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Abstract: Wheat stem rust caused by Puccinia graminis f. sp. tritici (Pgt) had been a devastating
foliar disease worldwide during the 20th century. With the emergence of Ug99 races, which are
virulent to most stem rust resistance genes deployed in wheat varieties and advanced lines, stem
rust has once again become a disease threatening global wheat production. Sr52, derived from
Dasypyrum villosum and mapped to the long arm of 6V#3, is one of the few effective genes against
Ug99 races. In this study, the wheat–D. villosum Robertsonian translocation T6AS·6V#3L, the only
stock carrying Sr52 released to experimental and breeding programs so far, was crossed with a CS
ph1b mutant to induce recombinants with shortened 6V#3L chromosome segments locating Sr52. Six
independent homozygous recombinants with different segment sizes and breakpoints were developed
and characterized using in situ hybridization and molecular markers analyses. Stem rust resistance
evaluation showed that only three terminal recombinants (1381, 1380, and 1392) containing 8%, 22%,
and 30% of the distal segment of 6V#3L, respectively, were resistant to stem rust. Thus, the gene Sr52
was mapped into 6V#3L bin FL 0.92–1.00. In addition, three molecular markers in the Sr52-located
interval of 6V#3L were confirmed to be diagnostic markers for selection of Sr52 introgressed into
common wheat. The newly developed small segment translocation lines with Sr52 and the identified
molecular markers closely linked to Sr52 will be valuable for wheat disease breeding.

Keywords: common wheat; D. villosum; small segment translocation line; stem rust resistance;
molecular marker; Sr52

1. Introduction

Common wheat (Triticum aestivum L., 2n = 6x = 42) is one of the most important crops serving as a
daily staple for human consumption worldwide. Stem rust caused by the fungus Puccinia graminis f.
sp. tritici (Pgt) used to be one of the most destructive fungal diseases of common wheat [1,2]. During
the twentieth century, several severe stem rust epidemics occurred in all major wheat growing areas,
causing significant yield losses ranging from 10 to 59% [2–4]. In the past several decades, epidemics of
stem rust were successfully controlled mainly due to widespread employment of resistance genes in
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wheat varieties [5]. However, a new Pgt race, Ug99 and its 13 variants known as the Ug99 race group,
has emerged since 1999 [6,7]. These are virulent to the overwhelming majority of stem rust resistance
genes that have been deployed in wheat breeding programs worldwide, including Sr24 [8], Sr31 [6],
Sr36 [9], and Sr38 [10]. Therefore, currently only a few effective resistance genes against the Ug99 race
group are present in common wheat varieties and advanced lines [11]. Thus, there is an urgent need to
identify novel resistance genes from wild relatives of common wheat to broaden stem rust resistance
resources in wheat breeding programs [12].

Dasypyrum villosum (2n = 2x = 14, VV), a wild relative of common wheat, possesses large numbers
of valuable agricultural traits, such as resistance to various diseases, including powdery mildew [13],
stripe rust [14], stem rust [15], wheat streak mosaic virus [16], and cereal cyst nematodes [17], tolerance
to drought and salt [18,19], as well as high grain protein content [20], longer spikes, and more
kernels [21]. Qi et al. (2011) identified a stem rust resistance gene, Sr52, derived from D. villosum,
and mapped the gene to the long arm of chromosome 6V#3. They developed a Chinese Spring
(CS)–D. villosum Robertsonian translocation line T6AS·6V#3L carrying Sr52 by inducing a centromere
breakage-fusion of homoeologous chromosome 6V#3 and 6D [15].

Deleterious linkage drag, caused by the presence of additional genes on the alien chromosome
segments introgressed into wheat, may lead to unfavorable agronomic and end-use quality traits
limiting the direct utilization of alien genes in wheat improvement programs. The most effective method
to reduce linkage drag includes developing wheat-alien recombinants with small alien segments
by inducing recombination between the alien chromatin and its homoeologous region of wheat
chromosome [22]. However, the Ph genes which control homologous chromosome pairing in common
wheat, such as the Ph1 gene on chromosome 5BL, can prevent homoeologous chromosomes from pairing
and recombining [23,24]. Lack of or suppression of Ph genes in common wheat can promote meiotic
homoeologous recombination between wheat and its wild relatives [25]. A deletion mutant of Ph1 (ph1b)
has been reported to be most effective to induce wheat-alien homoeologous recombination [16,26,27].
Some stem rust resistance genes, such as Sr32 and Sr39 from Aegilops speltoides [28,29], Sr43 from
Thinopyrum ponticum [30], and Sr53 from Ae. geniculata [31], have been successfully introduced into
common wheat from wild relatives based on ph1b-induced homoeologous recombination.

The objectives of this study were to develop wheat–D. villosum 6V#3L translocation lines with
shortened 6V#3L segments carrying Sr52 by using ph1b-induced homoeologous recombination, to
physically map Sr52 onto the shortened 6V#3L segment and also to select diagnostic polymerase
chain reaction (PCR)-based molecular markers for Sr52 detection. Our work provides three novel
Sr52 germplasms with small 6V#3L segments and three Sr52 diagnostic molecular markers for
wheat-breeding programs, and lays a foundation for further cloning of the stem rust resistance gene
Sr52.

2. Results

2.1. Screening of D. villosum 6VL#3-Specific Molecular Markers

A total of 13 mapped full-length cDNA (FlcDNA)-based PCR primers were designed based on
the sequence of the location of fluorescence in situ hybridization (FISH)-mapped FLcDNAs that were
physically mapped to homoeologous group 6 chromosomes of wheat. In addition, 15 expressed
sequence tags (ESTs) and 3 intron-targeting primer pairs were synthesized based on previously reported
sequences of 6VL- or 6VL#4-specific molecular markers [17,32–34], of which three EST molecular
markers (CINAU871, 6L-4, and 6EST-426), two intron targeting markers (CINAU1517 and CINAU1532),
and one mapped FlcDNA-based marker (6L11/MboI) were identified as 6V#3L-specific molecular
markers. Sequences, physical location, and annealing temperature (Tm) of these 6V#3L-specific
markers are summarized in Table 1.
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Table 1. Physical location, primer sequences, and PCR annealing temperature (Tm) of 6V#3L-specific molecular markers used in this study.

Marker Name Forward Primer (5′–3′) Reverse Primer (5′–3′) EST No. Bin Location Tm (◦C) Reference

BE422631/HaeIII CCCGCACAGTTCACAATAGA GCAGTTGCACCGTTTTATGA BE422631 C-6AL4-0.55 59 Qi et al. (2011) [15]
BE497099/MspI TTCGCTCCACCAGGAGTCTA GTGTCTCGCCATGGAAGG BE497099 6AL8-0.90-1.00 60 Qi et al. (2011) [15]

6L-4 TGGCTGATGATTCTGCTTCA CCACAAGGTTCAGCCAAGTT BE471191 6AL8-0.90-1.00 55 Bie et al. (2015) [32]
6EST-426 AAGTAGCAGCAGGTCAATCTGG ATAGTAGGGGATGGCATTCTGAT BE406407 6AL4-0.55-0.90 66 Sun et al. (2018) [33]

6L11/MboI CGGTATCGGGAAGTCCACTA CGCGACCCTACTCTTCTGAC BE403950 6AL8-0.90-1.00 63 In this study
CINAU871 TGGTGGCCAGCAAGTTAAG TGCTGTTCTTCATTGGGTTG Ta#S13146969 6VL-0.78-0.92 2 55 Zhang et al. (2016) [17]

CINAU1517 GAAGCTCTGGAATCATGGCG CATGCCAGTTGAACTCCAGG - 1 6VL-0.70-0.78 2 62 Zhang et al. (2017) [34]
CINAU1532 CTGATGACTGCCAATGAATTTCT CAATGCCTCTCGACCAACTT - 6VL-0.92-1.00 2 63 Zhang et al. (2017) [34]

1 Molecular markers CINAU1517 and CIANU1532 belonged to intron-targeting markers specific for D. villosum chromosome 6V#3, thus having no corresponding EST numbers. 2 Bin
location was mapped based on six wheat–D. villosum 6V#3L recombinants developed in this study.
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2.2. Development of Segregating Populations for 6V#3L Recombinant Selection

In order to induce recombination between D. villosum chromosomes 6V#3L and homoeologous
group 6 of common wheat, T6AS·6V#3L translocation line TA5617 was crossed with CS ph1b mutant
stock TA3809. The 120 BC1F1 plants were identified using the ph1b-specific marker ABC302.3 [35] and
6VL#3-specific markers BE422631/HaeIII and 6L11/MboI, and select seven individuals with homozygous
ph1b plus monosomic 6AS·6V#3L and 6A. The BC1F2 progenies derived from these individuals were
then used as segregating populations for 6V#3L recombinant selection.

2.3. Initial Screening of Wheat–D. villosum 6V#3L Recombinants with Proximal and Distal Markers

A total of 250 BC1F2 plants derived from BC1F1 individuals with homozygous ph1b plus monosomic
6AS·6V#3L and 6A were screened by using 6V#3L-specific molecular markers BE422631/HaeIII, located
in proximal bin C-6AL4-0.55, and 6L11/MboI, located in distal bin 6AL8-0.90-1.00. Six putative
recombinants were selected based on disassociation of the two molecular markers, of which three
plants (1386, 1382, and 1385) were positive for the proximal marker BE422631/HaeIII but negative for
the distal marker 6L11/MboI, and the remaining three plants (1381, 1380, and 1392) had only distal
6V#3L marker 6L11/MboI. Genomic in situ hybridization (GISH) analyses of these six plants confirmed
that the first three plants, lacking distal marker 6L11/MboI, were interstitial recombinants, whereas the
last three plants, missing proximal marker BE422631/HaeIII, were terminal recombinants (Figure 1).
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analyses of wheat–D. villosum 6V#3L recombinants. D. villosum chromosomal segments were in 
green, while wheat chromosomes were in blue counterstained by DAPI. Lanes: M, 100 bp DNA 
Ladder; 1, CS; 2, CS–D. villosum 6V#3 disomic addition line TA7682; 3, CS–D. villosum T6AL·6V#3S 
translocation line TA5618; 4, CS–D. villosum T6AS·6V#3L translocation line TA5617 (Sr52 stock); 
5–10, the newly developed CS–D. villosum 6V#3L translocation lines 1386, 1382, 1385, 1381, 1380, 
and 1392. Polymorphic bands of 6V#3L markers are indicated by arrows. 
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Figure 1. Screening of six wheat–D. villosum 6V#3L recombinants by combining molecular markers
and GISH analyses. (A) Electrophoresis patterns of proximal 6V#3L-specific markers BE422631/HaeIII;
(B) Electrophoresis patterns of distal 6V#3L-specific markers 6L11/MboI; (C) GISH analyses of wheat–D.
villosum 6V#3L recombinants. D. villosum chromosomal segments were in green, while wheat
chromosomes were in blue counterstained by DAPI. Lanes: M, 100 bp DNA Ladder; 1, CS; 2,
CS–D. villosum 6V#3 disomic addition line TA7682; 3, CS–D. villosum T6AL·6V#3S translocation line
TA5618; 4, CS–D. villosum T6AS·6V#3L translocation line TA5617 (Sr52 stock); 5–10, the newly developed
CS–D. villosum 6V#3L translocation lines 1386, 1382, 1385, 1381, 1380, and 1392. Polymorphic bands of
6V#3L markers are indicated by arrows.

2.4. Analyses of Segment Sizes and Breakpoints of Chromosome 6V#3L

Homozygous progenies derived from six recombinant plants were used to further identify the
segment sizes and breakpoints of the translocated chromosomes by eight 6V#3L-specific molecular
markers described in Table 1, GISH, and nondenaturing fluorescence in situ hybridization (ND-FISH).
The results of molecular markers and cytogenetic analyses revealed that all six recombinants were
different in both segment size and breakpoints of chromosome 6V#3L (Table 2).
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Table 2. The chromosome 6V#3 segment sizes and breakpoints of newly developed wheat–D. villosum
6V#3L translocation lines.

Line Name Type of
Translocation

Translocated
Chromosome Breakpoint Segment Size

1386 interstitial Ti6AS·6V#3L-6AL Long arm FL 0.70 70% 6V#3L
1382 interstitial Ti6AS·6V#3L-6AL Long arm FL 0.78 78% 6V#3L
1385 interstitial Ti6AS·6V#3L-6AL Long arm FL 0.92 92% 6V#3L
1381 terminal T6AS·6AL-6V#3L Long arm FL 0.92 8% 6V#3L
1380 terminal T6DS·6DL-6V#3L Long arm FL 0.78 22% 6V#3L
1392 terminal T6AS·6AL-6V#3L Long arm FL 0.70 30% 6V#3L

The combined GISH and ND-FISH patterns revealed that recombinants 1386, 1382, and 1385
were all interstitial translocation Ti6AS·6V#3L-6AL, and their breakpoints were at FL 0.70, FL 0.78,
and FL 0.92, being equal to a segment size of 70%, 78%, and 92% of the long arm length of chromosome
6V#3, respectively (Figure 2). Molecular marker analyses of these three interstitial translocation lines
using eight primer sets (Table 1) displayed that the diagnostic bands of five proximal 6V#3L-specific
markers were present in 1385 while only two and three proximal 6V#3L-specific markers were present
in 1386 and 1382, respectively (Figure 3). These results indicated that recombinant 1385 had the largest
segment size of translocated chromosome 6V#3L, then followed by line 1382, and 1386 had the smallest
segment size, in accordance with that of cytological analyses.
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Figure 2. ND-FISH/GISH identification of homozygous CS–D. villosum 6V#3L recombinants developed
in this study. (A1–F1) ND-FISH patterns of wheat–D. villosum 6V#3L recombinants. Red color indicates
signals from oligos pAs1-3, pAs1-4, pAs1-6, AFA-3, AFA-4, and (AAC)10. Green color indicates signals
from oligos pSc119.2-1 and (GAA)10. Blue color shows chromosomes counterstained with DAPI.
(A2–F2) GISH patterns of wheat–D. villosum 6V#3L recombinants. Total genomic DNA of D. villosum
was labeled with fluorescein-12-dUTP and visualized with green fluorescence. Chromosomes of wheat
were counterstained with DAPI and visualized with blue fluorescence. A, Line 1386; B, Line 1382;
C, Line 1385; D, Line 1381; E, Line 1380; F, Line 1392. Arrows point to the wheat–D. villosum 6V#3L
translocated chromosomes.
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Figure 3. Identification of newly developed wheat–D. villosum 6V#3L translocation lines with
different segment sizes and breakpoints by using D. villosum chromosome 6V#3L-specific molecular
markers. The symbols ‘+’ and ‘-’ indicate the presence and absence of the 6V#3L-specific molecular
markers, respectively.

GISH patterns showed that recombinants 1381, 1380, and 1392 belonged to terminal translocation
with breakpoints at FL 0.92, 0.78, and 0.70, which indicated that 6V#3L segment size was 8%, 22%,
and 30% of the 6V#3L length, respectively (Figure 2). FISH analyses displayed that the translocated
chromosomes were T6AS·6AL-6V#3L in recombinants 1381 and 1392 (Figure 2D,F), whereas it was
T6DS·6DL-6V#3L in line 1380 (Figure 2E), being composed of full wheat chromosome arm 6DS,
centromere, and proximal segment of chromosome 6DL conjoined to the distal segment of 6V#3L.
In addition, recombination occurred between wheat chromosome 6A and 6D, producing a pair of
T6AS.6AL-6DL translocated chromosomes in line 1380. Molecular marker analyses of these three
terminal translocation lines revealed that six and five distal 6V#3L-specific markers were present in
1392 and 1380, respectively, whereas only three distal 6V#3L-specific markers were present in 1381
(Figure 3). Thus, the order of the segment sizes of the translocated chromosome 6V#3L in these three
terminal translocation lines was 1381 < 1380 < 1392.

2.5. Physical Mapping of the Gene Sr52

All six homozygous translocation lines were evaluated for stem rust resistance, together with
their recipient parent CS as a susceptible control, and CS–D. villosum 6V#3 disomic addition line
TA7682 and CS–D. villosum T6AS·6V#3L translocation line TA5617 as resistant controls. The results
showed that all three terminal translocation lines (1381, 1380, and 1392) were resistant to stem rust
(ITs; to 1) (Figure 4), whereas all three interstitial translocation lines (1386, 1382, and 1385) were
susceptible (ITs 3 to 4) (Figure 4). Since chromosome 6V#3L bin FL 0.92–1.00 was the only bin shared
by all the resistant translocation lines, and moreover was absent from the sensitive translocation lines,
the stem rust resistance gene Sr52 from D. villosum must be physically mapped to the interval of FL
0.92–1.00 of chromosome 6V#3L (Figure 5). Three 6V#3L-specific molecular markers (CINAU1532,
6L-4, and 6L11/MboI) present in all terminal translocation lines are also located in the same bin carrying
Sr52 (Figure 3).
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Figure 5. Physical mapping of gene Sr52 from D. villosum chromosome 6V#3L. Chromosome 6V#3L
chromatin is shown in green and common wheat chromatin in blue. Translocation lines 1386, 1382,
and 1385, as well as parent line CS, are susceptible to stem rust. Translocation lines 1381, 1380, and 1392,
as well as TA5617, are resistant to stem rust. This shows that the Sr52 resistance gene must be located
in bin FL 0.92–1.00 of chromosome 6V#3L, which is present in all resistant lines, but in none of the
susceptible lines. The numbers on the left of chromosomes display the fragment length (FL) of 6V#3L
breakpoints. The letters R and S indicate materials are resistant and susceptible to stem rust, respectively.

2.6. Validation of New Molecular Markers Linked to Sr52 on the Shortened D. villosum 6V#3L
Chromosome Segments

The three molecular markers CINAU1532, 6L-4, and 6L11/MboI located in the same 6V#3L segment
carrying Sr52 were further validated with 14 common wheat varieties and advanced breeding lines
(Figure 6). The results showed that primer sets for all three markers generated polymorphic bands
only in the materials carrying Sr52 including CS–D. villosum 6V#3 disomic addition line TA7682, CS–D.
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villosum T6AS·6V#3L translocation line TA5617, and the terminal small segment recombinants 1381,
1380, and 1392, but not in the susceptible CS or in the other 14 wheat cultivars and advanced breeding
lines. Therefore, molecular markers CINAU1532, 6L-4, and 6L11/MboI can serve as diagnostic markers
to perform marker-assisted selection of Sr52 in future wheat resistance breeding programs.
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Yanzhan 4110, Tianmin 198, Xinong 979, Zhoumai 16, Aikang 58, Ningmai 13, Bainong 207, Bainong 64,
Zhengzhou 366, and advanced breeding line 11113-5H-5, respectively. The arrows in panels A–C point
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3. Discussion

Wild relatives of common wheat possess a valuable genetic pool of beneficial traits that could
be used for wheat improvement. Development of compensating wheat-alien translocation lines with
small alien segments has been considered an effective method to transfer the desirable genes from wild
relatives to wheat cultivars in crop improvement programs [30,36]. The gene Sr52 from D. villosum is
one of the few resistance genes effective against Ug99 races and was previously mapped to the long
arm of 6V#3 [15]. In the present study, we attempted to reduce Sr52 linkage drag using ph1b-induced
homoeologous recombination and selecting for the Sr52 recombinant with the least amount of alien
chromatin. Of the three translocation lines (1381, 1380, and 1392) carrying Sr52, 6V#3L segments were
shortened by approximately 92%, 78%, and 70%, respectively, compared with the original stock TA5617.
These recombinants carrying Sr52 with substantial reduction of 6V#3L chromatin should be valuable
germplasms for wheat stem rust resistance breeding as well as for eventual isolation of Sr52.

Integrating cytogenetic and molecular marker analyses play an important role in physical mapping
of desirable agronomic genes from wild relatives of common wheat. For example, the powdery mildew
resistance gene Pm57 was cytogenetically mapped to 2Ss#1L bin FL 0.75–0.87 [37]. A resistant gene(s)
against powdery mildew from Agropyron cristatum was physically mapped to 2PL bin 0.66–0.86 [38].
The wheat yellow mosaic virus resistance gene Wss1 from D. villosum was located in the bin FL0.78–1.00
of 4VS [16]. The gene(s) conferring blue-grained character from Th. ponticum was located in bin
4AgL-6 of FL 0.75–0.89 [39]. In the present study, six wheat–D. villosum 6V#3L translocation lines
possessing different segment sizes of D. villosum chromatin were identified. By combining cytogenetic
and molecular marker analyses and evaluation of sensitivity to stem rust, the gene Sr52 was further
mapped into the chromosome bin of FL 0.92–1.00, the very distal region of D. villosum 6V#3L.

Development and utilization of molecular markers closely linked to targeted genes was an effective
method for selecting desirable traits in the early generation of the breeding program [21]. In this study,
three molecular markers (CINAU1532, 6L-4, and 6L11/MboI) tightly linked to Sr52 were validated to be
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present only in lines carrying Sr52 but not in all 14 tested wheat varieties and advanced lines. These
three markers will greatly facilitate the utilization of the recombinants with the shortened D. villosum
6V#3L segment carrying Sr52. Additionally, it could assist tracking Sr52 when pyramiding Sr52 with
other useful disease resistance genes or superior agronomic traits-related loci in the future.

In conclusion, the gene Sr52 was further mapped to D. villosum chromosome 6V#3L distal bin FL
0.92–1.00 by integrated analyses of molecular markers, GISH, FISH, and stem rust sensitivity evaluation
of six newly developed homozygous wheat–D. villosum translocation lines in this study. The three
translocation lines carrying Sr52 with shortened D. villosum 6V#3L chromatin will provide potentially
useful germplasms to breeders for wheat breeding programs aimed at eliminating susceptibility to
stem rust. In addition, we identified three molecular markers closely linked to Sr52, which will be
helpful for marker-assisted introgression of Sr52 into wheat varieties and breeding lines.

4. Materials and Methods

4.1. Plant Materials

The plant materials used in this study included common wheat CS TA3808, CS ph1b mutant
stock TA3809, which lacked the Ph1 gene and thereby elevated homoeologous recombination, CS–D.
villosum 6V#3 disomic addition line TA7682, CS–D. villosum T6AL·6V#3S translocation line TA5618,
and T6AS·6V#3L translocation line TA5617. The long arm of chromosome 6V#3 in lines TA7682 and
TA5617 carried Sr52 which conferred resistance to stem rust of wheat (Table 3). All materials were
kindly provided by the Wheat Genetics Resource Center (WGRC) at Kansas State University and
maintained at the experimental station of Henan Agricultural University, China.

Table 3. Genetic stocks used in the study.

WGRC Accession Number Description Reference

TA3808 common wheat CS - 1

TA3809 CS ph1b mutant stock Sears (1977) [40]
TA7682 CS–D. villosum 6V#3 disomic addition line Lukaszewski,1991 (unpublished)
TA5618 CS–D. villosum T6AL·6V#3S translocation line Qi et al. (2011) [15]
TA5617 CS–D. villosum T6AS·6V#3L translocation line Qi et al. (2011) [15]

1 unknown authorship.

4.2. Molecular Marker Analyses

Genomic DNA (gDNA) was extracted from fresh leaves at the two-leaf stage following the method
of Li et al. (2017) [38]. The concentration and purity of DNA were measured with the NanoPhotometer
P360 (Implen GmbH, München, Germany).

A total of eight PCR-based 6V#3L-specific molecular markers were used in the present study
(Table 1), including two STS (Sequence tagged site)-PCR markers (BE422631/HaeIII and BE497099/MspI),
developed by Qi et al. (2011) [15]. Marker BE422631/HaeIII is located in proximal bin C-6AL4-0.55 and
BE497099/MspI in distal bin 6AL8-0.90-1.00. Three EST-PCR markers and two intron targeting markers
were selected from previously reported 6VL- or 6V#4L-specific markers [17,32–34]. Molecular marker
6L11/MboI was developed based on mapped FlcDNA of wheat group-6 chromosomes [41].

PCR reactions were conducted in a 15 µL volume containing 2.0 µL template gDNA (100 ng/µl),
1.0 µL of each primer (5.0 µmol/L), 7.5 µl Taq MasterMix (CW Bio Inc., Beijing, China), and 3.5 µl
ddH2O. The PCR program was conducted at 94 ◦C for 5 min, followed by 35 cycles of melting at 94 ◦C
for 30 s, annealing at 55–66 ◦C (depending on the Tm of the primers) for 30 s, and extension at 72 ◦C
for 1 min, with a final extension at 72 ◦C for 10 min. The PCR products were digested with restriction
enzymes. Five microliters of a restriction enzyme mixture containing 2.85 µL of ddH2O, 2.0 µL of
CutSmart buffer, and 0.15 µL of an enzyme stock solution were added to 15 µL of PCR products and
incubated for 3.5 h at 37 ◦C. The PCR or restricted PCR products were separated on a 2.0% agarose gel,
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stained with ethidium bromide, and visualized by Tanon 2500 Gel Imaging System (Tanon Science &
Technology Co., Ltd., Shanghai, China).

4.3. Cytogenetic Analyses

Chromosome preparations of root tip cells at the mitotic metaphase were obtained as described by
Huang et al. (2018) [42]. The cytological observations were performed using a BX51 Olympus phase
contrast microscope (Olympus Corporation, Tokyo, Japan).

The technique of GISH was performed according to Liu et al. (2017) [37]. Total gDNA of D.
villosum labeled with fluorescein-12-dUTP was used as probe, and gDNA of common wheat CS was
used as blocking for GISH. Fluorescent images were captured with an AxioCam MRc5 CCD camera
using a Zeiss Axio Scope A1 fluorescence microscope (Carl Zeiss AG, Oberkochen, Germany). Images
were processed using Photoshop CS 3.0 (Adobe Inc., San Jose, CA, USA).

After GISH, the hybridization signals were washed off with phosphate-buffered saline (PBS) and
reconducted ND-FISH as described by Huang et al. (2018) [42]. Eight single-strand oligonucleotides
were then used as probes for dual-color ND-FISH [43]. The eight oligonucleotides included TAMRA
(6-carboxytetramethylrhodamine)-modified oligonucleotides pAs1-1, pAs1-3, pAs1-4, pAs1-6, AFA-3,
and AFA-4, and FAM (6-carboxyfuorescein)-modified oligonucleotides pSc119.2-1 and (GAA)10.
All oligonucleotides were synthesized at Sangon Biotech Co., Ltd., Shanghai, China.

4.4. Stem Rust Evaluation

Evaluation of stem rust resistance was performed at the seedling stage using the major dominant
race 21C3CTTTM in China as inoculants following the procedure of Li et al. (2017) [44]. Fourteen
days after inoculation, infection types (ITs) were assessed using a 0–4 scale as described by Roelfs
et al. (1988) [45], with 0 as immune, as necrotic flecks, 1 as small necrotic pustules, 2 as small to
medium-sized chlorotic pustules with green islands, 3 as medium-sized chlorotic pustules, and 4 as
large pustules without chlorosis. Plants with ITs 0–2 were classified to be resistant while plants with
ITs 3–4 were scored as susceptible.
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