
molecules

Article

Optimization with Response Surface Methodology of
Microwave-Assisted Conversion of Xylose to Furfural

Carmen Padilla-Rascón 1,2, Juan Miguel Romero-García 1,2 , Encarnación Ruiz 1,2,* and
Eulogio Castro 1,2

1 Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las
Lagunillas, 23071 Jaén, Spain; cpadilla@ujaen.es (C.P.-R.); jrgarcia@ujaen.es (J.M.R.-G.);
ecastro@ujaen.es (E.C.)

2 Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de
Jaén, Campus Las Lagunillas, 23071 Jaén, Spain

* Correspondence: eruiz@ujaen.es; Tel.: +34-953212779

Academic Editors: Alejandro Rodríguez, Eduardo Espinosa and Sylvain Caillol
Received: 9 June 2020; Accepted: 30 July 2020; Published: 6 August 2020

����������
�������

Abstract: The production of furfural from renewable sources, such as lignocellulosic biomass,
has gained great interest within the concept of biorefineries. In lignocellulosic materials, xylose
is the most abundant pentose, which forms the hemicellulosic part. One of the key steps in the
production of furfural from biomass is the dehydration reaction of the pentoses. The objective of
this work was to assess the conditions under which the concentration of furfural is maximized
from a synthetic, monophasic, and homogeneous xylose medium. The experiments were carried
out in a microwave reactor. FeCl3 in different proportions and sulfuric acid were used as catalysts.
A two-level, three-factor experimental design was developed for this purpose. The results were
further analyzed through a second experimental design and optimization was performed by response
surface methodology. The best operational conditions for the highest furfural yield (57%) turned out
to be 210 ◦C, 0.5 min, and 0.05 M FeCl3.
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1. Introduction

Owing to the depletion of fossil resources, it is necessary to look for renewable sources for the
production of fuels and chemicals. Lignocellulosic biomass is an alternative natural resource that
presents multiple advantages, because of its abundance, renewability, low cost, and the fact that
it is a waste product with no competing uses. Lignocellulosic materials are mainly composed of
hemicellulose, cellulose, and lignin. Other fractions also present in a lower proportion are extractives,
which are low molecular weight organic compounds, and the ashes, which are inorganic compounds.
Although the chemical composition of the biomass is variable, hemicellulose is usually the second
most abundant compound with multiple uses, after cellulose. Xylose is the most abundant pentose in
the hemicelluloses of hardwoods and agricultural plants [1].

In recent years, the production of furfural from renewable sources has gained great attention
within the concept of sustainable biorefineries, giving added value to lignocellulosic materials and
advancing the sustainable bioeconomy. The U.S. Department of Energy identified furfural as one
of the top 30 platform chemicals [2]. Its composition, formed by unsaturated bonds and aldehyde
groups, makes it a versatile platform molecule, from which a great variety of chemical compounds can
be obtained, with applications in oil refining, production of plastics, food, and pharmaceutical and
agricultural industries [3–5].
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Currently, the most commonly used lignocellulosic biomasses for production of furfural are corn
cob, sugar cane bagasse, rice hull, and wheat bran, considering that they are rich in hemicelluloses
and are available in large quantities [1]. Olive subproducts, specifically olive stones or pits, have also
been used to obtain furfural [6]. Among the advantages of using olive pits, the high availability in
Mediterranean areas, their composition with a high proportion of hemicelluloses, and their easy acid
hydrolysis are frequently cited.

Furfural is obtained from lignocellulosic materials in two steps, as shown briefly in
Figure 1. The first step reaction, hydrolysis, consists of the transformation of polysaccharides
into monosaccharides, obtaining a hydrolysate rich in sugars; in this case, the predominant sugar is
xylose. The second step is the dehydration reaction of pentoses, mainly xylose, to furfural. This process
can be done within the same reactor, one-stage, or separately in two steps. When the process is carried
out in two steps, the hydrolysate can be separated from the insolubilized solid after the first step,
allowing greater utilization of the lignocellulosic material. Furfural is obtained by dehydration of
the pentoses (mainly xylose) and the unhydrolyzed solid can be employed for other uses, such as
enzymatic hydrolysis and fermentation [7].
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Figure 1. Schematic diagram of furfural production from lignocellulosic biomass.

The pentose dehydration reaction involves the protonation of three carbon atoms in the sugar
ring, removing three water molecules and obtaining the furanic molecules. Normally, these reactions
take place in an aqueous medium, owing to its polarity, availability, sustainability, and low price.
In the dehydration reaction, undesired secondary reactions also occur, by condensation between the
furfural and the intermediate products of dehydration and by the degradation of the pentoses to low
molecular weight products, generating soluble and insoluble secondary products (called humins) [8].
The use of catalysts facilitates the dewatering reaction. Most of the catalysts studied have Brønsted
sites, which directly dehydrate the initial carbohydrate. Furthermore, the use of Lewis acid sites favors
the isomerization of the carbohydrate and the subsequent dehydration through the Brønsted sites.
These catalysts can be homogeneous, the disadvantages of which are high pressure and the production
of a corrosive acid stream that needs to be neutralized. Alternatively, heterogeneous catalysts, limited
by their cost and synthesis, are also used and may be subjected to deactivation owing to the deposit of
subproducts on their surface [9,10].

Hemicellulose-rich raw materials can be hydrolyzed by various processes, among which the
dilute acid hydrolysis stands out as one of the most efficient to selectively recover hemicellulose
sugars [7,11,12]. These acids, like sulfuric acid, also enhance the dehydration reaction, in which it
acts as Lewis acid [13]. Furthermore, the potential of salts as a catalyst for these reactions has been
corroborated in multiple studies. Metal salts, and especially metal chlorides, such as FeCl3, have been
used in the pretreatment step of lignocellulosic materials to improve the generation of sugars that can
in turn be converted into valuable chemicals, acting also as a catalyst for the dehydration of sugars
into furfural, as a prominent example. According to the proposed mechanism by which this general
process takes place, FeCl3 acts as Brønsted acid in several reactions whose equilibrium is influenced
by the pH and the initial concentration of the metal salt, improving the performance in obtaining
furfural [4,14,15]. A complete description of the way metal salts can act for pretreating lignocellulosic
materials along with relevant examples is available elsewhere [16].

Microwave-assisted reactions are booming, as they have many advantages, for example, they are
versatile, need shorter reaction times, present uniform heating, and can be more efficient reactions.
In multiple studies, microwave-assisted heating resulted in better yields compared with traditional
heating methods [10,17,18]. Microwaves are widely used with lignocellulosic materials for the
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production of value-added chemicals such as furfural [5,19]. Another application is the fractionation
of lignocellulosic materials. For example, Zhang et al. [20] reported on a microwave-assisted organoslv
pretreatment using raw poplar. In another study, rye and wheat stillage were submitted to a first
microwave treatment to produce a highly concentrated sugar solution, which was further fermented
to ethanol [21]. Microwaves were also used to assist hemicellulose extraction from corn fiber [22],
or for extracting phenolics from cocoa pod husk [23]. Recently, microwave-assisted treatment by deep
eutectic solvents was reported for the delignification of garlic skin [24].

Response surface methodology is a tool that allows obtaining a mathematical model to establish a
relationship between the parameters of interest studied (temperature, time, and so on) and the results
obtained (yields, conversions, and so on). The interrelationships between the factors studied and their
influence on the responses obtained are analyzed statistically to determine their significance. It also
allows finding the best experimental conditions based on the results. The use of this methodology is
widespread when optimizing the process conditions for furfural production [25–27].

As a previous step to get useful information on the best conditions to produce furfural from the
pentose fraction of lignocellulosic materials, this paper addresses the use of sulfuric acid and ferric
chloride to obtain furfural from a solution with a high concentration of xylose (30 g/L) in a monophasic
and homogeneous medium. The microwave heating technique is used because of its advantages.
The main objective is to optimize the conditions for the highest furfural production. For this purpose,
two experimental designs were made, with temperature, time, and concentration of ferric chloride
as factors.

2. Results

2.1. Two-Level Factorial Design

The results obtained from the factorial design of 11 experiments (23 + 3 central points) with the
three factors studied (concentration of FeCl3, time, and temperature) are shown in Table 1. The initial
concentration of xylose was 30 g/L, while the consumption values ranged between 7.52 and 29.44 g/L,
which is equivalent to conversion between 25.06 and 98.13% (above 90% in most cases). As for the
furfural obtained, the values were between 3.02 and 10.35 g/L, which represents a yield of 15.63 and
53.59%, respectively. Finally, the selectivity ranged between 25.83 and 62.38%, with the average
above 45%.

Table 1. Two-level, three-factor experimental design. Experimental conditions and response results.

Run Factors Responses

A: FeCl3
(M)

B: Time
(min)

C: Temp.
(◦C)

Xylose
Consumed (g/L)

Furfural
(g/L) Yield(%) Conversion

(%)
Selectivity

(%)

2 0.3 1 170 16.68 4.79 24.87 55.61 44.73
4 0.1 5 200 29.33 7.84 38.99 97.77 39.88
6 0.1 5 170 18.11 6.52 33.87 60.38 56.10
7 0.3 1 200 29.44 7.96 41.13 98.13 41.91
8 0.3 5 170 26.75 7.72 39.93 89.15 44.79
9 0.1 1 200 29.07 10.35 53.59 96.91 55.30
10 0.1 1 170 7.52 3.02 15.63 25.06 62.38
11 0.3 5 200 28.99 4.82 24.96 96.63 25.83
1 0.2 3 185 29.04 8.91 45.61 96.80 47.12
3 0.2 3 185 29.13 9.05 45.70 97.12 47.06
5 0.2 3 185 28.55 9.16 45.71 95.18 48.02

An overview of the results shows that increasing temperature also produced an increase in the
xylose consumed and the furfural produced, indicating that the temperature favours the dehydration
of xylose and the production of furfural, but it can also be seen that this does not only depend on the
temperature factor. For determining the effect of the factors studied (concentration of FeCl3, time,
and temperature) on yield (furfural yield), conversion (xylose conversion), and selectivity (furfural
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selectivity), the results were statistically analyzed and modelled according to a linear model with
interaction between the factors. The models obtained in coded terms together with the p-value, R2,
coefficient of variation (CV), and standard deviation (SD) are shown in Table 2. As can be seen, for all
models, the R2 obtained is in the order of 0.99 (99% of the change is produced by the factors studied)
and CV in all cases is lower than 3.2%.

Table 2. Models in coded terms obtained for yield, conversion, and selectivity in a factorial design. A =

concentration of FeCl3, B = time, and C = temperature. CV, coefficient of variation.

Response Model (Coded Terms) p-Value R2 CV (%) SD (%)

Yield (%) Yield = 34.12 − 1.40·A + 0.32·B + 5.55·C −
5.22·AC − 8.01·BC <0.0001 0.997 2.38 0.89

Conversion (%) Conversion = 77.45 + 7.43·A + 8.53·B +
19.91·C − 7.41·AC − 8.69·BC <0.0001 0.999 1.26 1.04

Selectivity (%) Selectivity = 46.36 − 7.05·A − 4.71·B − 5.63·C
− 3.16·BC <0.0001 0.988 3.18 1.48

The temperature (C) is the most influential factor on the yield, as can be deduced from the
highest value of its coefficient (contribution >20%); moreover, the total contribution of the temperature,
if the interaction concentration FeCl3-temperature (AC) and the interaction time-temperature (BC) are
taken into consideration, represents more than 75%. At a low temperature, the yield increases with
the concentration of FeCl3 (A), while at a high temperature, the yield decreases with the increasing
concentration of FeCl3. Similar yield results are obtained at high concentrations of FeCl3, independently
of the temperature (Figure 2a). As far as the interaction between temperature and time is concerned,
yields increase with time (B) in the low temperature region, while the behavior is the opposite at a high
temperature (Figure 2b).

Regarding the conversion, a similar pattern to that in the yield was observed, that is, the temperature
is the most influential factor. In this case, the contribution of the linear term is more than 52% and,
together with AC and BC interactions, it represents 70%. In the case of conversion, the other two
factors have a greater influence, contributing 17%. At a high temperature, the conversion is high
regardless of the FeCl3 concentration and, at a low temperature, the conversion increases with the
FeCl3 concentration, not reaching as high as at a high temperature (Figure 2c). The interaction between
temperature and time follows the same trend described above for conversion (Figure 2d).

Finally, in the case of selectivity, the influence of the factors studied is different from the two
previous cases, because the most influential factor is the FeCl3 concentration, with a contribution of
more than 43%, with that of temperature and time being 27% and 19%, respectively. These last two
factors interact in such a way that, at a low temperature, the selectivity decreases slightly over time
and, at a high temperature, the selectivity decreases more drastically over time (Figure 2e).

When looking for the conditions that could maximize the variables studied only in the case of
selectivity, we can say, without the need to make calculations, that they would be the lowest of all the
factors studied ([FeCl3] = 0.1 M, time = 1 min, and temperature = 170 ◦C), because all the coefficients
of the model obtained are negative (Table 2). In the case of yield and conversion, calculations would be
necessary because, among the coefficients of their models, there are positive and negative values, but,
if Figure 2 is observed, they can also be deduced. For the conversion, it can be easily deduced from
Figure 2c,d that the best conditions are the high temperature (200 ◦C) and, in that case, the concentration
of FeCl3 and time has little influence, so one would opt for low values ([FeCl3] = 0.1 M, time = 1 min).
In the case of the yield, observing Figure 2a,b, it is also easy to deduce that the best conditions would
be 200 ◦C, [FeCl3] = 0.1 M, and 1 min.
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2.2. Central Composite Design

On the basis of the results obtained in the two-level factorial design, a rotatable composite
central design was designed to further assess the influence of the selected factors and to optimize the
conditions for obtaining furfural. The experimental range was changed to shorter times (0.5–1 min)
and lower FeCl3 concentrations (0.05–1 M), and the temperature range was reduced to a shorter one
(190–200 ◦C). The results (xylose consumption, furfural produced, yield, conversion, and selectivity) of
the 25 experiments carried out according to the design conditions are shown in Table 3.

Table 3. Results (consumed xylose, furfural produced, yield, conversion, and selectivity) of the rotatable
composite central design (duplicates of the star points +5 central points).

Run A: FeCl3
(M)

B: Time
(min)

C: Temp.
(◦C)

Consumed
Xylose (g/L)

Furfural
(g/L)

Yield
(%)

Conversion
(%)

Selectivity
(%)

1 0.040 0.75 195 21.24 8.73 45.39 70.68 64.22
2 0.1 1 190 23.60 10.01 51.77 78.16 66.23
4 0.05 0.5 200 25.43 10.04 52.07 84.40 61.69
5 0.05 1 190 20.31 8.11 41.87 67.14 62.36
6 0.1 1 200 28.88 10.32 53.35 95.54 55.84
7 0.075 1.10 195 26.66 9.93 51.38 88.28 58.20
8 0.075 0.75 202.07 28.45 10.76 55.78 94.37 59.11
9 0.075 0.75 187.93 19.07 7.64 39.55 63.15 62.63
11 0.1 0.5 200 27.97 10.30 53.35 92.68 57.56
12 0.040 0.75 195 22.05 8.99 46.64 73.18 63.73
14 0.110 0.75 195 26.64 9.61 49.69 88.22 56.33
15 0.075 0.40 195 21.56 8.72 45.10 71.38 63.19
17 0.05 0.5 190 15.57 6.37 33.16 51.85 63.96
18 0.110 0.75 195 25.98 9.67 50.30 86.51 58.15
19 0.075 0.75 187.93 18.32 7.29 37.95 61.00 62.22
20 0.075 0.40 195 22.31 8.97 46.68 74.31 62.82
21 0.1 0.5 190 20.73 8.06 41.71 68.63 60.78
22 0.05 1 200 26.09 10.18 52.67 86.40 60.95
23 0.075 0.75 202.07 27.28 10.50 54.41 90.50 60.12
25 0.075 1.10 195 26.06 9.86 51.05 86.35 59.12
3 0.075 0.75 195 25.08 9.73 50.27 82.91 60.63
10 0.075 0.75 195 25.05 9.49 49.08 82.94 59.18
13 0.075 0.75 195 24.73 9.53 49.54 82.30 60.19
16 0.075 0.75 195 24.50 9.91 51.33 81.20 63.22
24 0.075 0.75 195 23.54 9.18 47.56 78.06 60.93

The initial concentration of xylose was maintained at around 30 g/L, resulting in this design
displaying higher consumption values than those in the factorial design, ranging from 15.57 to 28.88 g/L
or conversion of between 51.85 and 95.54%. As for the furfural obtained, values between 6.37 and
10.76 g/L were obtained, which represents a yield of 33.16 and 55.78%, respectively, a shorter range than
in the factorial design and higher on average. Finally, the selectivity showed values between 55.84 and
66.23%, being on average around 61%, compared with the factorial design where it was around 46%.

For the analysis of the influence on the responses (yield, conversion and selectivity) of the factors
studied (concentration of FeCl3, time, and temperature), the results were evaluated using the response
surface methodology and modelled according to a quadratic model. The models obtained in coded
and real terms together with the p-value, R2, coefficient of variation (CV), and standard deviation (SD)
are shown in Table 4. The three models show R2 surpassing 0.91, yield and conversion above 0.97 (97%
of the change is produced by the factors studied), and a CV in all cases below 2.5% (below 1.3 in the
case of selectivity), that is, good values that allow us to use the models obtained for analysis.
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Table 4. Models in coded and real terms obtained for performance, conversion, and selectivity in the
rotatable composite central design. A = concentration of FeCl3, B = time, and C = temperature.

Response Model (Coded and Real Terms) p-Value R2 CV (%) SD (%)

Yield (%)

(Coded) = 49.10 + 1.98·A + 2.15·B + 5.57·C −
2.06·AC

− 2.27·BC − 0.54·A2
− 1.09·C2

(Real) = −2345.52 + 3423.72·A + 362.70·B +
20.67·C − 16.48·AC − 1.82·BC − 871.20·A2

−

0.04·C2

<0.0001 0.970 2.38 1.14

Conversion (%)

(Coded) = 80.34 + 5.55·A + 4.41·B + 11.20·C −
1.30·AC − 2.50·BC − 1.78·C2

(Real) = 3533.74 + 2246.99·A + 406.90·B +
32.25·C − 10.38·AC − 2.00·BC − 0.07·C2

<0.0001 0.977 2.46 1.95

Selectivity (%) (Coded) = 60.49 − 2.23·A − 1.19·B − 1.07·C
(Real) = 112.51 − 89.22·A − 4.74·B − 0.21·C <0.0001 0.911 1.26 0.77

The most influential factor in yield is temperature, given its higher coded coefficient of 5.57,
followed by time and FeCl3 concentration with similar coefficients of 2.15 and 1.98, respectively. As for
the interactions between factors, it can be seen that the yield at a high temperature varies little with
the concentration of FeCl3, being slightly higher at an intermediate concentration owing to the slight
curvature it presents (quadratic term, A2), while at a low temperature, the yield increases with the
concentration of FeCl3 (Figure 3a). In the interaction with time, the behaviour is similar to that already
described; the performance decreases in a negligible way with the increase of time at a high temperature,
while at a low temperature, it increases with time (Figure 3b). The yield is higher at a high temperature
for both interactions. The conversion and the yield have similar behaviour in front of the studied
factors, as can be seen in the obtained models (Table 4) and the response surfaces (Figure 3), sharing
the temperature as the most influential factor. Analyzing more in detail, the conversion increases
with the increase of FeCl3 concentration, as well as with the increase of time, with this increase being
more accentuated at low temperatures in both cases (Figure 3c,d). At a high temperature, the highest
conversion values occur, and it is at this point that the increase in time has little influence on the
increase in conversion (Figure 3d).

Selectivity shows different behaviour than that found in yield and conversion (Figure 3).
Selectivity has, as its most influential factor, the concentration of FeCl3, followed by time and
temperature at a considerable distance, according to the values of their coefficients of 2.23, 1.19,
and 1.07, respectively (Table 4). Furthermore, in the selectivity model, only the linear terms were
significant and all of them have a negative sign, which indicates that the lowest conditions of the
factors are going to be the most favourable ones.

Table 5 shows the results of the best conditions and the values obtained from the different responses
(performance, conversion, and selectivity) for different optimization proposals, giving the same weight
to the responses in the case of multiple optimizations. The highest value of selectivity would be 64.98%,
and would be obtained under the lowest conditions of the design, that is, 190 ◦C, [FeCl3] = 0.05 M,
and 0.5 min. On the contrary, the highest conversion value would be obtained under the highest design
conditions, that is, 200 ◦C, [FeCl3] = 0.1 M, and 1 min, with a value of 95.93%. The highest yield value,
53.71%, is obtained at 200 ◦C, [FeCl3] = 0.07 M, and 0.5 min, a value close to that obtained under the
conditions of maximizing conversion, 52.84%; on the contrary, the conversion and selectivity values
are more distant.
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Table 5. Results of the optimization of the rotatable composite central design.

Maximise A: FeCl3
(M)

B: Time
(min)

C: Temp.
(◦C)

Yield
(%)

Conversion
(%)

Selectivity
(%)

Yield 0.07 0.5 200 53.71 87.53 60.77
Conversion 0.1 1 200 52.84 95.93 56.01
Selectivity 0.05 0.5 190 33.44 53.61 64.98

Yield and selectivity 0.05 0.5 200 53.24 83.59 62.84
Yield and conversion 0.1 1 200 52.84 95.93 56.01

Yield, conversion,
and selectivity 0.05 0.5 200 53.24 83.59 62.84

Star point experimental
average 0.075 0.75 202.07 55.10 92.43 59.62

Predict star point 0.075 0.75 202.07 54.81 92.62 58.98

Out of range 0.05 0.5 210 64.35 99.34 60.70
Experimental out of range 0.05 0.5 210 57.12 98.51 57.98

Different optimizations have been made with more than one response, with yield as the common
response in all cases. In the first of these, yield and selectivity have been jointly optimized, obtaining
conditions of 200 ◦C, [FeCl3] = 0.05 M, and 0.5 min and values of 53.24% and 62.84%, respectively, these
values being very close to the individual optimums. In the second one, performance and conversion
have been jointly optimized, obtaining conditions of 200 ◦C, [FeCl3] = 0.1 M, and 1 min, resulting in
these conditions having a greater difference compared with the individual performance optimum.
Finally, in the case of the triple optimization of the three responses, the same conditions result as in
the joint optimization of yield and selectivity, that is, 200 ◦C, [FeCl3] = 0.05 M, and 0.5 min, with a
final yield of 53.24%. Reviewing the experimental results of the composite central design, it has been
found that, under the conditions of one of the star points (202.07 ◦C, [FeCl3] = 0.075 M, and 0.75 min),
the yield value obtained is on average 55.10% higher than that found under the optimum design
conditions. The values of yield, conversion, and selectivity (54.81%, 92.62%, and 58.98%) according to
the conditions of this star point were obtained with models resulting in errors of less than 1% (Table 5).

As can be seen in Figure 4, the efficiency and conversion show a good linear adjustment with R2 =

0.92, resulting in a 58% efficiency for the 100% conversion, higher than the value obtained in the star
point conditions. Given the above, using the model obtained for the conversion, the temperature for
which 100% would be obtained was sought. The concentration of FeCl3 was set at 0.05 M and 0.5 min
(triple optimum conditions) and a temperature of 210 ◦C was obtained (at 211 ◦C, the conversion is
higher than 100%). The conditions of 210 ◦C, [FeCl3] = 0.05 M, and 0.5 min were tested experimentally,
obtaining a conversion of 98.51%, very close to that predicted by the model of 99.34%. Under these
conditions, a yield value of 57.12% was obtained, confirming the proposed hypothesis. This value
is very close to 57.30%, which would result from substituting the conversion value of 98.51% in
the regression of Figure 4. If the experimental values and those predicted by the models for this
temperature condition outside the range are compared, the experimental values of yield and selectivity
are lower, by 11.24% and 4.47%, respectively, and it can be said that the yield model cannot be used
with temperatures so far from those in the initial range.
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Figure 4. Linear performance regression versus conversion of the values of the composite central design.

3. Discussion

Different authors have made designs of experiments to study the influence of different factors and
to determine the best conditions to obtain the maximum performance of furfural. In the cases that are
going to be considered next, the response surface methodology and quadratic models were used as in
our work.

Lamminpää et al. [28] studied four variables by a central composite circumscribed design using
a preheating oven (360–420 ◦C) and a fluidized sand bath. The variables were time (20–40 min),
temperature (140–200 ◦C), initial xylose concentration (0.067–0.20 M), and formic acid concentration
(10–30% w/w). The design contained 29 experiments, including five central points. In this design,
the authors obtained conversions ranging from 6.2% to 98.2% and selectivities from 42% to 73%, values
similar to those obtained in this work. Conversion and yield were mainly influenced positively by
temperature and, as in our case, followed by acid concentration. The maximum yield value obtained
was 65% at 200 ◦C, 20 min, 30 wt% of formic acid, and with an initial xylose concentration of 10 g/L.
This yield in the same conditions, but increasing the initial xylose concentration to 30 g/L (the same as
in our work), drops to 56.8%, very similar to the value obtained in our work of 57.1%, although with a
much shorter time of only 0.5 min in our case. The industrial process adopted by China with corncobs
achieves around 50% yield with 3–4 wt% sulfuric acid at 153 ◦C for 5 h [9].

Yang et al. [27] also performed a central composite design in this case in a stainless steel autoclave,
with an electric jacket, a constant initial xylose concentration of 80 g/L, and varying the proportion
of water-o-nitrotoluene. The reaction temperature (170–210 ◦C), formic acid concentration (5–25 g/L,
pH25 ◦C 2.32–1.96), o-nitrotoluene volume percentage (20–80 vol%), and residence time (40–200 min)
were analyzed in the experimental design. The design consisted of 27 experiments, including three
central points. The results included selectivities between 51.1 and 99.7% and yields between 20.3 and
71.2%, which are higher than those obtained in the previous design and those presented in this work.
Among the factors studied in this design, temperature and o-nitrotoluene percentage are the most
influential, with time and formic acid concentration having a low influence on yield and selectivity.
Both yield and selectivity present a maximum of around 190 ◦C. On the contrary, the increase of
o-nitrotoluene percentage (0 vol% to 80 vol%) was positive in both yield and selectivity, with increases
from about 30% to 70% and 70% to 99%, respectively. The maximum furfural yield (74%) and
selectivity (86%) were obtained in 75 min at 190 ◦C for 20 g/L formic acid concentration and 75 vol%
o-nitrotoluene. This yield is higher than that obtained in our work, but the time is much higher, that
is, 75 min compared with 0.5 min, and it also uses an organic solvent from petroleum, which makes
the process less sustainable. To reduce the reaction time, the authors added different halides (NaCl,
KCl, KBr, and KI) with a concentration of 0.5 M, achieving an optimum time in 60 min, or in other
words, a reduction of 15 min. This time is still far from that obtained in our work, even though it
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achieved a slight improvement in performance and selectivity, for example, with NaCl, of 78% and
90%, respectively.

Another type of design was used to study the effect of lignin on the production of furfural from
xylose (30 g/L), at D-optimal design [29]. In the design, four variables were included: three quantitative
variables, time (20–80 min), temperature (160–180 ◦C), and initial lignin concentration (0–20 g/L); and
one qualitative variable, the acid catalyst (10% w/w) formic acid or 0.2% w/w sulfuric acid (initial pH
similar). The design contained 26 experiments, including 3 central points, plus 4 extra points, for a total
of 30 experiments. The xylose conversion varied from 12% to 90% with the formic acid and from 6%
to 85% with the sulfuric acid, values somewhat lower than those obtained in our work. The furfural
yield varied from 9% to 58% in HCOOH and from 4% to 53% in H2SO4, in the order of our work.
The selectivities were 65–80% and 63–76% in HCOOH and H2SO4, respectively, higher than those
obtained in our work, with the least variation between large and small values compared with the other
responses. The most influential factors in yield are temperature and time in both HCOOH and H2SO4

cases. The difference in the influence of lignin is found to be more significant in the case of H2SO4

than in HCOOH; for example, at 180 ◦C in sulfuric acid, the yield is higher than 50% without lignin,
but in the presence of 20 g/L lignin, the yield is lower than 40%, whereas in formic acid, the yield stays
about the same, at around 62%. The maximum yields are given at 180 ◦C, 80 min, and without lignin,
with values around 64% and 56% with HCOOH and H2SO4, respectively, values in the order of those
obtained in this work, but with a much longer time. The authors concluded that lignin affected furfural
formation in two ways: (1) the lignin has an acid neutralization capacity (the maximum rise in pH
was 0.13 units in formic acid and 0.23 units in sulfuric acid; time and temperature are insignificant
parameters for the pH change response model), and (2) the lignin inhibits xylose dehydration into
furfural (the neutralizing effect does not explain all of the decreases in conversion and yield, so some
additional mechanism must be involved) [29]. Rasmussen et al. [30] concluded that there are at least
three possible routes for furfural formation from xylose, and the reaction conditions determine which
mechanism dominates.

Overview of the Production of Furfural from Xylose

Table 6 shows a varied representation of the processes used to produce furfural from xylose
(maximize furfural yield) in monophase systems with green solvents, as in our case, to have processes
without petroleum derivatives.

Among those green solvents are water, seawater, gamma-valerolactone (GVL), GVL-water,
dimethyl sulfoxide (DMSO), N,N-dimethylacetamide (DMA), and some ionic liquids ([emin]Br,
[emim]HSO4, [bmim]PF6) that are not chloride based as they are considered toxic and corrosive [31].
In most cases, some kind of catalyst was used to increase the reaction speed and improve the yield
in furfural.

These catalysts can be both homogeneous and heterogeneous. Among the homogeneous catalysts
are inorganic acids (HCl, H2SO4); organic acids (formic acid, maleic acid); salts (FeCl3, SnCl4);
heteropolyacid salts (MP34CsPW, H3PW12O40 (PW)); a combination of mineral acid + salt (HCl-NaCl,
H2SO4-FeCl3), as in our case; or combinations of different salts (CrCl2-LiBr). Among the heterogeneous
catalysts, we find zeolites (H-ZSM-5, H-Mordenite, H-Beta) or mesoporous acid-catalysts (MSHS-SO3H,
Nafion 117).
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Table 6. Yield results of furfural production from xylose in green solvents in the monophase system.

Xylose Solvent Catalyst Temperature/Time Heating Furfural Yield (%) Ref.

30 g/L= 200 mM H2O MSHS-SO3H (3.3 g/L) 190 ◦C/1 h Autoclave 43.5 [32]
10 wt% H2O H-ZSM-5 (catalyst-xylose ratio, 0.3 w/w) 200 ◦C/20 min Autoclave 46 [33]
35 mM H2O HCl (50 mM)-NaCl (850 mM) 200 ◦C/5 min Oil bath 81.3 [14]
35 mM H2O HCl (50 mM)-NaCl (3.5 wt% = 599 mM) 200 ◦C/440 s (7.3 min) Microwave 76 [34]

740 mM H2O HCl (100 mM) 170 ◦C/30 min Microwave 40 [17]
667 mM H2O HCl (100 mM) 180 ◦C/30 min Microwave 39 [19]

67 mM = 10 g/L H2O Maleic acid (250 mM) 200 ◦C/28 min Microwave 67 [35]
57 mM H2O Not used 200 ◦C/60 min Microwave 49 [36]
30 g/L H2O H2SO4 (2% w/v)-FeCl3 (0.05 M) 210 ◦C/0.5 min Microwave 57.1 Present study

67 mM H2O Formic acid (30 wt%) 200 ◦C/20 min Oven preheating (360–420 ◦C)
and a fluidized sand bath 65 [28]

200 mM H2O Formic acid (30 wt%) 200 ◦C/20 min Oven preheating (360–420 ◦C)
and a fluidized sand bath 56.8 [28]

30 g/L H2O Formic acid (30 wt%) 180 ◦C/80 min Oven preheating (360–420 ◦C)
and a fluidized sand bath ~63.8 [29]

30 g/L H2O H2SO4 (0.2 wt%) 180 ◦C/80 min Oven preheating (360–420 ◦C)
and a fluidized sand bath ~56.2 [29]

18 wt% H2O H2SO4 (20 mM) 250 ◦C/1 min Supercritical flow reactor
system 64 [37]

50 mM Seawater (salts
(26,46 g/kg) HCl (50 mM) 200 ◦C/10 min Oil bath 71.7 [38]

150 mM GVL H2SO4 175 ◦C Not specified 75 [39]
2.4 wt% GVL FeCl3·6H2O (0.6 wt%) 180 ◦C/9 min Oil bath 83.6 [13]
2 wt% GVL-H2O (10 wt% H2O) H2SO4 (0.05 M) 170 ◦C/15 min Oil bath 87 [40]
2 wt% GVL-H2O (10 wt% H2O) H-Mordenite 175 ◦C/2 h Oil bath 81 [41]
2 wt% GVL-H2O (10 wt% H2O) H-Beta (3.75 wt%) 160 ◦C/1 h Oil bath 71 [40]

200 mM DMSO H-Mordenite (100 g/L) 140 ◦C/4 h Autoclave 39 [42]
200 mM DMSO MP34CsPW (30 g/L) 140 ◦C/4 h Oil bath 45 [3]
200 mM DMSO H3PW12O40 (PW) (20 g/L) 140◦C/4 h Oil bath 67 [43]
9.1 wt% DMSO Nafion 117 (20 wt% of initial xylose) 150 ◦C/2 h Oil bath 60 [44]
10 wt% DMSO HCl (0.1 M)-Sn-beta 110 ◦C/3 h Not specified 14.3 [45]
10 wt% DMA CrCl2 (6 mol% of xylose)-LiBr (10 wt%) 100 ◦C/4 h Oil bath 56 [46]
20 wt% [emin]Br SnCl4 (10 mol% of xylose) 130 ◦C/1 h Oil bath 71.1 [15]
100 g/L [emim]HSO4 Not used 100 ◦C/30 min Oil bath 62 [47]
37.5 g/L [bmim]PF6 PEG-OSO3H (50 mM)-MnCl2 (75 mM) 120 ◦C/18 min Not specified 75 [48]

GVL, gamma-valerolactone; DMSO, dimethyl sulfoxide; DMA, N,N-dimethylacetamide; PEG, polyethylene glycol.
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There is also a combination of homogeneous and heterogeneous catalysts, such as inorganic
acid + zeolite (HCl-Sn-beta) or a polymer bound an acid + salt (PEG-OSO3H-MnCl2). As for the
forms of heating used, they could be grouped into two large groups, conventional ones like autoclave,
oil bath or oven preheating (360–420 ◦C), and a fluidized sand bath; and non-conventional ones, such
as microwaves (our case) and supercritical systems.

The initial xylose concentration used (Table 6) shows a wide range from just 5 g/L to 200 g/L, with
the average being around 50 g/L and the median of 30 g/L, which coincides with the value used in
this work. The temperatures used range from 100 ◦C to 250 ◦C, with the average being around 170 ◦C
and the median being 180 ◦C. If only microwave heating is taken into account, the temperature range
is shorter, 170–210 ◦C, where the average is just over 193 ◦C and the median is 200 ◦C, showing that
optimum temperatures with microwaves are higher when using other forms of heating. The times
used also show a wide range from 0.5 min (this work) to 240 min, with an average of 70 min, while
the average in the case of using microwaves around a third is about 25 min, showing itself as a faster
process and one that would also save energy [17,34]. The yields obtained range from 14% to 87%, with
the average being around 61%; meanwhile, taking into account only microwave heating, this average
would be around 55%; the value obtained in this work of 57% is in the order of these averages. If all
the values shown in Table 6 are analyzed to see how they affect the furfural yield, the following is
found: the highest values are given to short times (less than 20 min), high temperatures (180–200 ◦C)
(same trend found in this work), and the increase of the initial xylose concentration having a slight
negative effect.

With the idea of being able to increase the yield of furfural, one of the proposals is the biphasic
systems in such a way that furfural is produced in one phase and is selectively transferred to the
insoluble organic phase, avoiding its degradation and displacing the reaction balance. Several authors
have reported that they have doubled the performance of furfural when using a biphase system (with
methyl isobutyl ketone (MIBK) or cyclopentylmethyl ether (CPME)) versus a monophase system with
water only [10,17,49]. Table 7 shows some biphase processes with green solvents for the production
of furfural.



Molecules 2020, 25, 3574 14 of 19

Table 7. Yield results of furfural production from xylose in green solvents in biphase systems.

Xylose Solvent Catalyst Temperature/Time Heating Furfural
Yield (%) Ref.

1.85 wt% [bmim]HSO4-MIBK
(1:4.4, w/w) Not used 140 ◦C/4 h Oil bath 80.3 [50]

400 mmol/L
H2O H2O-2MTHF (1:1, v/v) FeCl3 (80 mM)-NaCl

(20 wt%) 140 ◦C/4 h Oil bath 71 [51]

4 wt% H2O
phase

H2O-CPME (1:2.33,
v/v)

H2SO4 (1 wt% H2O
phase)-NaCl (40 wt%

H2O phase)
170 ◦C/100 min Oil bath 100 [52]

1.25 mol/L
H2O H2O-CPME (1:3, v/v) FeCl3 (5.08 g/L)-NaCl

(18.13 g/L) 170 ◦C/20 min Microwave 74 [10]

1 mol/L H2O H2O-CPME (1:3, v/v) NaCl (23.75 g/L)-Nafion
NR50 (23.75 g/L) 170 ◦C/40 min Microwave 80 [49]

200 g/L H2O H2O-DMSO (1:1, v/v) SnCl4 (catalyst/xylose
molar ratio 0.5) 130 ◦C/6 h Oil bath 63 [53]

10 wt% H2O
phase

H2O-DMSO-SBP
(5:1:5, v/v/v)

Sn-MMT
(xylose-catalyst, 5:1
w/w)-NaCl (satured

solution, aprox.
36 g/100 g of H2O)

180 ◦C/30 min Autoclave 76.8 [54]

1 g/L,5 mL
H2O H2O-MIBK (1.5:8, v/v) [Sbmim]HSO4

(0.5g/1.5 mL H2O) 150 ◦C/25 min Autoclave 91.4 [55]

740 mmol/L
H2O H2O-MIBK (1:1, w/w) HCl (0.1 mol/L H2O) 170 ◦C/30 min Microwave 80 [17]

10 wt% of H2O H2O-THF (1:2, w/w) [SbPy]BF4 (100 wt% of
initial xylose) 180 ◦C/1 h Microwave 85 [56]

250 mmol/L
H2O H2O-THF (1:3, v/v) AlCl3-6H2O

(25 mM)-NaCl (1.5 M) 140 ◦C/45 min Microwave 75 [57]

MIBK, methyl isobutyl ketone; 2MTHF, 2 methyltetrahydrofuran; CPME, cyclopentylmethyl ether; DMSO, dimethyl
sulfoxide; SBP, 2-s-butilfenol; THF, tetrahydrofuran.

In these processes, mainly water, but also ionic liquids ([bmim]HSO4) were used as the
reaction phase solvents and organic cosolvents as follows: methyl isobutyl ketone (MIBK),
2-methyltetrahydrofuran (2MTHF), cyclopentylmethyl ether (CPME), dimethyl sulfoxide (DMSO),
2-s-butilfenol (SBP), and tetrahydrofuran (THF). In most cases, some kind of catalyst was used, either a
homogeneous catalyst such as inorganic acids (HCl), salts (SnCl4), a combination of mineral acid + salt
(H2SO4-NaCl), combinations of different salts (FeCl3-NaCl, AlCl3-NaCl) or ionic liquids ([Sbmim]HSO4,
[SbPy]BF4); or a combination of heterogeneous and homogeneous (Sn-MMT-NaCl, Nafion NR50-NaCl).
As for the forms of heating used, the processes could be grouped into conventional ones, including
autoclave and oil bath, and non-conventional ones such as microwaves. The initial xylose concentration
assayed shows a very wide range from 18.5 g/L to more than 600 g/L, with the average being around
150 g/L, or around 120 g/L in the case of microwave heating. The range of temperature was from 130 ◦C
to 180 ◦C, with the median being 170 ◦C, the same median value as in the case of microwave heating.
Concerning the values of the process time, a wide range from 20 min to 360 min was used, with an
average close to 110 min, with the average in the case of using microwaves around a third being about
39 min.

Microwave-assisted processes were faster than conventional heated processes, as in the case of
monophasic, and also more selective [34]. The yields obtained ranged from 63% to 100%, with the
average being around 80%, with the average value being very similar with microwave heating, at 79%.
The average value obtained in biphasic processes is 30% higher than the average value obtained in
monophasic processes (80% versus 60%). If all the values shown in Table 7 were analyzed to see how
they affected the furfural yield, it is found that the highest values were given at high temperatures
(170–180 ◦C) and at short times (less than 60 min), while the initial xylose concentration had no
apparent influence.
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4. Materials and Methods

4.1. Chemical Reagents

Xylose was purchased from Fagron (Terrassa, Spain); FeCl3 hexahydrate (99%) was purchased
from Emsure (Darmstadt, Germany); H2SO4 (98%) was purchased from Honeywell Fluka (Seelze,
Germany). All materials were used without further purification. Aqueous solutions were prepared
with deionized H2O.

4.2. General Procedure for Dehydration Treatment

All experiments were conducted using a microwave reactor (Anton Paar Monowave 400, Graz,
Austria). The xylose and the catalysts in different concentrations were charged in the 10 mL glass
vessel. The reaction volume was 4 mL; the xylose concentration was 30 g/L; and the catalysts used were
H2SO4 at 2% w/v acting as Brønsted acid and FeCl3 as Lewis acid, with a variable concentration [10,13].

The heating dynamic followed was to heat the sample to the set temperature in 2 min, maintaining
the temperature for the experiment time, and cooling down to 40 ◦C with compressed air. The magnetic
agitation during the heating and maintenance was 600 rpm, and it was 800 rpm during the cool
down period. The temperature was measured by an IR sensor (Anton Paar Monowave 400, Graz,
Austria). The pressure inside the glass vessel was also monitored throughout the experiments, through
the septum that covers it. The experimental conditions were set based on previous experiments
not included.

4.3. Methodology Based on the Design of Experiments

A two-level factorial design with three central points was carried out. The FeCl3 concentration in
the range of 0.1 and 0.3 M, the process time from 1 to 5 min, and the temperature between 170 and
200 ◦C were selected as factors, with a total of 11 experiments (Table 1).

The samples obtained in the microwave reactor were analyzed in high performance liquid
chromatography (HPLC), as detailed in Section 4.4, and the results in terms of xylose conversion,
furfural yield, and selectivity, as defined below, were taken as responses and statistically analyzed
with the commercial software Design Expert 7.0.0, Stat-Ease Inc (Minneapolis, MN, USA).

On the basis of the data obtained from this first factorial design, a second rotatable composite
central design was performed, where the range of variation for the factors was reduced as follows:
the concentration of FeCl3, 0.05–0.1 M; time, 0.5–1 min; and temperature, 190–200 ◦C. Moreover, five
center and star points (values above and below the experimental range for each of the factors) were
added (Table 3).

The liquors obtained were measured in HPLC and analyzed statistically as in the previous design.
These results were optimized to obtain the maximum yield of furfural and selectivity.

4.4. Analysis of the Liquid Fractions and Quantification of the Yield, Selectivity, and Conversion

The liquors obtained in the microwave reactor were analyzed by high performance liquid
chromatography (HPLC). The compounds were determined using an Agilent Technologies 1260 model
(Santa Clara, CA, USA) with ICSep ICE-COREGEL 87H3 column operating at 65 ◦C with 5 mM
sulfuric acid as the mobile phase (0.6 mL/min). Samples were previously filtered through 0.45 µm
nylon membranes.

Conversion of xylose, furfural selectivity, and yield were defined as follows:

Xylose conversion (%) =
Consumed xylose

Initial xylose
× 100 (1)

Furfural yield (%) =
Furfural produced

Furfural stoichiometric potential(∗)
× 100 (2)
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(*) Furfural stoichiometric potential = Initial xylose × 0.64 (3)

Xylose conversion (%) =
Consumed xylose

Initial xylose
× 100 (4)

5. Conclusions

The analysis and comparison of results demonstrated the following:
Furfural can be obtained by dehydration of xylose, the main pentose found in lignocellulosic

materials, thus making use of these renewable sources of energy and biobased chemicals.
Temperature, time, and the concentration of iron chloride were identified as relevant factors of
the conversion process. Following a two experimental design approach and optimization by
response surface methodology, a highest yield of 57.1% along with 98.5% conversion was obtained.
The experimental conditions leading to the best result, including the highest temperature assayed
(210 ◦C) and lowest iron chloride concentration (0.05 M) and process time (0.5 min), can be used as a
starting point for the study of the conversion process using the whole lignocellulosic material, after
being subjected to the required operations.

The processes used to obtain xylose-rich liquors from lignocellulosic materials should be selective
on the hemicelluloses to solubilize the minimum amount of lignin, as this negatively affects the
production of furfural.

The use of microwave heating in both monophase and biphase systems allows shorter reaction
times, around one-third compared with conventional heating methods, which saves time and probably
also energy.

The highest furfural yield values are obtained at high temperatures and at short times in both
monophase and biphase systems.

Biphase systems increase the furfural yield on average by about 30% compared with monophase
systems, in each case, using green solvents.

Future investigations will be focused on the use of microwaves for heating and a biphase system
with green solvents on a xylose-rich liquor obtained from lignocellulosic materials. The methodology
found here to obtain the optimal conditions of temperature, time, and concentration of catalyst will be
applied to obtain furfural with a high yield. According to the current results, we would propose that
high temperatures, above 200 ◦C, should be tested.
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