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SUMMARY
Polygenic risk scores (PRSs) developed from multi-ancestry genome-wide association studies (GWASs),
PRSmulti, hold promise for improving PRS accuracy and generalizability across populations. To establish
best practices for leveraging the increasing diversity of genomic studies, we investigated how various
factors affect the performance of PRSmulti compared with PRSs constructed from single-ancestry GWASs
(PRSsingle). Through extensive simulations and empirical analyses, we showed that PRSmulti overall outper-
formed PRSsingle in understudied populations, except when the understudied population represented a small
proportion of the multi-ancestry GWAS. Furthermore, integrating PRSs based on local ancestry-informed
GWASs and large-scale, European-based PRSs improved predictive performance in understudied African
populations, especially for less polygenic traits with large-effect ancestry-enriched variants. Our work high-
lights the importance of diversifying genomic studies to achieve equitable PRS performance across ancestral
populations and provides guidance for developing PRSs from multiple studies.
INTRODUCTION

Polygenic risk scores (PRSs) are useful tools for estimating the

cumulative genetic susceptibility to complex traits and diseases.

PRSs are typically calculated by weighting the number of risk al-

leles based on their associations in genome-wide association

studies (GWASs). PRSs have shown promising potential in pre-

dicting some traits and disease risks, comparable to monogenic

variants and traditional clinical risk factors.1–5 Achieving the

most accurate and generalizable PRS requires access to large-

scale and diverse GWASs, especially with representation that

matches the specific target population. However, the current

landscape of GWASs predominantly focuses on European

(EUR) ancestry populations, which have considerably larger

sample sizes compared with other populations. Although
C
This is an open access article under the CC BY-N
ongoing efforts are underway to rectify these gaps, achieving

global representativeness is a challenging goal. Encouragingly,

studies have shown that usingGWAS data with even a small pro-

portion of non-EUR-ancestry individuals has the potential to

improve the predictive accuracy of PRSs in underrepresented

populations.6–8 This finding could largely be attributed to the

substantial contribution of common variants to the heritable vari-

ation of complex traits and diseases and that causal variants are

largely shared across ancestries.9–12 With the ever-increasing

availability and scalability of genomic data from underrepre-

sented and ancestrally diverse populations, we are especially

interested in leveraging this greater diversity to improve PRS

generalizability.

In particular, recently admixed populations, consisting of chro-

mosomal segments of mosaic ancestries, are systematically
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excluded in many existing genomic studies due to their underrep-

resentation and complicated population structure.13–15 However,

these populations present unique opportunities to develop more

generalizable PRSs, as their genetic effects can be estimated in

more consistent environments, which helps reduce confounding

factors comparedwith estimates across different ancestry groups

in different populations.16 Furthermore, the comprehensive char-

acterization of phenotypes is often insufficient or inconsistently

performed in different populations. However, in the recently ad-

mixed populations, there is a greater potential for consistency

and comparability in phenotype measurements, as the genetic

factors contributing to phenotypic differences between the source

populations can be decoupled in the recently admixed popula-

tions.16,17 The advancement of methodologies such as local

ancestry inference and association testing has further enabled

ancestry-specific GWASs in admixed populations,18–20 allowing

for the construction of PRSs that leverage genetic information

captured by local ancestry inference.With the ongoing data accu-

mulation from recently admixed populations, particularly through

initiatives like the All of Us Research Program,21 expanded re-

sources will provide unparalleled opportunities to explore the per-

formance of PRSs derived from local ancestry-informed summary

statistics within historically underrepresented populations.

Furthermore, such data will facilitate their integration with PRSs

derived from predominantly EUR-based cohorts.

Recently developed statistical methodologies leverage the

increasing diversity of GWAS data to improve PRS porta-

bility.8,22,23 However, the effect of genetic architecture, ancestry

composition of GWAS discovery cohorts, and PRS construction

methodologies on cross-ancestry predictive accuracy remains

largely unclear. For example, a recent study found no increase

in accuracy when meta-analyzing GWASs from a relatively small

Ugandan cohort with larger EUR data.6 Furthermore, theoretical

frameworks for approximating expected PRS accuracy from

multi-ancestry GWASs are lacking. Current theoretical calcula-

tions for PRS accuracy rely on the assumption of homogeneity

within the ancestral discovery samples,24,25 ignoring factors

that are likely to play a role in multi-ancestry cohorts. Such fac-

tors may include differences in linkage disequilibrium (LD), minor

allele frequency (MAF), heritability, sample sizes, and genetic

correlation across different ancestries.

To provide insights into those issues, we explored the impact

of ancestry compositions in discovery GWASs on the predictive

accuracy of PRSs constructed using different methodologies.

This exploration involved large-scale population genetic simula-

tions as well as the utilization of real genomic data from the

BioBank Japan (BBJ)26 and UK Biobank (UKBB)27 across traits

exhibiting distinct genetic architectures (Figure 1). In what fol-

lows, we used single-ancestry GWASs to denote studies con-

ducted exclusively within a single ancestry group (defined using

genetic data), while multi-ancestry GWASs refer to studies en-

compassing two or more distinct ancestries. In our analyses,

we performed meta-analyses of GWASs conducted in EUR

ancestry populations (EUR GWASs) and GWASs conducted in

other minority populations (Minor GWASs) by varying the ratios

of sample sizes to mimic multi-ancestry GWASs with varying

ancestry compositions. Specifically, we focused on East Asian

(EAS) and African (AFR) minority populations. By comparing
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the performance of PRSs derived from single-ancestry GWASs

(referred to as PRSsingle) and multi-ancestry GWASs (referred

to as PRSmulti) through simulations and real data, we consistently

observed that PRSmulti overall exhibited superior performance in

comparison to PRSsingle (primarily PRSs derived from large-scale

EUR GWASs, referred to as PRSEUR_GWAS). As admixed popula-

tions remain understudied despite disproportionately yielding

novel genetic findings,28 we further conducted local ancestry

inference to explore whether, how, and to what extent PRS per-

formance could be improved using GWAS discovery data from

AFR-EUR admixed individuals. While optimal PRS methods are

trait and context specific, this study comprehensively evaluates

PRS accuracy across a wide range of scenarios, facilitating a set

of best practices that ultimately reduce the number of analyses

necessary to optimize PRSs for specific applications.

RESULTS

Evaluating the effects of imbalanced sample sizes
across ancestries on PRS accuracy through simulations
We simulated genotypes using HapGen2 and phenotypes by

varying trait heritability (h2 = 0.03, 0.05) and number of causal var-

iants ðMc = 100, 500, 1,000), such that the polygenicity ranged

from �0.1% to �1%. We assumed that the causal variants and

their effect sizes are shared across ancestries (i.e., cross-ancestry

genetic correlation [rg] is 1) in our initial simulations. For single-

ancestry GWASs, we first conducted GWASs within each bin

and then meta-analyzed GWASs across different numbers of

bins (1–52 per ancestry). Each bin represented 10,000 individuals

randomly sampled from the corresponding ancestry. For multi-

ancestry GWASs, we meta-analyzed GWASs from EUR and mi-

nor populations (EAS or AFR) to evaluate the impact of ancestry

composition. We used varying numbers of bins from the EUR

GWASs (4–52 with 4 increments) and varied the contribution

fromEAS or AFRGWASs (1–52 bins).We constructed PRSs using

the classic pruning and thresholding (P + T) method with varying

p value thresholds. We assessed the accuracy, measured by pre-

diction R2, using the optimal threshold through fine-tuning in the

validation cohort. The detailed simulation setup is shown in Fig-

ure 1 and STAR Methods.

PRS predictive accuracy improvedwithmore individuals

from target populations included in the multi-ancestry

GWASs but varied with genetic architecture

When developing PRSsingle, we found that using ancestry-

matched GWASs generally outperformed using GWASs from

other discovery populations (Figure S1). Compared to using

EUR GWASs, the benefit of using ancestry-matched GWASs

wasmore evident for traits withmore polygenic genetic architec-

tures and larger GWAS sample sizes. To further evaluate the

impact of ancestry composition, we compared the accuracy of

PRSmulti and PRSsingle. We constructed PRSmulti using an LD

reference panel consisting of individuals proportional to the

ancestry composition of the discovery GWAS (STAR Methods).

This reference panel yielded approximately optimal accuracy

among three different reference panels utilized in our study

(Figure S2).

Relative to the accuracy of PRSEUR_GWAS, we observed signif-

icant improvements in the understudied population by including



Figure 1. Study design in both simulations and empirical analyses

(1) In the context of single-ancestry GWASs, we randomly split individuals in European (EUR) and other minority populations, including East Asian and African

populations, into equally sized bins. Simulations involved a total of 52 bins per population, each containing 10,000 individuals. For empirical analysis, bin number

was dependent on the sample size of the respective phenotype in that population (Table S3), with 5,000 individuals per bin. A GWAS was conducted within each

bin for each individual population, followed by meta-analysis of GWASs from various numbers of bins within each population. To construct PRSs derived from

single-ancestry GWASs (PRSsingle) in the target population, we applied P + T for both simulations and empirical analyses, utilizing PRS-CS for the latter. Sub-

sequently, we combined PRSsingle developed from EUR GWAS (PRSEUR_GWAS) and other minority population-based GWAS (PRSMinor_GWAS) through a linear

weighted strategy (denoted as PRSweighted, highlighted in red box) for empirical analyses. Note that PRSweighted was also developed using PRS-CSx, which

utilizes GWAS summary statistics from multiple populations. (2) For meta-analyzed multi-ancestry GWASs (referred to as Meta), we ran meta-analyses on EUR

GWASs andMinor GWASs with varying ancestry compositions. In simulations, we incrementally included 4 bins from EURGWASs for the meta-analysis, while in

empirical analyses, we increased the number to 8 bins. Simultaneously, we varied the number of bins in Minor GWASs from 1 to the total number. Following the

meta-analysis, we constructed PRSs based on Meta (referred to as PRSmulti), using the P + T method for simulations, and employing both P + T and PRS-CS for

empirical analyses.
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more individuals from the target ancestry in multi-ancestry

GWASs. Across all simulations, a statistically significant median

improvement of 0.008 in R2 was observed (one-sided Wilcoxon

signed-rank test, p < 2.2e�16; Table S1). This trend was more

apparent in more polygenic traits. As shown in Figure 2, we

compared accuracy between PRSmulti and PRSEUR_GWAS

derived from 320,000 EUR individuals. For traits with an h2 of

0.05, the median improvements in R2 of PRSmulti were 0.006,

0.014, and 0.013 with Mc of 100, 500, and 1,000, respectively,

in EAS individuals. Similarly, corresponding R2 improvements

of 0.009, 0.010, and 0.014 were shown in AFR individuals (Fig-

ure S3). However, we did not consistently observe such accu-

racy gains for the majority EUR population or in scenarios where

the other understudied ancestry was not included in the multi-

ancestry discovery GWAS. In our simulations, but unlike in

most GWASs, populations typically understudied in current
genomic studies can be the majority in the discovery GWASs.

Note that when the proportion of underrepresented populations

in the discovery GWAS was below 50%, we still observed signif-

icant improvements in PRS accuracy. Specifically, across

various simulations, we noted a median increase in R2 of 0.007

(p < 2.2e�16). We expected to observe similar relative R2 im-

provements, which measured the PRS generalizability, in the

target populations using PRSmulti compared with using

PRSEUR_GWAS (STAR Methods).

Compared with using PRSEUR_GWAS, we found that PRSmulti

derived from GWASs with much smaller sample sizes could

achieve comparable or better predictive accuracy (Table S1).

For example, in the scenario with an Mc of 1,000 and an h2 of

0.03, the meta-analysis of 16 EUR and 2 AFR bins achieved a

comparable accuracy of 0.008 to that of using 32 EUR bins in

the AFR population. Overall, adding fewer individuals from the
Cell Genomics 3, 100408, October 11, 2023 3



Figure 2. Improvement of PRS accuracy

through meta-analyzed multi-ancestry

GWASs compared with large-scale EUR

GWASs across 6 simulated genetic architec-

tures

The multi-ancestry GWASs included populations of

EUR and East Asian (EAS) ancestry, with the EAS

sample size varying as indicated on the x axis. For

illustrative purposes, we present the results using 32

EUR bins, each consisting of 10,000 individuals,

which were included in both EUR GWASs and multi-

ancestry GWASs. The PRS was separately evalu-

ated in African (AFR), EAS, and EUR populations.

Full results are shown in Table S1. Mc indicates the

number of causal variants, and h2 refers to SNP-

based heritability. In each panel, the red vertical

dashed line indicates the point where an equal

number of bins from EUR and EAS populations was

included in the multi-ancestry GWAS. The error bars

represent the SEs of predictive accuracy differences

between PRSmulti and PRSEUR_GWAS.

Article
ll

OPEN ACCESS
target populations saturated accuracy improvements faster for

less polygenic traits than more polygenic traits. Similarly, larger

sample sizes from AFR populations were required to achieve

comparable accuracy to EAS populations, especially for more

polygenic traits, likely due to the larger effective population

size in AFR populations and larger genetic divergence between

EUR and AFR populations. As shown in Figure S3, when h2

was 0.03, the accuracy improvement of PRSmulti in AFR pla-

teaued to �0.005 with 11 and 20 AFR bins for Mc of 100 and

500, respectively, but continued to increase with more AFR

bins for an Mc of 1,000. Similarly, when h2 was 0.03, including

2 and 12 EAS bins in PRSmulti yielded an accuracy improvement

of >0.005 in EAS for Mc of 100 and 500, respectively (Figure 2).

In comparison to PRSs derived from Minor GWASs alone

(PRSMinor_GWAS), we found that the accuracy improvement of

PRSmulti gradually diminished as the sample size of Minor

GWASs increased (Figure S4; Table S1). We showed that for

more polygenic traits, PRSmulti achieved little to no improvement

when the understudied target populations accounted for more

than half of the sample size in multi-ancestry GWASs.

Because rg estimates can be significantly less than 1, we

also modified our simulations by varying the rg to be 0.6 and

0.8. We investigated two simulation scenarios that represent

the extremes in per-variant variance explained: the least poly-

genic scenario 1 with MC = 100 and h2 = 0.05, and the most

polygenic scenario 2 with MC = 1,000 and h2 = 0.03 (STAR

Methods). Consistent with our previous findings, PRSmulti ex-

hibited improved accuracy in the target population when a

greater number of individuals from the same ancestry were

included, as compared to relying solely on large-scale EUR

GWASs (Figures S5A and S5B; Table S2). This improvement

was more pronounced for scenario 2. Moreover, we needed

a larger number of individuals from the target ancestry to satu-

rate accuracy improvements in scenario 1 when rg was

moderately reduced. Furthermore, as the sample sizes of

the Minor GWASs increased and the values of rg decreased,

the advantage of utilizing PRSmulti over PRSMinor_GWAS dimin-
4 Cell Genomics 3, 100408, October 11, 2023
ished and eventually vanished (Figures S5C and S5D;

Table S2).

Empirical analysis of PRS accuracy within and across
ancestries using 17 quantitative phenotypes
Genetic architecture of 17 studied phenotypes

To understand how trait genetic architecture influences the ac-

curacy of PRSs across ancestries, we conducted a comprehen-

sive analysis involving 17 phenotypes in the UKBB and the BBJ.

Using the summary-data-based BayesS (SBayesS) method, we

estimated key parameters, including SNP-based heritability,

polygenicity (the proportion of SNPs with nonzero effects), and

a coefficient of negative selection (S; measuring the relationship

between MAF and estimated effect sizes), by leveraging GWAS

summary statistics as input data.29

The phenotypes included in this study varied widely in genetic

architecture across these estimated parameters (Figure 3;

Tables S3 and S4). The polygenicity estimates spanned a broad

range, from low values (0.001–0.005) for traits like mean corpus-

cular hemoglobin concentration (MCHC), basophil count

(basophil), mean corpuscular hemoglobin (MCH), and mean

corpuscular volume (MCV), to higher values (0.012–0.047) for

traits such as height and body mass index (BMI). SNP-based

heritability estimates similarly ranged from <0.1 for basophil

and MCHC to 0.54 and 0.33 for height using the UKBB and the

BBJ, respectively, regardless of polygenicity. The median S

parameters were �0.63 and �0.47 using the UKBB and the

BBJ, respectively. While the negative S values indicate negative

selection (i.e., rarer variants have larger effects), it remains un-

clear to what degree population stratification could confound

such estimates.30,31 We found that the polygenicity estimates

using the UKBB were mostly higher than those using the BBJ,

which could be due to the higher statistical power with larger

sample sizes in the UKBB resulting in the detection of more var-

iants with small effects. Similarly, we observed significantly

higher SNP-based heritability in the UKBB compared with the

BBJ, with the exception of MCHC and basophil, indicating



Figure 3. Genetic architecture of 17 studied

traits between the BioBank Japan and the

UK Biobank

The error bar is the standard deviation of the cor-

responding estimate. The vertical dashed line was

the median estimate. Full results are shown in

Table S4. The phenotypes were ranked according to

their polygenicity estimates using GWASs from the

UKBB, including: BMI (body mass index); height;

DBP (diastolic blood pressure); SBP (systolic blood

pressure); WBC (white blood cell count); lymphocyte

(lymphocyte count); RBC (red blood cell count);

neutrophil (neutrophil count); HB (hemoglobin con-

centration); HT (hematocrit percentage); eosinophil

(eosinophil count); PLT (platelet count); monocyte

(monocyte count); MCV (mean corpuscular volume);

MCH (mean corpuscular hemoglobin); basophil

(basophil count); and MCHC (mean corpuscular

hemoglobin concentration).
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possible phenotype heterogeneity between the two cohorts.

These results are expected from the biobank designs, as the

BBJ is a hospital-based cohort with participants recruited with

certain diseases, whereas the UKBB is a population-based

cohort with overall healthier participants and thus a wider range

of natural variation in complete blood counts. This finding is also

consistent with the previous study using estimates from LD

score regression (LDSC) and stratified LDSC.32 Moreover, the

estimated rg between the UKBB and the BBJ for those traits

were not statistically different from 1 (p > 0.05/17) except for a

few including basophil (0.5945, SE = 0.1221), height (0.6932,

SE = 0.0172), BMI (0.7474, SE = 0.0230), diastolic blood pres-

sure (DBP; 0.8354, SE = 0.0509), and systolic blood pressure

(SBP; 0.8469, SE = 0.0430).32

PRSmulti usually improves predictive performance comparedwith

PRSsingle. We constructed PRSsingle using P + T and PRS-

continuous shrinkage (PRS-CS) with GWASs from the UKBB

and the BBJ, respectively. TheGWAS sample sizes varied based

on the number of BinTotal, which represented the total number of

bins specific to each trait as shown in Table S3. Each bin con-

sisted of 5,000 individuals randomly selected from the respective

cohort. We found that employing target ancestry-matched

GWASs, even with smaller sample sizes, yielded comparable ac-

curacy to utilizing large-scale EUR GWASs but depended on

PRS methodology and trait-specific genetic architecture

(Figures S6 and S7; Table S5).

For comparison, we developed PRSmulti through meta-

analyzing single-ancestry GWASs obtained from the UKBB

and the BBJ. The PRSmulti was constructed by varying the num-

ber of bins from each cohort, with UKBB bins ranging from 8 to

64, incrementing by 8 (details provided in STAR Methods and

Figure 1). Consistent with our findings from the simulations,

where we observed that the choice of LD reference panel had

limited impacts on the predictive accuracy of more polygenic

traits, we observed only a slight improvement of median R2 of

0.002 for P + T when employing a combined LD reference panel

that was proportional to the ancestries represented in the multi-
ancestry GWASs.We compared this result with PRSs developed

using a reference panel that was matched with the majority pop-

ulation of the discovery GWAS (Figure S8; Table S6). Because

the majority of PRSs (85%) were constructed from GWASs pre-

dominantly composed of EUR individuals (>50% EUR), we here-

after reported the results using 1KG-EUR as the LD reference.

In our analysis comprising 3,160 comparisons between PRSs

derived from UKBB GWASs (PRSEUR_GWAS) and PRSmulti, we

observed encouraging results. Specifically, in the UKBB-EAS

population, PRSmulti showed accuracy improvements in 99.7%

and 92.4% of these comparisons when using P + T and PRS-

CS, respectively (Table S7; Figure S9). Accuracy increased

with more EAS samples in the multi-ancestry GWAS (Figure 4).

For example, when comparing PRSmulti with PRSEUR_GWAS using

P + T, the largest relative improvements in R2 were 80.9% (0.085

vs. 0.047) for platelet count (PLT), 152.2% (0.058 vs. 0.023) for

BMI, and 91.9% (0.071 vs. 0.037) for height. We observed these

improvements when using multi-ancestry GWASs including EAS

bins from the BBJ, which were either concordant with or prox-

imal to BinTotal, along with 64 EUR bins from the UKBB. Similarly,

the corresponding relative R2 improvements for these same

three traits were 18.9% (0.126 vs. 0.106), 50% (0.075 vs.

0.050), and 15.5% (0.097 vs. 0.084) when using PRS-CS. We

did not consistently observe the upward trend for white blood

cell count (WBC) with PRS-CS, which can be attributed to the

lack of accuracy improvement with larger sample sizes of BBJ

(Figure S6). We also found that P + T showed greater improve-

ment compared to PRS-CS but worse accuracy overall, regard-

less of the number of bins from EUR GWASs; the median

improvements in R2 across traits were 0.014 and 0.008, respec-

tively. However, the upward trend in PRS accuracy was not

consistently shown in the UKBB-EUR, particularly when using

PRS-CS (Figure S10; Table S7). This pattern aligned with our

simulation results and previous reports that PRS accuracy for

minority populations included in the multi-ancestry GWAS

benefited more from adding more ancestry-matched individuals

compared with other populations, including EUR populations.33
Cell Genomics 3, 100408, October 11, 2023 5



Figure 4. Accuracy improvement of PRS in the UKBB-EAS population usingmulti-ancestry GWASs comparedwith using EURGWASs for P +

T and PRS-CS
Themulti-ancestry GWASs were obtained bymeta-analyzing EURGWASs and EASGWASs, with the EAS sample size from the BBJ varying as indicated on the x

axis. For illustrative purposes, we present the results using 64 EUR bins, each containing 5,000 individuals, which were included in both EUR GWASs and multi-

ancestry GWASs. The y axis is the accuracy difference of PRSs when using multi-ancestry GWASs (PRSmulti) compared with using EUR GWASs (PRSEUR_GWAS).

The error bars indicate the SE of accuracy improvement. The red dashed line is y = 0. We showed the results for 7 traits with SNP-based heritability >0.1 in both

the BBJ and the UKBB, and they were ranked by polygenicity estimates using the UKBB (Figure 3). Abbreviations are the same as in Figure 3. Full results are

shown in Table S7.
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We noted that the accuracy of PRSmulti remained largely un-

changed or slightly decreased when the number of bins from

the BBJ was small (e.g., 1 or 2 bins), which was consistent

with previous studies.6,33 In contrast to PRSs derived from the

BBJ (PRSMinor_GWAS), we noted a diminishing trend in accuracy

improvements of PRSmulti as the sample sizes of BBJ increased,

especially for traits such as height, PLT, MCH, and MCV (Fig-

ure S11). Furthermore, we observed greater variation in accu-

racy among traits from real data compared with simulations,

which could be attributed to the smaller sample sizes and the

more complicated genetic architecture.

PRSs derived from meta-analyzed multi-ancestry GWASs vs.

weighted PRSs from single-ancestry GWASs in understudied

populations. In contrast to PRSmulti, an alternative approach

proposed in previous studies to enhance predictive accuracy

in diverse populations is the linear combination of PRSs derived

from GWASs conducted on populations with different ances-

tries.34 Here, we implemented this approach by developing a

weighted PRS (PRSweighted) using P + T and PRS-CS. This

combination involved linearly weighting PRSs derived from sin-

gle-ancestry GWASs conducted in the UKBB and the BBJ. Addi-

tionally, we employed amore advanced Bayesian method called
6 Cell Genomics 3, 100408, October 11, 2023
PRS-CSx,8 which jointly models GWAS and LD information from

multiple populations. Similarly, we constructed PRSweighted us-

ing ancestry-specific posterior SNP effects. Furthermore, we

developed PRSs by integrating ancestry-specific posterior

SNP effects using the inverse-variance weighted meta-analysis

strategy, also referred to as PRSmulti (see STAR Methods).

Among the three PRS methods evaluated in the UKBB-EAS,

PRS-CSx exhibited the highest performance, followed by PRS-

CS and P + T. Specifically, for PRSmulti, the corresponding me-

dian R2 values across traits were 0.051, 0.048, and 0.037, while

for PRSweighted, they were 0.051, 0.045, and 0.021, respectively

(Figure 5; Tables S8 and S9). Notably, we observed that

PRSmulti for BMI using PRS-CS yielded significantly better

accuracy compared with PRS-CSx (median R2: 0.057 vs.

0.055, p < 2.2e�16). Out of the 3,160 comparisons between

PRSmulti and PRSweighted in the UKBB-EAS, 91.4% and 78%

showed higher accuracy of PRSmulti (p < 2.2e�16) when using

P + T and PRS-CS, respectively, with median improvements in

R2 of 0.011 and 0.003. Although we found better performance

overall with PRSmulti, we found that PRSweighted significantly out-

performed PRSmulti for PLT using P + T (median R2: 0.086 vs.

0.081, p < 2.2e�16) and for height using PRS-CS (median



Figure 5. Predictive accuracy using different PRS methods in the UKBB-EAS population

We showed the results for 7 traits with SNP-based heritability >0.1 in both the BBJ and the UKBB. Traits were ranked by polygenicity estimates using the UKBB

(Figure 3). Boxes represent the first and third quartiles, with the whiskers extending to 1.5-fold the interquartile range. Abbreviations are the same as in Figure 3.

Full results are shown in Tables S8 and S9.
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R2: 0.091 vs. 0.082, p = 2.6e�04). Contrary to trends observed

with other methods, in 59.7% of the comparisons, PRSweighted

outperformed PRSmulti when using PRS-CSx, although we

observed no significant accuracy difference across traits. How-

ever, PRSweighted showed superior performance compared with

PRSmulti (p < 0.05/17) for several traits, including MCV (median

R2: 079 vs. 0.072), MCH (median R2: 0.079 vs. 0.073), basophil

(medianR2: 0.010 vs. 0.007), and hemoglobin (HB) concentration

(median R2: 0.025 vs. 0.024).

Moreover, the extent of accuracy improvements using

PRSmulti, in contrast to PRSweighted, largely varied across traits

and ancestry compositions. For example, when evaluating accu-

racy within the UKBB-EAS using P + T, we observed 3.25-fold

increase in R2 with PRSmulti compared with PRSweighted for

monocyte count (monocyte; 0.065 vs. 0.020). This improvement

was achieved with a bin ratio 56:15 for the discovery GWAS,

consisting of 56 bins from the UKBB and 15 bins from the

BBJ. Similarly, using a bin ratio of 40:25, we achieved a 4-fold in-

crease in R2 for DBP (0.048 vs. 0.012) with PRSmulti compared

with PRSweighted. When developing PRSmulti using PRS-CS, we

observed notable relative improvements in R2 when compared

to PRSweighted, specifically a 24.7% increase for PLT (0.091 vs.

0.073) with a bin ratio of 24:1 and a 57.1% increase for lympho-

cyte (0.044 vs. 0.028) with a bin ratio of 16:1. Additionally, we

found that PRS-CSx showed better performance in comparison

with PRS-CS, especially when the EURGWASwas smaller or the

Minor GWAS was larger. However, such improvements were

less pronounced with large-scale EUR GWASs or small Minor
GWASs (Figure S12). While sharing ancestry-specific GWAS

summary statistics is highly beneficial for determining optimal

approaches, our findings highlight the value of pragmatic ap-

proaches that directly construct PRS from large-scale meta-

analyzed multi-ancestry GWASs. Such studies are often more

accessible than ancestry-specific GWAS summary statistics.

PRSs derived from local ancestry-informed GWASs can
improve accuracy for some less polygenic traits
We next conducted a comparative analysis to evaluate the

optimal PRS approaches for admixed populations, utilizing local

ancestry-informed GWASs. Specifically, we used Tractor19 to

perform GWASs in AFR tracts within admixed AFR-EUR individ-

uals, referred to as AFRTractor. This approach enabled us to

construct ancestry-specific PRSs across 17 traits in the under-

studied AFR population. We developed PRSs using both P + T

and PRS-CS and subsequently compared the accuracies of

PRSs derived from AFRTractor with those derived from large-

scale EUR GWASs performed with standard linear regression

(EURstandard). Tomaximize discovery sample size, we also devel-

oped PRSweighted by combining EURstandard-derived PRSs and

AFRTractor-derived PRSs through linear weighting; we compared

its performance with PRSs derived from multi-ancestry meta-a-

nalyzed GWAS (referred to as Metastandard; see STAR Methods).

Local ancestry-informed ancestry-specific GWASs had a

much smaller sample size relative to the EUR-inclusive

GWASs, as is typical for GWASs of underrepresented popula-

tions. As expected, we did not observe significant predictive
Cell Genomics 3, 100408, October 11, 2023 7



Figure 6. Accuracy of PRSs derived from local ancestry-informed GWASs vs. other discovery GWASs in the UKBB-AFR population

AFRTractor denotes the AFR-specific GWAS performed using Tractor on the UKBB admixed AFR-EUR individuals. EURstandard refers to standard GWASs per-

formed on the EUR population in the UKBB. Metastandard is the meta-analysis performed on AFRTractor and EURstandard. Furthermore, we constructed a weighted

PRS by combining PRSs generated from AFRTractor and EURstandard through a linear weighted approach. The figure shows the results for traits with SNP-based

heritability >0.1 in the UKBB-AFR. Full results are shown in Table S10.
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accuracy of AFRTractor-derived PRSs for most traits such as

height and BMI (Figure 6; Table S10). However, we observed

notable improvements for 5 traits, including WBC, neutrophil

count (neutrophil), MCV, MCH, and MCHC, where AFRTractor-

derived PRSs achieved significantly higher R2 compared with

EURstandard-derived PRSs when using P + T (0.040 vs. 0.007,

one-sided paired t test, p = 0.038), despite a much larger sample

size for EURstandard. This improvement might be attributed to the

presence of large-effect AFR-enriched variants, particularly for

MCV, MCH, and MCHC, which are effectively captured by

Tractor GWASs.6,19 Consistent with our previous findings, P +

T generally outperformed PRS-CS for these traits, characterized

by much sparser genetic architectures, with a mean R2 of 0.040

compared with 0.022. In line with our PRS accuracy results, we

observed higher estimates of SNP-based heritability for WBC

(h2 = 0.41, SE = 0.19 vs. h2 = 0.17, SE = 0.01), neutrophil (h2 =

0.44, SE = 0.26 vs. h2 = 0.15, SE = 0.01), and MCHC (h2 =

0.15, SE = 0.11 vs. h2 = 0.06, SE = 0.01) in the AFR population

compared with in the EUR population (STAR Methods). Howev-

er, these differences did not reach statistical significance, which

can be attributed to the large SEs resulting from the limited small

sample size of the AFR population and the sparser genetic archi-

tectures, leading to less stable heritability estimates using LDSC.

The best local ancestry-informed PRS approach that we eval-

uated for the 5 less polygenic traits was PRSweighted. This finding

aligns with our earlier observations, where PRSweighted outper-
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formed PRSmulti for traits with large-effect ancestry-enriched

variants, while PRSmulti exhibited superior overall performance

for traits lacking such variants. Specifically, the mean accuracies

of PRSweighted using P + T, PRS-CS, and PRS-CSx for those 5

traits were 0.044, 0.031, and 0.028, respectively, with no signif-

icant differences observed among the three PRS methods.

The mean accuracies of Metastandard-derived PRSs were 0.016

and 0.008 using PRS-CS and P + T, respectively. Additionally,

we did not observe significant accuracy differences between

PRSs derived from GWASs conducted using standard linear

regression in admixed populations and AFRTractor-derived

PRSs (Table S10). It is worth noting that the effective sample

size of local ancestry-informed GWASs is approximately 20%

smaller due to the reduction from deconvolving ancestral tracts.

Moreover, PRSs derived from traditional GWASs in admixed

populations necessitate an in-sample LD reference panel. In

contrast, local ancestry-informedGWAS-based PRSs, as shown

in this study, can leverage external LD reference panels, elimi-

nating the need for direct access to individual-level genotypes

of admixed populations.

DISCUSSION

In this study, we extensively evaluated PRS performance

through a combination of simulation and empirical analyses to

explore the impact of various factors on PRS predictive accuracy
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Figure 7. General practices for developing

PRSs using different discovery GWASs

We summarized the general practice for developing

PRSs (A) using single-ancestry GWASs (PRSsingle)

and (B) using GWASs from multiple ancestries

(PRSmulti or PRSweighted). rg, cross-ancestry genetic

correlation; h2d and h2t , SNP-based heritability in

discovery and target populations, respectively; Nd ,

discovery GWAS sample size; Md, the number of

genome-wide independent segments in the dis-

covery population.
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and generalizability across populations. We demonstrated that

increasing genetic diversity of discovery GWASs improved pre-

dictive accuracy in understudied populations. The extent of

improvement was influenced by factors such as sample size ra-

tios between EUR GWASs and Minor GWASs, genetic architec-

ture, PRS methodology, and LD reference panels. Among those

factors, between-ancestry genetic architecture differences,

such as ancestry-enriched variants with large effects, affected

accuracy improvementmore than other factors.While leveraging

large-scale EUR GWASs continues to benefit PRS accuracy

given the current scale of understudied populations, we may

not expect accuracy improvement when meta-analyzing

extremely small Minor GWASs.6

Our study also revealed that directly meta-analyzing datasets

from diverse ancestral groups could yield greater accuracy im-

provements than linearly combining PRSs through an optimized

weighting strategy, especially for P + T. Such improvements

from meta-analyzed GWASs support the common implicit

assumption that causal variants are shared between ancestries.

Consistent with this assumption, when smaller target popula-

tions lack representation, leveraging genetic information from a

different population with larger sample sizes improves PRS ac-

curacy, even when it is ancestrally diverged. Notably, when em-

ploying the more sophisticated genome-wide PRS method,

PRS-CSx, accuracy differences between PRSmulti and
C

PRSweighted were marginal. Moreover,

PRS-CSx generally outperformed PRS-

CS, with the exception of BMI. The

improvement was most pronounced for

traits with ancestry-specific variants, such

as MCV and MCH.

We have comprehensively evaluated

characteristics that impact PRS perfor-

mance, including in recently admixed pop-

ulations. We have shown the advantage of

leveraging GWASs in admixed populations

by accounting for local ancestry, which

could improve PRS predictive perfor-

mance in understudied populations even

without direct access to individual geno-

types of admixed populations. Specifically,

we found that PRSweighted consistently out-

performed PRSmulti for traits with ancestry-

enriched variants. However, the sample

size of admixed individuals here was rela-
tively small, and we anticipate that future analyses incorporating

larger datasets, such as the All of Us Research Program, will pro-

vide further insights into optimal PRS strategies for improved ac-

curacy and generalizability using PRSs derived from local

ancestry-informed GWASs.

While previous studies have shown the advantages of

leveraging increased genetic diversity to improve PRS accuracy

in global populations,7,35 most have used GWASs with primarily

EUR ancestry. Here, we have provided additional best practices

for developing PRSs for understudied populations using diverse

discovery cohorts, particularly whenGWASs encompass different

ancestry compositions across various trait genetic architectures

(Figure 7). Our recommendations primarily revolve around general

guidelines for constructing PRSsingle and PRSmulti (or PRSweighted),

depending on factors examined in this study (Figure S13).

First, in the development ofPRSsingle, weemployeda theoretical

equation36 to enhance the selection of input GWASs (STAR

Methods), as a function of rg, SNP-based heritability in discov-

ery and target populations, GWAS sample size, and the

number of genome-wide independent segments in the discovery

population.36 For traits with relatively low rg and a sizable

ancestry-matched GWAS (e.g., >20%–40% of EUR GWASs),

such asBMI and height, PRSaccuracy in the target population im-

proves when ancestry-matched GWASs are utilized. On the other

hand, for traits with high rg and high SNP-based heritability, we
ell Genomics 3, 100408, October 11, 2023 9
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expect larger-scale EUR GWASs to outperform smaller-scale

ancestry-matched GWASs. Additionally, we expect Bayesian

methods tailored to trait-specific genetic architecture to outper-

form P + T. However, this superior performance may not hold

true for traits that exhibit large-effect ancestry-enriched variants

orwithaverysparsegeneticarchitecture,whichareattributes typi-

cally informed by prior knowledge or information gleaned from

literature and public resources.35,37–39 To enhance accuracy in

such scenarios, we recommend employing a grid-search

approach with a finer-scale adjustment of the hyper-parameters

in Bayesian methods.

Second, in comparison to PRSsingle derived from large-scale

EUR GWASs, we recommend using PRSmulti, unless the target

ancestry-matched GWAS is extremely small (<10,000). PRSmulti

is generally preferred for traitswith high rg, highSNP-based herita-

bility, and large sample sizes. We find increasing evidence sup-

porting the notion that the effects of most common variants are

shared between ancestries, indicating a high rg for most traits.9,11

However, estimates of rg can be affected by phenotypic and envi-

ronmental heterogeneity across populations.10,16 When con-

structing PRSmulti using summary-level-based methods, re-

searchers should carefully consider which LD reference panel

best approximates the LD structure between SNPs while being

the most readily accessible. We have shown that when EUR re-

mains the majority population in the discovery GWAS, using the

EUR-based reference panel effectively approximates the LD of

the discovery GWAS, consistent with our previous findings.7

Third, our findings indicate the advantages of PRSmulti

compared with PRSweighted, particularly when employing P + T

and PRS-CS. However, there are some notable exceptions,

such as the higher accuracy observed when using PRSweighted

with PRS-CS for traits with low rg, such as height. Furthermore,

when incorporating local ancestry-informed GWASs and large-

scale EUR GWASs, PRSweighted outperformed PRSmulti for traits

with AFR-enriched variants, such as WBC and MCHC, in the

UKBB-AFR. On the other hand, we note that the accuracy of

PRSmulti could be more affected by the choice of LD reference

panel, while PRSweighted was not limited in this regard due to its

easy accessibility of external ancestry-matched reference

panels. PRS-CSx is recommended when ancestry-specific

GWASs from multiple populations are available, especially with

considerable sample sizes (e.g., >25,000–50,000) of Minor

GWASs. These results highlight the importance of making

ancestry-specific summary statistics publicly available.

In summary, there is no one-size-fits all approach for construct-

ing PRSs, as the optimal approach depends on genetic architec-

ture, ancestry composition, statistical power, and other factors.

These factors can becomplex, particularly as a delugeofmethods

are being developed to address the PRS generalizability problem.

To inform optimal approaches across a wide range of scenarios,

we have distilled the results of extensive simulations and empirical

analyses across trait genetic architectures, ancestries, and

methods into a set of guidelines fromparameters that are typically

evaluated at the outset of a genetic study.

Limitations of the study
We acknowledge some limitations and future directions in our

study. First, we focused on common variants, while population-
10 Cell Genomics 3, 100408, October 11, 2023
enriched variants have lower frequencies in the overall popula-

tion. The role of such variants in polygenic prediction are worth

exploring across phenotypes when there are sufficient sample

sizes for different ancestral populations. Second, as we used

external LD reference panels for PRS construction, PRS perfor-

mance decreases with LD mismatch between the discovery

population and the LD reference panel, especially when using

multi-ancestry GWASs. While we show that LD reference panel

differences have a relatively modest effect on PRS accuracy,

they have a much larger effect on fine-mapping,40 so future ef-

forts are warranted to share in-sample LD without direct access

to individual-level genotypes, especially for large consortia with

numerous and diverse cohorts. Alternatively, developing more

sophisticated individual-level PRSmethods that preserve privacy

and are scalable to current biobank-scale data is also promising.

Third, while our primary focus pertains to quantitative phenotypes

characterized by diverse genetic architectures, we expect that

our findings can be broadly applied to binary traits, as we have

investigated previously.7 However, binary phenotypes introduce

additional complexities due to factors such as variable case/con-

trol ratios, phenotype definitions, environmental differences, and

smaller effective sample sizes or lower statistical power. Finally, it

is important to acknowledge that our study focused on selected

methods, which consistently exhibit similar trends. Although we

anticipate that our findings are broadly applicable to alternative

methods, such as XPASS41 and XP-BLUP,42 further research is

needed to explore the generalizability of our findings to other

polygenic prediction approaches. Despite the limitations, our

study highlights the advantages of leveraging the increasing di-

versity of current genomics studies to improve polygenic predic-

tion across populations. We emphasize the necessity of diversi-

fying not only the ancestry but also the phenotypic spectrum

when collecting genomic data from global populations, which

will contribute to achieve a more equitable and effective use of

PRSs for traits with varying genetic architectures.
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Materials availability
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Data and code availability
1000 Genome Phase 3 data can be accessed at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/

data. We used UK Biobank data via application 31063. The software used in this study can be found at: Plink (https://www.

cog-genomics.org/plink/), PRS-CS (https://github.com/getian107/PRScs), PRS-CSx (https://github.com/getian107/PRScsx),

Tractor (https://github.com/Atkinson-Lab/Tractor), HapGen2 (https://mathgen.stats.ox.ac.uk/genetics_software/hapgen/hapgen2.

html) and SBayesS/GCTB (https://cnsgenomics.com/software/gctb/). The PanUKBiobank Project can be accessed at: Pan-UKBio-

bank Project https://pan.ukbb.broadinstitute.org. The codes used in this study have been deposited to https://doi.org/10.5281/

zenodo.8218174.

METHOD DETAILS

Simulations
Simulated genotypes in three populations

To explore the potential improvement of predictive accuracy within an underrepresented target ancestry through the inclusion of

additional samples included in the multi-ancestry discovery GWAS, we simulated genotypes of chromosome 22 for 560,000 individ-

uals in each population including European ancestry (EUR), East Asian ancestry (EAS) and African ancestry (AFR) using the software

HapGen2 v2.1.2.45 We used the haplotypes from 1000 Genome Project (1KG, Phase 3)43 as the sample pool. We excluded Amer-

icans of African Ancestry in SW USA and African Caribbeans in Barbados from the AFR samples due to their high degree of recent

admixture. We used default parameters in HapGen2 with effective sample sizes of 11,375, 12,239 and 17,380 for EUR, EAS and AFR,

respectively.45 After simulating the genotypes on chromosome 22, we ran analyses with a total of 87,938 overlapping SNPs across

the three ancestries which passed quality control filters: minor allele frequency (MAF) > 0.01, Hardy-Weinberg Equilibrium (HWE) p

value > 10� 6 and genotype missingness rates across individuals <0.05. We then removed 2nd-degree related individuals using the

software KING,46 resulting in 534,352, 533,996 and 537,498 unrelated individuals from EUR, EAS and AFR, separately. We randomly

sampled 10,000 and 520,000 individuals from each ancestry as the withheld target population and discovery population,

respectively.
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Simulated phenotypes with varying trait genetic architecture
For the sake of simplicity, we assumed that causal variants are shared across populations and their effect sizes are perfectly corre-

lated (cross-ancestry genetic correlation, rg = 1) in our initial simulations. The pairwise rg among K populations is represented by a

K � K matrix, denoted as R,where the off-diagonal elements of R had the value of rg and diagonal elements of Rwere set to 1. In our

study, K was equal to 3, indicating the number of populations considered. We simulated phenotypes based on the simple additive

model: y = g+ e, where g =
PMc

j = 1xijbj:Mc is the number of causal variants, xij is the genotype coded as 0, 1, or 2 for the j th SNP in

the i th population. The effect size of j th SNP across K populations is drawn from a multivariate normal distribution, b � MVNð0;SÞ,
where for the K � K variance-covariance matrix, S, the diagonal and off-diagonal elements were h2

2fijð1� fijÞMc
and R, h2

2fijð1� fijÞMc
, respec-

tively.We denoted fij as theMAFof j th SNP in the i th population and h2 as the trait heritability.We simulated the environmental effects

to follow a normal distribution with 0 mean and 1 � h2 variance, e � Nð0;1 � h2Þ. We simulated different levels of heritability for

chromosome 22 (h2 = 0.03 and 0.05). Additionally, we randomly sampled various numbers of causal variants ðMc = 100, 500, and

1000) from all the 87,938 SNPs. As a result, we defined a total of 6 distinct simulation scenarios that encompass a realistic spectrum

of polygenicity, ranging from �0.1% to �1% of causal variants. To assess the impact of rg on PRS performance, we expanded our

simulation study by considering two scenarios. These scenarios aimed to capture different levels of per-variant variance explained. In

scenario 1 characterized byMc = 100 and h2 = 0.05, the per-variant variance explained was higher. Conversely, scenario 2 involved

Mc = 1000 and h2 = 0.03, resulting in a lower per-variant variance explained. For each scenario, we varied the values of rg to 0.6 and

0.8, respectively.

Downsampling and meta-analyzed GWAS in simulations
To provide the requisite discovery data for constructing PRS, we proceeded to perform GWAS on the simulated phenotypes.

Specifically, we split the discovery population, which consisted of 520,000 unrelated individuals, into 52 evenly distributed bins,

each comprising 10,000 individuals (denoted as Bin1, Bin2,., Bintotal). Subsequently, we ran GWAS on each of those 52 bins inde-

pendently within the three populations, using simple linear regression implemented in PLINK v2.0.44 We excluded the causal variants

when running GWAS to mimic the phenomenon of imperfect tagging. We then employed an iterative process of meta-analysis, em-

ploying the inverse-variance weighted method using METAL,47 gradually incorporating a varying number of bins. Specifically, we

commenced the meta-analysis with Bin1+Bin2, subsequently progressing to Bin1+Bin2+Bin3, and so forth, until we encompassed

the complete set of bins (Bin1+Bin2+Bin3+ . +Bintota) for each population.

To simulate a scenario resembling a meta-analysis involving multiple ancestries with varying proportions, we opted for an arbitrary

selection of subsets from EUR GWAS. Specifically, we chose a range of bins, from 4 to 52 bins, with increments of 4. Subsequently,

we systematically incorporated different numbers of bins, spanning from 1 to 52, from EAS and AFR populations into the EURGWAS

dataset via meta-analysis. The meta-analysis was conducted utilizing the inverse-variance weighted fixed-effects model imple-

mented in the METAL software. This iterative process allowed us to achieve a range of sample size ratios between EUR and EAS

as well as EUR and AFR, encompassing ratios from 52:1 to 4:52, in the meta-analyzed multi-ancestry GWAS (referred to as

Meta). The simulation configuration is visually depicted in Figure 1.

Pruning and thresholding (P + T) in simulations
P + T follows a greedy heuristic algorithm wherein variants are sorted based on their p values. The algorithm iteratively descends in

significance while retaining only those variants that do not exceed a predetermined LD threshold with previously retained variants.

We employed PLINK v1.90 to clump quasi-independent SNPs within 500Kb windows, utilizing an LD threshold of r2 < 0.1. To explore

the impact of various LD reference panels on predictive accuracy of PRS, we used a total of four different LD reference panels:one for

single-ancestry and three for multi-ancestry GWAS, with consideration to the ancestry composition of the discovery GWAS and the

target population.

For the single-ancestry GWAS, we used an LD reference panel consisting of 10,000 individuals from the target population that were

matched to the ancestry of the discovery GWAS. In the case of multi-ancestry GWAS, we used three LD reference panels. These

panels included two composed of a single ancestry that did not mirror the ancestral makeup of the discovery GWAS. Specifically,

one panel comprised 10,000 withheld EUR individuals, while the other panel encompassed individuals from understudied popula-

tions, either 10,000 EAS or 10,000 AFR individuals, consistent with the minority population represented in the discovery GWAS.

The third LD reference panel consisted of individuals from different ancestries in proportions proportional to the discovery GWAS,

amounting to a total of 10,000 samples.

We calculated PRS in the target population using 8 different p value thresholds: 53 10�8, 13 10�6, 13 10�4, 13 10�3, 0.01, 0.05,

0.1, and 1. We denoted PRS constructed from single-ancestry GWAS as single-ancestry PRS (PRSsingle) and those from meta-

analyzed multi-ancestry GWAS as multi-ancestry PRS (PRSmulti). We calculated the predictive accuracy as the variance explained

by the PRS (R2) through linear regression: y � PRS and computed corresponding 95% confidence intervals (CIs) through bootstrap.

To identify the optimal p value threshold associated with the highest predictive accuracy, we evenly divided the target population into

a test cohort and a validation cohort. The p value threshold was optimized through a process of hyperparameter tuning in the vali-

dation cohort, and subsequently, the accuracy of the model was assessed using the test cohort. To further compare the accuracy of

PRSmulti relative to PRSEUR_GWAS, we calculated the relative accuracy (RA) as the difference in PRSR2 between the PRS derived from
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multi-ancestry GWAS and EUR GWAS divided by the PRS R2 in EUR ancestry from the EUR GWAS, i.e., RA =
R2
target using PRSmulti �R2

target using PRSEUR GWAS

R2
EUR

using PRSEUR GWAS
. Therefore, the trend of RA was consistent with the accuracy improvement of PRSmulti.

Empirical analysis of 17 quantitative traits in the UK biobank (UKBB) and biobank Japan (BBJ)
We further explored how the findings from simulations generalized in real data using 17 quantitative traits shared between UKBB and

BBJ, including anthropometric traits (BMI and height) and blood panel traits studied previously (Table S3).32 The selection of these

traits was motivated by their widespread availability within biobanks and their substantial statistical power, attributable to their

quantitative properties.

Datasets and quality control (QC)
UK biobank (UKBB)

The details of assigning ancestry for each individual in the UKBB are described in the Pan-UK Biobank Project (Pan UKBB: https://

pan.ukbb.broadinstitute.org/). Briefly, a random forest classifier trained on reference data from 1KG and Human Genome Diversity

Project (HGDP)48 was used to classify cohort individuals under continental population labels based on the top 6 principal compo-

nents (PCs). In this study, we used a total of 361,144 and 2,684 unrelated EUR and EAS participants, respectively. We obtained un-

related individuals through running hl.maximal_independent_set using Hail (https://hail.is/). Specifically, within each population, we

ran PC-Relate49 with k = 10 andmin_individual_maf = 0.05. We used the individuals assigned EAS ancestry as the target dataset. For

EUR samples, we first randomly retained 5,000 individuals with complete phenotype information for all 17 studied phenotypes as the

target population. Subsequently, we split the remaining individuals into evenly distributed bins, each containing 5,000 individuals, for

each phenotype. The number of total bins for each studied phenotype ranged from 68 to 71, depending on phenotype missingness

(Table S3). The bins were labeled sequentially from 1 to the total number of bins, following the same procedure as described in our

simulations.

BioBank Japan (BBJ)

BBJ is a multi-institutional hospital-based biobank which has recruited approximately 200,000 participants from 12 medical institu-

tions in Japan between fiscal years 2003 and 2007.26 Written informed consents were obtained from all the participants, as approved

by the ethics committees of the RIKEN Center for Integrative Medical Sciences, and the Institute of Medical Sciences, the University

of Tokyo. The participants were genotyped using either (i) the Illumina HumanOmniExpressExome BeadChip or (ii) a combination of

the Illumina HumanOmniExpress and HumanExome BeadChips. The genotypes were then prephased using Eagle50 and imputed

using Minimac351 with a reference panel that consists of 1KG samples (N = 2,504) and whole-genome sequencing (WGS) data of

Japanese individuals (N = 1,037).52 Standard quality controls of participants and genotypes were applied as described elsewhere.52

Briefly, we excluded samples with low call rates (<98%), closely related individuals (PLINK PI_HAT >0.175), or non-Japanese outliers

based on the principal component analysis (PCA). We then excluded genotyped variants with call rate <98%, HWE p-value <1.0 3

10�6, number of heterozygotes <5, or low concordance rate (<99.5%) with WGS for a subset of individuals (N = 939). Phenotypes

were retrieved from medical records and prepared as described previously.53

1000 genomes project phase 3 (1KG)

Weused 1KGphase 3 data as LD reference panels in this study. Specifically, we kept 495 unrelated EUR, 498 unrelated EAS, and 484

unrelated AFR individuals from 1KG. The AFR individuals were solely utilized for analyses pertaining to recently admixed populations.

Quality controls

The imputation strategies for UKBB and BBJ have been described in detail elsewhere.27,54 After imputation, we first excluded ambig-

uous variants (e.g., A/T andC/G) and further filtered to keep those variants with imputation INFO score >0.3, MAF >0.01, HWE p value

>10�6, and genotyping missing rates across individuals <0.05. Consequently, approximately 8.6 million and 6.6 million SNPs were

retained for the UKBB and BBJ, respectively. For our analyses, we exclusively utilized SNPs that passed these quality control

measures, resulting in approximately 3.6 million SNPs that were shared among both biobanks and 1KG.

PRS construction for 17 traits in empirical analysis
Discovery GWAS

All phenotypes were curated and transformed to be normally distributed as described previously.32 Subsequently, we performed

GWAS on the rank normalized phenotypes using simple linear regression implemented in PLINK v2.0. We included age, sex,

age,2 age3 sex, age23 sex, and the first 20 PCs as the covariates. In line with the GWAS strategy outlined in the simulations section,

we initially performed GWAS within individual bins and then engaged in an iterative meta-analysis, employing inverse-variance

weighted meta-analysis in METAL, separately for UKBB and BBJ cohorts. For the meta-analysis of GWAS results derived from sin-

gle-ancestry analyses in the UKBB and BBJ (referred to as "Meta"), we incorporated a variable number of EUR bins from UKBB,

ranging from 8 to 64 with an increment of 8. Subsequently, we systematically integrated additional EAS bins from BBJ.

PRS construction methods

We used different methods to construct PRS in the target populations, specifically UKBB-EAS and UKBB-EUR. In accordance with

Simulations, we also explored the impact of LD reference panels on PRS performance by utilizing multiple panels from 1KG, while

taking into account the ancestry composition of discovery GWAS for P + T. Additionally, we implemented PRS-CS,39 a Bayesian
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regression framework that integrates a continuous shrinkage prior to infer the posterior mean effects of SNPs. To alleviate

computational burdens, we initially ran PRS-CS using GWAS summary statistics from UKBB with varying numbers of bins (ranging

from 8 to 64, with an increment of 8) for 17 traits. We systematically explored the influence of the hyper-parameter (phi), representing

the proportion of SNPs with non-zero effects, on PRS performance, considering diverse GWAS sample sizes and trait genetic archi-

tectures. Specifically, we performed both the grid model with various phi parameters (1 3 10�6, 1 3 10�4, 0.01 and 1) and the auto

model, which automatically estimates the phi parameter based on the input GWAS.We used default settings for all other parameters.

Our findings indicated that PRS-CS-auto exhibited comparable predictive accuracy across all traits in the UK Biobank dataset when

compared to using the optimal phi parameter in the grid model (Figure S15). To ensure computational efficiency, we employed the

auto model in the PRS-CS framework based on the input GWAS. For both UKBB and Meta, we used 1KG-EUR as the LD reference

panel, while for BBJ, we utilized 1KG-EAS reference panel.

To further explore the performance of PRS incorporating GWAS from multiple ancestries, we constructed a weighted PRS by

linearly combining PRS derived from single-ancestry GWAS.34 Specifically, the weighted PRS was calculated as PRSweighted =

w1* PRSEUR_GWAS + w2 * PRSMinor_GWAS, where w1 and w2 were weights attached to individual PRS. Furthermore, we used a

more sophisticated method, PRS-CSx,8 to generate ancestry-specific posterior SNP effects using multiple GWAS summary statis-

tics. PRS-CSx, an extension of PRS-CS, canmodel ancestry-specific allele frequencies and LD patterns. Similar to PRS-CS, we used

the ancestry-matched LD reference panel from 1KG and performed the auto model implemented in PRS-CSx. We also incorporated

the –meta flag, which enables inverse-variance weighted meta-analysis in the Gibbs sampler. Consequently, we developed two

types of PRS from PRS-CSx, one was based on the meta-analyzed effects (referred to as PRSmulti) and the other, PRSweighted,

was dependent on the ancestry-specific posterior SNP effects.

PRS performance evaluation

We assessed the predictive accuracy of PRS by measuring the incremental R2 using linear regression, where we accounted for the

influence of covariates. Two models were compared: 1) H0 : Phenotype � covariates, representing the baseline model, and 2)

H1 : Phenotype � PRS+ covariates, incorporating PRS as the full model. The incremental R2 was utilized to quantify the improve-

ment inmodel accuracy resulting from the inclusion of PRS, thus providing ameasure of the specific contributionmade by PRS to the

predictive power of the model. We computed the corresponding 95% confidence intervals (CIs) through bootstrap. To maximize the

predictive accuracy of P + T and PRSweighted, we employed an optimization strategy to identify the optimal p value thresholds for P + T

and the weights (w1 andw2) assigned to various PRS components for PRSweighted. This optimization process entailed a random par-

titioning of the target population into two equally sized subsets, namely the validation dataset and the test dataset. The hyperpara-

meter was identified in the validation dataset, and subsequently, the accuracy of the model was assessed using the test dataset. We

replicated the process 100 times and calculated the standard error of predictive accuracy across 100 replicates. This approach al-

lowed us to maximize the performance of P + T and PRSweighted by iteratively refining the p value thresholds and weight parameters,

thereby enhancing their predictive capabilities.

The expected accuracy of PRS in the UKBB-EAS derived from BBJ is based on the theoretical equation: R2z
h2
d

h2
d
+
Md

Nd

(1),25 where h2d

denotes the SNP-based heritability in the discovery population, Nd is the discovery GWAS sample size and Md is the number of in-

dependent chromosome segments in the discovery population, which we assume to be 50,000.55 The results are shown in Fig-

ure S14. When there is imperfect cross-ancestry genetic correlation (rg), we used a generalization of this formula: R2z
r2gh

2
d
h2t

h2
d
+
Md

Nd

(2),36

where h2t denotes SNP-based heritability in the target populations. It is important to note that this formula provides an approximation

and does not explicitly account for differences in LD structure between ancestries, except for the influence of LD disparities on ge-

netic correlation. Note that the reliability of parameter estimates such as rg and Md poses significant challenges, particularly in the

context of multi-ancestry GWAS with highly imbalanced sample sizes.

Measures of genetic architecture using summary-data-based BayesS (SBayesS)29

To better understand the impact of trait genetic architecture on PRS predictive performance, we evaluated three parameters

including the polygenicity (proportion of SNPs with nonzero effects), SNP-based heritability and S (the relationship between

MAF and effect sizes) for 17 studied phenotypes (Table S3). These parameters were estimated using SBayesS implemented in

the GCTB software (https://cnsgenomics.com/software/gctb/). For the analysis, we employed meta-analyzed GWAS data ob-

tained from the comprehensive UKBB and BBJ datasets. Specifically, the number of bins included in the GWAS was equal to

the total number of bins associated with the respective phenotype (Table S3). We used the LD reference panel provided by

GCTB for UKBB GWAS. We constructed a shrunk LD matrix using 50,000 unrelated individuals from BBJ as the LD reference

panel for BBJ GWAS. We used 4 chains for the Markov Chain Monte Carlo process, which calculated the Gelman-Rubin conver-

gence diagnostic (also known as potential scale reduction factor) for these three parameters. We performed the analyses using

other default settings for SBayesS. Given the potential convergence issues associated with Bayesian models, we deemed a

threshold value of less than 1.2 for the Gelman-Rubin convergence diagnostic as indicative of good convergence for the estimated

parameters.
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UK biobank recent admixture ancestry analysis
To investigate one explanation for poor transferability of PRS across populations – genetic divergence between the discovery and

target cohorts – we further explored whether PRS constructed from ancestry-specific summary statistics generated with local

ancestry-informed GWAS in admixed populations improves predictive performance in underrepresented populations. Specifically,

we used the Tractor method,19 accounting for both local ancestry and risk allele information, to run GWAS in two-way admixed

AFR-EUR individuals from the UKBB (N = 4,576). The average AFR proportion was 62.9%. We used 4,022 unrelated relatively

homogeneous AFR individuals, which are independent from the admixed individuals, as the target cohort.

We followed the same criteria for QC and individual selection as described in Atkinson et al.19 For sample QC, we excluded indi-

viduals that had <95% call rate, withdrew from the study, had closer than 2nd degree relatives present in the sample, or that had sex

chromosome aneuploidies. For variant QCwe restricted to biallelic SNPswith >90%call rate, HWEp value >10�6, andMAF of at least

0.5%. We selected two-way admixed AFR-EUR individuals from the UKBB by first using the PC loadings from the reference dataset

described previously for ancestry inference (1KG +HGDP) to project UKBB individuals into the same PC space.We applied the same

random forest ancestry classifier described previously to the projected UKBiobank PCA data and assigned AFR ancestry if the prob-

ability was >50%. We restricted to only two-way admixed AFR-EUR ancestry individuals by selecting those individuals assigned the

‘AFR’ population label, then filtering to those with at least 12.5% European ancestry, at least 10% African ancestry, and who did not

deviate more than 1 standard deviation from the AFR-EUR cline based on their PC loadings. This process resulted in 4,576

individuals.

We ran local ancestry deconvolution on this set of admixed individuals using RFmix v218 with 1 EM iteration and a window size of

0.2 cM with the HapMap combined recombination map56 to inform switch locations. The -n 5 flag (terminal node size for random

forest trees) was included to account for an unequal number of reference individuals per reference population. We used the –rean-

alyze-reference flag, which recalculates admixture in the reference samples for improved ability to distinguish ancestries. As a refer-

ence panel, we used continental AFR and EUR individuals from the 1KG.

Subsequently, we performed GWAS for the 17 quantitative traits utilizing the Tractor method on the 4,576 individuals with mixed

AFR-EUR ancestry from the UKBB. This analysis yielded the generation of ancestry-specific summary statistics for the AFR

(AFRTractor) and EUR (EURTractor) ancestry components. To evaluate the performance of PRS in the UKBB-AFR, we developed

PRS using Tractor GWAS. Furthermore, we compared these local-ancestry informed PRSwith those derived fromGWAS conducted

using standard methodologies. Specifically, we constructed PRS using GWAS performed on the same set of admixed individuals

utilizing the simple linear regression model (ADMStandard). Additionally, GWAS summary statistics obtained from UKBB (EURstandard,

N = 320,000) from the previous section were utilized, and a meta-analysis was conducted to combine the AFRTractor with EURstandard

(Metastandard, N = 324,576). We constructed PRS based on HapMap3 SNPs, as previous studies have shown comparable perfor-

mance between using reliable HapMap3 SNPs exclusively and the use of genome-wide SNPs.7,57 Additionally, we constructed

weighted PRS by incorporating GWAS of AFRTractor and EURStandard, for P + T, PRS-CS and PRS-CSx, respectively. Considering

the ancestry composition of the discovery GWAS, we used different sets of reference panels for each respective GWAS. Specifically,

we used 1KG-EUR as the LD reference panel for EURTractor, EURstandard and Metastandard, while using 1KG-AFR for AFRTractor. We

used an in-sample LD panel for ADMStandard. We calculated the predictive accuracy in the UKBB-AFR using incremental R2 as

described above. We repeated the process 100 times and reported the standard error of predictive accuracy across 100 estimates.

Given that heritability bounds predictive accuracy, which can vary among populations and contexts, we also compared SNP-

based heritability estimates between the AFR and EUR populations in the Pan-UK Biobank Project (https://pan.ukbb.

broadinstitute.org/docs/heritability/index.html).
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