRCC, and could be a potentially

promising biomarker for ccRCC TME environment evaluation.
Frontiers in Immunology 17
Moreover, immunotherapy with ICIs has led to cancer

therapeutic advancements (67). Given the general tendency of

tumors to resist apoptosis or poor response to ICIs,

improvement in underlying resistance to apoptotic cell death

would be expected to provide the efficiency for immunotherapy.
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FIGURE 9

qRT-PCR, IHC and WB verification. (A, B) mRNA expression of AIM2, CASP4, GSDMB, NOD2, and RBCK1in ccRCC patients by qRT-PCR.
(C) Levels of the mRNA expression in different cell lines as assessed by qRT-PCR analysis. (D) Protein expression of AIM2, CASP4, GSDMB,
NOD2, and RBCK1 in ccRCC patients by Western blot. (E, F) Expression of AIM2, CASP4, GSDMB, NOD2, and RBCK1 makers in ccRCC tumor
tissue and normal tissues by IHC. *P < 0.05; ** P < 0.01; *** P< 0.001; **** P< 0.001; ns, no significance.
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We found that the NPG score could be a potential candidate

biomarker for predicting the clinical benefits of immunotherapy.

By applying the differences in the chemotherapeutic effects of

medications in ccRCC patients between high- and low-risk NPG

groups, it is obvious that IC50 of anticancer drugs was lower in
Frontiers in Immunology 18
the higher NPG score group for Sunitinib, Rapamycin, and

Temsirolimus, but not in Lapatinib. According to the previous

research, pyroptosis is a microbial ICD produced by immune cell

caspases (68); necroptosis is another form of ICD that death

receptors (DRs) or pattern recognition receptors (PRRs)
B

C

D

E

A

FIGURE 10

Verification of CASP4 and GSDMB for proliferation, migration, and invasion in ccRCC. (A, B) Construction and verification of two siRNA
specifically targeting at CASP4 (siCASP4-1, si-CASP4-2) and GSDMB (siGSDMB-1, siGSDMB-2) respectively, and overexpressing vector
(OE-CASP4 and OE-GSDMB). (C, D) CCK-8 assays, and colony formation assays to detect ccRCC cell proliferation. (E) Transwell
migration/invasion assay to analyse the ability of ccRCC cell migration and invasion. *P < 0.05; ** P < 0.01; *** P< 0.001; **** P< 0.001.
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recognize adverse cellular environmental to launch necroptosis

(67). Thus, we first established the NPG score to engage the

extensive crosstalk of pyroptosis and necroptosis which could

provide more evidence of multiple cell death modalities to

predict the prognosis of ccRCC.

Finally, we utilized experiments in vitro to explore the

expressions of primary genes of NPG score signature in the

carcinogenesis process of ccRCC. Our results illustrated that

AIM2, CASP4, GSDMB, NOD2, and RBCK1 had higher

expression in RCC tissues, and CASP4 and GSDMB could

promote proliferation, migration, and invasion of ccRCC cells.

Pyroptosis and necroptosis are two forms of programmed cell

death to trigger inflammatory responses with different

mechanisms and pathways. Pyroptosis is mediated by

members of the Gasdermins family, such as GSDMD and

GSDME, to form membrane pores to allow the release of

proinflammatory cytokines, IL-1b, and IL-18 (68). Necroptosis

is induced by MLKL to also form pores on the cell membrane to

release DAMPs. Although triggered by different mechanisms

and pathways, they may share a common driver, NLRP3

inflammasome to cause inflammation (68). Additionally,

pyroptosis and necroptosis are both found to have crosstalk

with antitumor immunity. Pyroptotic cells send danger signals

to recruit more CD8+ T cells and other tumor-suppressive cells.

Also, induction of pyroptosis strengthens the efficiency of

immune checkpoint inhibitors in the “cold tumor”. As for

necroptosis, both DAMPs released from necroptotic tumor

cells and NF-kB-derived signals released from necroptotic cells

can enhance cytotoxic effects by CD8+ T effector cells (40).

However, pyroptosis and necroptosis are reported to antagonize

the antitumor immune response as well (67). Hence, how to

promote anticancer synergy between the two cell deaths is

critical to cancer immunotherapy. A recent series of studies

displayed the immune landscape of ccRCC and suggested the

potential immunotherapeutic targets for ccRCC treatment. A

similar finding was observed that assessing the pyroptosis

patterns could inform the tumor status and guide

immunotherapy strategies by investigating the response of

AIM2 to immunotherapy in ccRCC (69). Also, as in many

other types of cancer, NOD2 was downregulated in ccRCC to

promote metastasis (70). Additionally, as an essential for NF-kB
stimulation, RBCK1 mutations are shown to be related to

immunodeficiency and tumor-infiltrating immune cells, which

proved to be an independent prognostic biomarker in RCC (71,

72). Moreover, consistent with our findings, another study by

Jiang et al. identified the significance of CASP4 and GSDMB to

the immune microenvironment and molecular heterogeneity in

ccRCC by a pyroptosis-related prognosis prediction model.

Previous studies have shown that CASP4 protein could involve

the activity of cellular processes such as cell inflammation and

apoptosis (73); while the GSDMB family could manage cell

differentiation and proliferation, although the comprehensive

role of GSDMB has not been fully understood (62). Here, taking
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the results of the functional enrichment analyses of NPG score-

related signaling pathways (tumor progression and immunity)

together, it was discovered that the NPG score might be an

essential biomarker that influences carcinogenesis (proliferation,

migration, and invasion) and prognosis in ccRCC.

Currently, it remains difficult to identify the early symptoms

of RCC, and the majority of patients are identified at an

advanced stage or even with metastases. In addition, due to

the complexity of its etiology and pathophysiology, RCC exhibits

the clinical features of a high risk of recurrence and metastasis

(74, 75). Although the broader implementation of various

diagnostic, screening techniques and advanced therapies, the

risk of metastasis and recurrence for ccRCC shows a 5-year

survival rate of 50%-69% for ccRCC patients and 10% for

patients with metastasis (76). Consequently, it is essential to

research the mechanisms underlying the carcinogenesis of

ccRCC and to uncover the innovative prospective diagnosis,

treatment, and prognosis targets. Advances in cancer

bioinformatics analysis could benefit the investigation of genes

associated with cancer metabolisms, signaling, communication,

and proliferations by combining bioinformatics methodologies

(clinical informatics, medical informatics, mathematics, omics

science, etc.) (77); thus, it could support in tackling the clinically

relevant challenges of early diagnosis, therapy, and prognosis

improvement. By adopting the bioinformatics analysis, this

study identified 14 OS-related differentially expressed DE-

NPRGs, and 10 of them were applied to establish the NPG

prognostic model by achieving the NPG score. More

importantly, this necroptosis- and pyroptosis- defines tumor

microenvironment characterization and prognosis predictive

functions were validated by our validation cohort and

experiments in ccRCC tissue and cells. However, there are a

few limitations that exist still. First, the publicly available online

databases were applied for the analysis and validation. It would

benefit more ccRCC patients if controlled and multicenter

clinical studies and sample examinations could be performed

further. In addition, the underlying mechanisms and pathways

involved in the pyroptosis-necroptosis genes interactions and

their functions for the tumor microenvironment in ccRCC

require further exploration. Further experiments in vivo and in

vitro validation would gain more comprehensive knowledge

targeting the better application of the NPG model to predict

ccRCC prognosis. Also, the multifaceted role of NPRGs and

interactions in TME illustrated the necessity to potentially

design new NPG score-based immunotherapies to improve the

prognosis in ccRCC. Nevertheless, despite the limitations

mentioned above, it is undeniable that this study was the first

to complete a comprehensive investigation of NPRGs in ccRCC

and distinguished and characterized the high- and low- risk

groups based on the NPG scores, which might serve as an

independent indicator for evaluating prognosis in ccRCC

patients. Finally, molecular medicine experiments focusing on

immune and prognostic analysis were not enough like IHC for
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immune cell molecular markers in RCC patients and flow

cytometry sorting technology which would be deeply taken

into consideration in our further research related to the

correlation of NPG with immune activities, allowing us to

explore specific changes in the tumor microenvironment.
Conclusion

This study was the first to offer, to the best of our knowledge,

thorough evidence of the substantial interplay between

necroptosis-pyroptosis defined tumor environment and

prognosis prediction of ccRCC. The NPG score was identified

as a potential prognostic biomarker for ccRCC. The NPG score-

based dependable and referable risk model accurately predicted

the tumor microenvironment and OS of ccRCC. Additional

clinical research and biomolecular investigation would be

required to provide additional information for future in-depth

studies that will profit more ccRCC patients.
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