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Abiotic stress such as cold, drought, saline-alkali stress and biotic stress

including disease and insect pest are the main factors that affect plant

growth and limit agricultural productivity. In recent years, with the rapid

development of molecular biology, genome editing techniques have been

widely used in botany and agronomy due to their characteristics of high

efficiency, controllable and directional editing. Genome editing techniques

have great application potential in breeding resistant varieties. These

techniques have achieved remarkable results in resistance breeding of

important cereal crops (such as maize, rice, wheat, etc.), vegetable and fruit

crops. Among them, CRISPR/Cas (clustered regularly interspaced short

palindromic repeats/CRISPR-associated) provides a guarantee for the

stability of crop yield worldwide. In this paper, the development of CRISRR/

Cas and its application in different resistance breeding of important crops are

reviewed, the advantages and importance of CRISRR/Cas technology in

breeding are emphasized, and the possible problems are pointed out.
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Introduction

Genome editing, which involves precise modifications at specific sites in the genome

to make desired changes to the DNA sequence. The key breakthrough of genome editing

techniques come from the development of site-broken DNA technology. In recent years,

with the development of synthetic sequence-specific nuclease (SSN), genome editing

techniques have entered a period of rapid development. At present, three types of genome

editing tools are widely used by researchers, including zinc finger nuclease (ZFN) (Kim

et al., 1996), transcription activator-like effector nuclease (TALEN) (Boch et al., 2009;

Christian et al., 2010), and clustered regularly interspaced short palindromic repeats/

CRISPR associated (CRISPR/Cas) (Jinek et al., 2012; Cong et al., 2013). ZFN and TALEN

have not been widely used due to complicated operation and high failure rate.

The CRISPR/Cas realizes the recognition process through the base complementation

between guide RNA and target sequence, which is simple and flexible, and the target site

selection only needs to conform to the requirements of protospacer-adjacent motif (PAM)

of different systems. Compared to the previous two generations of genome editing
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techniques, the CRISPR/Cas system is simple, flexible, stable,

efficient and easy to transform. These features enabled CRISPR/

Cas to quickly replace ZFN and TALEN as the mainstream

genome editing techniques. CRISPR/Cas is a defense system,

protecting bacteria and archaea from being invaded by mobile

genetic elements and bacteriophages (Hille et al., 2018). It is

composed of a single-guide RNA (sgRNA), which is a simplified

combination of crRNA and tracrRNA, and RNA-guided Cas

endonuclease (Hu et al., 2018). During the process of genome

editing, Cas endonuclease was recruited by sgRNA to a specific

site of the genome to catalyze a DNA double-stranded break

(DSB) which can be repaired by diverse DNA repair mechanisms,

non-homologous end joining (NHEJ), microhomology-mediated

end joining (MMEJ), and homology-directed repairs (HDR),

resulting in gene knockout, DNA fragment insertion, deletion,

and replacement as specifically required (Hua et al., 2019; Lu

et al., 2020). Recently, many efforts have been focused on

improving the CRISPR/Cas system to expand the genome-

targeting scope of this tools. For example, SpCas9-VRQR,

xCas9, and Cas9-NG variants could recognize non-canonical

NGA and NG PAM sites in plant (Nishimasu et al., 2018; Ming

et al., 2020). SpCas9 orthologues have been identified from

Streptococcus canis (ScCas9), Staphylococcus aureus (SaCas9),

Streptococcus thermophiles (St1Cas9), and Brevibacillus

laterosporus (BlatCas9) and have been demonstrated to edit

plant genomic loci bearing PAM sequence of NNG,

NNGRRT, NNAG AAW, and NNNCND, respectively (Cong

and Zhang, 2015; Tan et al., 2020). In addition, the type V Cas12a

and Cas12b that isolated from diverse bacterial have been

characterized with AT-rich PAM specificity, which were

utilized successfully in genome editing of targeted plant (Tang

et al., 2017; Wang et al., 2020b).

Since 2013, the CRISPR/Cas has successfully implemented

efficient genome editing and regulation in multiple species (Mali

et al., 2013; Ran et al., 2015; Xie et al., 2015; Chen et al., 2017).

Although CRISPR/Cas has only recently become the preferred

tool for genetic manipulation in plants, it has shown great

application value in genetic improvement of crops (Wolt

et al., 2016). Nowadays, the CRISPR/Cas has been widely used

in improving crop yield (Zhou et al., 2019; Cai et al., 2021) and

quality (Xing et al., 2020; Xu et al., 2021), enhancing abiotic stress

resistance (Nieves-Cordones et al., 2017; Bouzroud et al., 2020)

and biotic stress resistance (Ji et al., 2018; Oliva et al., 2019),

giving crops herbicide resistance (Zhang et al., 2019b; Liu et al.,

2021) and de novo crop domestication (Li et al., 2018; Zsögön

et al., 2018). Wang et al. (2020a) used CRISPR/Cas9 to edit

25 amino acid sequences conserved at the C-terminal of rice

cytokinin-activation enzyme-like gene LONELY GUY

(OsLOGL5), and obtained edited lines that significantly

increased grain yield under multiple geographical conditions

(Wang et al., 2020a). 2-acetyl-1-pyrroline (2AP) is a major

source of aroma, and its level can be significantly increased by

impaired or deficient function of BETAINE ALDEHYDE

DEHYDROGEN-ASE 2 (BADH2), which increases aroma.

Using CRISPR/Cas9 to disrupt BADH2 function, the scientists

created new rice (Oryza sativa), maize (Zea mays) and sorghum

(Sorghum bicolor) germplasm with aroma (Wang et al., 2021a;

Tang et al., 2021; Zhang et al., 2022). Alfatih et al. (2020) obtained

three independent PARAQUATTOLERANCE 3 (PQT3)

functional deficiency mutants of rice using CRISPR/Cas9, and

the germination rate and growth status of the mutants were

significantly better than those of the wild type under oxidative

stress and salt stress (Alfatih et al., 2020). 5-

enolpyruvylshikimate-3-phosphate synthase (EPSPS) is a key

enzyme involves in the synthesis pathway of aromatic amino

acids, and is the target of glyphosate, a broad-spectrum and

highly effective pesticide. Wang et al. (2021a) used a CRISPR/

Cas9-mediated ho-mology directed repair (HDR) strategy to

successfully replace endogenous EPSPS with EPSPSmTIPS and

EPSPSmLFGAAGMCRL in rapeseed, and obtained a new line

with stable inheritance and glyphosate-resistant rapeseed (Wang

et al., 2021b). Yu et al. (2021) accelerated de novo domestication

of wild rice by using CRISPR/Cas9 multi-gene editing targeting

genes for important agronomic traits (Yu et al., 2021).

In recent years, with the development of industry and

frequent occurrence of extreme climate, the natural

environment has gradually developed towards the unsuitable

direction for the growth of crops. Under the influence of abiotic

stresses such as low temperature (Shi et al., 2018), high

temperature (Tang et al., 2020), drought (Gupta et al., 2020),

saline-alkali (Ismail and Horie, 2017), heavy metal (Chauhan

et al., 2020), and biotic stresses including fungal, bacterial, viral

diseases (Li et al., 2019) and insect pests (Liu et al., 2016), the

yield and quality of crops are reduced. Traditional crossbreeding,

mutagenesis breeding and other breeding methods can not meet

the requirements of resistance breeding (Zhang et al., 2017).

CRISPR/Cas can be used for directional improvement of crops

and greatly shorten the breeding life, which has become the

mainstream technology of resistance breeding at present. This

paper reviews the application of CRISPR/Cas in crop re-sistance

gene improvement, and puts forward the possible problems and

challenges.

CRISPR/Cas gene editing improves
abiotic stress tolerance of crops

Abiotic stresses such as salinity, drought, extreme

temperature and heavy metals are important factors affecting

plant growth and development, which can lead to 50% crop yield

reduction (Liu et al., 2022). It is essential to generate crop types

with greater adaptability for growth under a variety of

environmental conditions in such circumstances. Though

traditional breeding increases production to a large extent, it

has the drawback of losing genetic variety and fitness (Wolter

et al., 2019). In addition to being time-consuming, its reliance on
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natural allelic variants makes it difficult to create the desired

characteristic and ensure the sustainability of production (Gao,

2018). Herein, we reviewed CRISPR/Cas-mediated crop plant

editing to address the remarkable problem of various abiotic

stressors in this paper (Table 1).

It has been reported that 7% of the Earth’s land and 20% of

arable land were affected by salinization, and the situation was

only going to deteriorate (Al Murad et al., 2020). Salt stress

induces osmotic stress, ion stress and secondary stress in plants

(Yang and Guo, 2018), which reduces yield and quality of crops

(Siddiqui et al., 2017). In tomato plants, the exact deletion of

SlHyPRP1 negative-response domain(s) significantly enhanced

the salinity tolerance at both of the germination and vegetative

stages (Tran et al., 2021). Alam et al. (2022) used CRISPR/

Cas9 system to knock out OsbHLH024 gene in rice and

enhance the expression of ion transporter gene OsHKT1;3,

OsHAK7, and OsSOS1, enhancing salt tolerance of rice (Alam

et al., 2022). Mutation of OsRR22 gene induced by CRISPR/

Cas9 enhanced salt tolerance of rice without changing other

agronomic traits (Zhang et al., 2019a; Han et al., 2022). OsRAV2

was successfully mutated using CRISPR/Cas9, and the mutant

had higher survival viability under salt stress (Liu et al., 2020b).

In addition, using CRISPR/Cas9 technology to knock out rice

OsDST (Santosh Kumar et al., 2020), OsNAC041 (Wang et al.,

2016b) andOsmiR535 (Yue et al., 2020)], barleyHvITPK1 (Vlčko

and Ohnoutková, 2020) and tomato SlARF4 (Bouzroud et al.,

TABLE 1 Genes targeted by CRISPR/Cas system for imparting tolerance against abiotic stress.

Stress Crop The name of target gene References

Salinity Tomato (Solanum
lycopersicum)

HYBRID PROLINE-RICH PROTEIN 1 (SlHyPRP1) Tran et al. (2021)

Tomato (Solanum
lycopersicum)

Auxin Response Factor 4 (SlARF4) Bouzroud et al. (2020)

Rice (Oryza sativa) BASIC HELIX-LOOP-HELIX 024 (OsbHLH024) Alam et al. (2022)

Rice (Oryza sativa) RESPONSE REGULATORS 22 (OsRR22) Zhang et al. (2019a), Han et al.
(2022)

Rice (Oryza sativa) RELATED TO ABI3/VP1 2 (OsRAV2) Liu et al. (2020b)

Rice (Oryza sativa) DROUGHT AND SALT TOLERANCE (OsDST) Santosh Kumar et al. (2020)

Rice (Oryza sativa) NAM, ATAF and CUC 041 (OsNAC041) Wang et al. (2016b)

Rice (Oryza sativa) OsmiR535 Yue et al. (2020)

Barley (Hordeum vulgare) INOSITOL TRISPHOSPHATE 5/6 KINASES 1 (HvITPK1) Vlčko and Ohnoutková, (2020)

Drought Maize (Zea mays) AUXIN-REGULATED GENE INVOLVED IN ORGAN SIZE 8 (ZmARGOS8) Shi et al. (2017)

Wheat (Triticum aestivum) DEHYDRATION RESPONSIVE ELEMENT BINDING PROTEIN 2 (TaDREB2) Kim et al. (2018)

Wheat (Triticum aestivum) ETHYLENE-RESPONSE FACTOR 3 (TaERF3) Kim et al. (2018)

Rice (Oryza sativa) ENHANCED RESPONSE TO ABA1 (OsERA1) Ogata et al. (2020)

Rice (Oryza sativa) OsDST Santosh Kumar et al. (2020)

Rice (Oryza sativa) PYRABACTIN RESISTANCE-LIKE 9 (OsPYL9) Usman et al. (2020)

Rice (Oryza sativa) SEMI-ROLLED LEAF 1 (SRL1) and SEMI-ROLLED LEAF 2 (SRL2) Zeng et al. (2019)

Tomato (Solanum
lycopersicum)

GA-INSENSITIVE DWARF1 1 (SlGID1) Illouz-Eliaz et al. (2020)

Tomato (Solanum
lycopersicum)

LATERAL ORGAN BOUNDARIES DOMAIN 40 (SlLBD40) Liu et al. (2020a)

Low temperature Rice (Oryza sativa) PIN-FORMED 5b (OsPIN5b) Liao et al. (2019)

Rice (Oryza sativa) GRAIN SIZE (GS3) Liao et al. (2019)

Rice (Oryza sativa) V-MYB AVIAN MYELOBLASTOSIS VIRAL ONCOGENE HOMOLOG 30
(OsMYB30)

Liao et al. (2019)

High
temperature

Tomato (Solanum
lycopersicum)

MITOGEN-ACTIVATED PROTEIN KINASES 3 (SlMAPK3) Yu et al. (2019)

Rice (Oryza sativa) PYRABACTIN RESISTANCE-LIKE 1/4/6 (OsPYL1/4/6) Miao et al. (2018)

Cadmium Rice (Oryza sativa) NATURAL RESISTANCE-ASSOCIATED MACROPHAGE PROTEIN 5
(OsNRAMP5)

Chang et al. (2020), Chu et al. (2022)

Rice (Oryza sativa) LOW-AFFINITY CATION TRANSPORTER 1 (OsLCT1) Chang et al. (2020)

Rice (Oryza sativa) NATURAL RESISTANCE-ASSOCIATED MACROPHAGE PROTEIN 1
(OsNRAMP1)

Chang et al. (2020), Chu et al. (2022)

Arsenic Rice (Oryza sativa) ARSENITE-RESPONSIVE MYB1 (OsARM1) Wang et al. (2017)

Caesium Rice (Oryza sativa) HIGH-AFFINITY POTASSIUM TRANSPORTER 1 (OSHAK1) Nieves-Cordones et al. (2017)
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2020) can also effectively improve the ability of crops to resist salt

stress.

Drought stress is the main cause of serious loss of yield and

productivity of major crops and poses the greatest threat to global

food security (Joshi et al., 2020). Using CRISPR/Cas system, the

natural ARGOS8 promoter sequence of maize was replaced by

GOS2 promoter to improve the yield of maize under drought

stress in field (Shi et al., 2017). CRISPR/Cas9-mediated

mutagenesis of OsERA1 resulted in great drought stress

tolerance in rice (Ogata et al., 2020). Drought resistance of

wheat was improved by CRISPR/Cas editing of wheat

TaDREB2 and TaERF3 (Kim et al., 2018). Santosh Kumar

et al. (2020) used CRISPR/Cas9 to edit OsDST gene to obtain

the mutant of indica mega rice cultivar MTU1010, with wider

leaves, lower stomatal density and enhanced leaf water retention

ability under drought stress (Santosh Kumar et al., 2020). Usman

et al. (2020) found that the ospyl9 mutant created by CRISPR/

Cas9 could improve drought tolerance and yield of rice (Usman

et al., 2020). CRISPR/Cas9 induced SRL1 and SRL2 gene

mutations in rice to achieve the curled leaves phenotype and

drought tolerance by changing expression patterns of protein and

scavenging of reactive oxygen species (Liao et al., 2019). Tomato

plants with high leaf water content were obtained under drought

conditions using CRISPR/Cas9 to modify GID1, and tomato

drought resistance was effectively increased (Illouz-Eliaz et al.,

2020). In addition, CRISPR/Cas9-mediated SlLBD40 gene

mutation also significantly enhanced drought resistance of

tomato (Liu et al., 2020a).

Cold stress, which includes chilling (<20°C) and freezing

(<0°C) temperatures, inhibited growth and development of

plants, and seriously restricts plant spatial distribution and

agricultural productivity (Ding et al., 2020). Low temperature

directly inhibits plant metabolic response and induces osmotic

stress, oxidative stress and other stress. Zeng et al. showed that

the ospin5b mutant, gs3 mutant and osmyb30 mutant created by

CRISPR/Cas9 increased spike length, grain size and cold

tolerance (Zeng et al., 2019). High temperature affects the

whole growth cycle of crops, especially in the heat sensitive

period such as early establishment, flowering and

gametophytogenesis (Jagadish et al., 2021). Compared with

the wild type, the CRISPR/Cas9-mediated slmapk3 mutant

maintained reactive oxygen species homeostasis by regulating

the expression of antioxidant enzymes and HSPs/HSFs genes,

enhancing the high temperature tolerance of tomato plants (Yu

et al., 2019). CRISPR/Cas9 editing was used to make pyl1/4/6

triple knockout rice. The mutant showed a greater yield, higher

temperature tolerance, and less germination before harvest than

the wild variety (Miao et al., 2018). Heavy metal toxicity is one of

the most destructive abiotic stress.

Heavy metals cause serious damage to plant growth and yield

and are the main problem of sustainable agricultural

development. It has adverse effects on plant physiology and

biochemistry through osmotic stress, ion imbalance, oxidative

stress, membrane tissue disorder, cytotoxicity and metabolic

homeostasis (Hoque et al., 2021). Heavy metals accumulated

in plants will cause serious harm to human health after ingestion

(Kaur et al., 2021). Knockdown of OsNramp5 and OsLCT1 by

CRISPR/Cas9 reduces cadmium (Cd) accumulation in rice

(Songmei et al., 2019). OsNRAMP1 was knocked out using

CRISPR/Cas9, which resulted in lower Cd and plumbum (Pb)

levels in rice grains (Chang et al., 2020; Chu et al., 2022). At the

same time, the function of OsNRAMP5 and OsNRAMP1 to

reduce Cd accumulation is not redundant. Wang et al. (2017)

inhibited the absorption and transport of arsenic in rice by

eliminating an R2R3 MYB transcription factor OsARM1 by

CRISPR/Cas9 (Wang et al., 2017). To create low Caesium

(Cs) rice plants, Nieves-Cordones et al. (2017) used the

CRISPR/Cas to inactivate the K+ transporter OsHAK1

(Nieves-Cordones et al., 2017).

CRISPR/Cas gene editing improves
biotic stress tolerance of crops

Biotic stresses, such as viral, fungal, and bacterial infections,

account for 20–40% of global agricultural output losses (Walker,

1984). In order to address the food crisis, conferring pathogen

resistance to host plants can lessen the impact of disease on crop

productivity (Borrelli et al., 2018). So far, scientists have obtained

plants that are highly resistant to fungal, bacterial and viral

diseases, as well as insects, through CRISPR/Cas9 knockout

(Chen et al., 2019) (Table 2).

Fungus disease is a kind of devastating disease in crops,

among which powdery mildew seriously affects crop

productivity. CRISPR/Cas9 was used to knock out all three

TaMLO alleles in wheat, and wheat plants with enhanced

powdery mildew resistance were obtained (Wang et al., 2014).

Similarly, CRISPR/Cas9-mediated knockdown of SlMLO and

VvMOL3 made tomato (Nekrasov et al., 2017) and grape

(Wan et al., 2020) resistant to powdery mildew. In addition,

CRISPR/Cas9-mediated SlPMR4 mutation also significantly

increased tomato powdery mildew resistance, but could not

completely immune (Santillán Martínez et al., 2020). Rice

blast is a destructive fungal disease. CRISPR/Cas9 was used to

enhance resistance to rice blast disease by interrupting the

OsERF922 and OsSEC3A genes in rice (Wang et al., 2016a;

Ma et al., 2018). Among them, other agronomic traits of

oserf922 mutant did not change (Wang et al., 2016a), while

SA content in ossec3a increased, resulting in dwarfing (Ma

et al., 2018). CRISPR/Cas9-induced rice Bsr-d1 and Pi21

mutations could also cause partial resistance to rice blast, but

the effect was not as strong as oserf922 (Nawaz et al., 2020; Zhou

et al., 2022). Tomato late blight is a serious tomato fungal disease

caused by Phytophthora infestans, which mainly affects tomato

yield. miRNAs can enhance plant resistance by inhibiting their

target genes. miR482b and miR482c were simultaneously
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knocked out by multiple editing systems, and double mutants

were found to have higher resistance than single mutants,

revealing a new mechanism by which miRNAs regulate fungal

resistance (Hong et al., 2021). Furthermore, Silva et al. (2021)

discovered that when the PL was knocked out by CRISPR/Cas9,

the incidence of gray mold infection in tomato fruits was

significantly reduced (Silva et al., 2021).

Of all the bacterial species on earth, hundreds can cause

disease in plants, often exposing multiple disease symptoms

(Schloss and Handelsman, 2004). Plant pathogenic bacteria

are difficult to control due to the difficulty of detecting disease

before it appears and the lack of effective pesticides. CRISPR/

Cas9 modification of plant genomes has been found to improve

crop resistance to bacterial diseases. For example, OsSWEET13 is

a susceptibility (S) gene that codes for a sucrose transporter that

plays an important role in the interaction between plant and

pathogen. PthXo2, an effector protein produced by X. oryzae,

causes OsSWEET13 expression in the host and, as a result,

susceptibility. In rice plants, knocking down the promoter

OsSWEET13 resulted in bacterial blight resistance (Zhou et al.,

2015). Citrus bacterial canker (CBC) is the most widespread

bacterial disease in citrus, which was caused by Xanthomonas

citri subspecies citri. Jia et al. (2016) generated CBC-resistant

mutants by editing the promoter sequence of the CsLOB1 gene in

Duncan grapefruit (Jia et al., 2016). Meanwhile, Peng et al. (2017)

also reported that CRISPR/Cas9 targeted modification of citrus

susceptible gene CsLOB1 promoter EBEPthA4 combined with the

original to improve the resistance ofWanjincheng orange (Citrus

sinensis Osbeck) to citrus canker disease (Peng et al., 2017).

Pseudomonas Syringae is the cause of bacterial leaf spot disease. It

TABLE 2 Genes targeted by CRISPR/Cas for imparting tolerance against biotic stress.

Stress Crop The name of target gene References

Fungus
disease

Powdery mildew Tomato (Solanum
lycopersicum)

MILDEW RESISTANT LOCUS O (SlMLO) Nekrasov et al. (2017)

Wheat (Triticum
aestivum)

TaMLO-A1, TaMLO-B1 and TaMLO-D1 Wang et al. (2014)

Grapevine (Vitis vinifera) VvMOL3 Wan et al. (2020)

Tomato (Solanum
lycopersicum)

POWDERY MILDEW RESISTANCE 4 (SlPMR4) Santillán Martínez et al. (2020)

Rice Blast Rice (Oryza sativa) OsERF922 Wang et al. (2016a)

Rice (Oryza sativa) SUBUNIT OF THE EXOCYST COMPLEX 3A (OsSEC3A) Ma et al. (2018)

Rice (Oryza sativa) Pi21 and Bsr-d1 Nawaz et al. (2020), Zhou et al.
(2022)

Late blight Tomato (Solanum
lycopersicum)

miR482b and miR482c Hong et al. (2021)

Gray mould Tomato (Solanum
lycopersicum)

PECTATE LYASE (SlPL) Silva et al. (2021)

Bacterial
disease

Bacterial blight Rice (Oryza sativa) SUGARS WILL EVENTUALLY BE EXPORTED
TRANSPORTER 13 (OsSWEET13)

Zhou et al. (2015)

Citrus bacterial canker Orange (Citrus sinensis) LATERAL ORGAN BOUNDARY 1 (CsLOB1) Jia et al. (2016), Peng et al.
(2017)

Bacterial leaf spot disease Tomato (Solanum
lycopersicum)

JASMONATE ZIM-DOMAIN 2 (SlJAZ2) Ortigosa et al. (2019)

Virus disease Cucumber vein yellowing
virus

Cucumber (Cucumis
sativus)

EUKARYOTIC TRANSLATION INITIATION FACTOR 4E
(eIF4E)

Chandrasekaran et al. (2016)

Zucchini yellow mosaic
virus

Cucumber (Cucumis
sativus)

eIF4E Chandrasekaran et al. (2016)

Papaya ring spot mosaic
virus-W

Cucumber (Cucumis
sativus)

eIF4E Chandrasekaran et al. (2016)

Rice tungro spherical virus Rice (Oryza sativa) eIF4G Macovei et al. (2018)

Tomato mosaic virus Tomato (Solanum
lycopersicum)

DICER-LIKE 2b (SlDCL2b) Wang et al. (2018a)

Potato virus X Tomato (Solanum
lycopersicum)

SlDCL2a and SlDCL2b Wang et al. (2018b)

Insect disease Plant hopper Rice (Oryza sativa) CYTOCHROME P450 71A1 (OsCYP71A1) Lu et al. (2018)

Stem borer Rice (Oryza sativa) OsCYP71A1 Lu et al. (2018)

Common cutworm Soybean (Glycine max) CALCIUM-DEPENDENT PROTEIN KINASE 38
(GmCDPK38)

Li et al. (2022)
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induces stomatal opening of plants by releasing coronatine,

which is conducive to bacterial infection. The Jasmonate-ZIM

domain protein is a COR coreceptor, and SlJAZ2 is edited by

CRISPR/Cas9 to lack JAZ domain, resulting in resistance to

bacterial leaf spot disease (Ortigosa et al., 2019). In addition, the

CRISPR/Cas9 technology provides a strategy for the creation of

multiple resistant materials that induce mutations in the

acetylegenase-encoding genes ACER1a and ACET1b that show

increased resistance to fungal and bacterial pathogens (Jeon et al.,

2020). CRISPR/Cas9-induced mutations in tomato susceptibility

gene SlDMR6-1 confer resistance to different types of pathogens,

including bacteria, oomycetes and fungi (Thomazella et al.,

2021). CRISPR/Cas9-mediated osnramp1 mutants increased

hydrogen peroxide (H2O2) content and superoxide dismutase

(SOD) activity, but decreased catalase (CAT) activity, showing

broad-spectrum resistance to bacteria and fungi (Chu et al.,

2022).

A number of economically important staples and specialty

crops are threatened by plant viruses. According to the nature of

their genomes, they are divided into six major groups: single-

stranded DNA (ssDNA), double-stranded DNA (dsDNA)viruses

with no plant viruses in this group, double-stranded RNA

(dsRNA), reverse-transcribing viruses, positive sense single-

stranded RNA (ssRNA+) viruses and negative sense single-

stranded RNA (ssRNA) (Roossinck et al., 2015). Studies using

CRISPR-edited plants for virus resistance have focused on

ssDNA geminivirus genomes (Ali et al., 2015; Baltes et al.,

2015; Ji et al., 2015). It includes many kinds of plant viruses

that causes worldwide crop losses, affecting many important

families, including Euphorbiaceae, Cucurbitaceae, Malvaceae,

Solanaceae, and Fabaceae (Zaidi et al., 2016). By rolling-circle

amplification or recombination-mediated replication, the virus

genome replicates itself via a dsDNA replicative form (Hanley-

Bowdoin et al., 2013). In economic terms, Begomovirus is the

most important genus of geminiviruses. Begomovirus infect

dicotyledonous plants primarily through the sweet tobacco/

potato/silverleaf whitefly (Bemisia tabaci) and are found

attached to phloem of plants (Gilbertson et al., 2015). The

genome is composed of one (A, monopartite) or two (A and

B, bipartite) components, which contain a common 220-bp

region (Fondong, 2013). At first, Baltes et al. (2015) and Ji

et al. (2015) reported on resistance to geminiviruses, beet

severe curly top virus (BSCTV) and bean yellow dwarf virus

(BeYDV) in model plants Nicotiana benthamiana and

Arabidopsis Baltes et al., 2015; Ji et al., 2015). Ji et al. (2015)

identified 43 possible sgRNA/Cas9 targets within the coding and

non-coding domains of the BSCTV genome (Ji et al., 2015). Each

sgRNA/Cas9 construct reduced virus content to varying degrees

in inoculated leaves. And, the plants with the highest expressing

levels of Cas9 and sgRNAs seem to be more resistance to virus

infection. Similarly, Baltes et al. (2015) utilized 11 sgRNAs

targeting Rep motifs, Rep-binding sites, hairpins, and the

nonanucleotide sequence of BeYDV to achieve similar results

(Baltes et al., 2015). A CRISPR/Cas9 approach was also used for

enhancing resistance to begomovirus in two recent studies (Ali

et al., 2015; Ali et al., 2016). The CRISPR/Cas9 systems were

expressed in the host cell nucleus, and the viral genome was

targeted and cleaved during replication in both studies. The

sgRNA molecules developed by Ali et al. (2015) were

delivered into N. benthamiana plants overexpressing the

Cas9 endonuclease via a tobacco rattle virus (TRV) vector

(Ali et al., 2015). SgRNAs target different coding and non-

coding sequences of the tomato yellow leaf curl virus

(TYLCV), including the RCRII motif of the replication

protein (Rep), the capsid protein (CP) and the intergenic

region (IR). The sgRNAs that target stem-loop invariant

sequences in the IR caused a significant reduction in viral

replication and accumulation but did not interfere with

TYLCV genome sequences. Bipartite Merremia mosaic virus

(MeMV) and the monopartite beet curly top virus (BCTV)

have same stem-loop sequence in the IR. Therefore, CRISPR/

Cas9 system was designed to target this sequence simultaneously.

The results demonstrated that a sgRNA specific for conserved

sequences frommultiple viral strains can be used to realize mixed

infection immunity. Furthermore, Different CRISPR/Cas9 tools

were designed to target different coding and non-coding

sequences of MeMV, cotton leaf curl Kokhran virus

(CLCuKoV), and different severe and mild strains of TYLCV

(Ali et al., 2016). Researchers found that when the viral coding

regions were edited by sgRNA/Cas9 complex, virus variants that

were able to replicate and escape CRISPR/Cas9 were generated.

In contrast, no new variants were found in plants carrying

sgRNAs targeting the IR sequences in N. benthamiana plants.

A second technique for achieving viral disease resistance entails

altering plant genes that provide virus resistance qualities,

segregating the CRISPR/Cas9 tool, and releasing non-

transgenic mutants into the field (Chandrasekaran et al., 2016;

Pyott et al., 2016; Macovei et al., 2018). Plant host factors, such as

the eukaryotic translation initiation factors eIF4E, eIF(iso)4E, and

eIF4G, are required by RNA viruses to maintain their life cycle

(Sanfaçon, 2015). By modifying two different sites of the host

susceptibility gene eIF4E with CRISPR/Cas9, Chandrasekaran

et al. (2016) were able to develop cucumber plants that were

resistant to potyviruses. Homozygous eif4e mutants

demonstrated protection to viruses from the Potyviridae

family, such as zucchini yellow mosaic virus (ZYMV),

cucumber vein yellowing virus (CVYV), and papaya ring spot

mosaic virus-W (PRSV-W). However, heterozygous knockout

plants and nonmutant plants showed no resistance to these

viruses. Macovei et al. (2018) used mutagenesis of eIF4G

alleles in rice plants to establish novel sources of resistance to

rice tungro spherical virus (RTSV) (Macovei et al., 2018).

Furthermore, after inoculation with RTSV, agronomic

parameters, e.g., plant height and grain production of the

edited rice plants were improved compared to that the wild-

type. In tomato plant, CRISPR/Cas9 was used to edit SlDCL2b
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with the highest expression in four DCL2 subfamilies (SLDCL2a-

SLDCL2d), which significantly enhanced tomato resistance to

tomato mosaic virus (ToMV) (Wang et al., 2018a). Wang et al.

(2018a) discovered that editing SlDCL2a and SlDCL2b at the

same time increased tomato resistance to potato virus X (PVX)

and tobacco mosaic virus (TMV) (Wang et al., 2018b).

Pests is thought to be responsible for 20–40% of global crop

output loss (Douglas, 2018). Pests adversely affect crop yield and

quality through direct damage and transmission of plant diseases

(Oerke, 2006). In recent years, agricultural losses caused by pests have

increased as the climate has warmed (Deutsch et al., 2018), but

widespread use of pesticides can have a negative impact on the

environment. Therefore, there is an urgent need for a safe and effective

method to control the occurrence of insect pests on crops. The level of

salicylic acid levels was raised when the serotonin biosynthesis was

prevented by disrupting OsCYP71A1, which results in greater

resistance to plant hoppers and stem borers in rice (Lu et al.,

2018). Li et al. (2022) showed that the gmcdpk38 mutant with

Hap3 knockout using CRISPR/Cas9 showed high resistance to

common cutworm (Li et al., 2022).

Conclusion and future prospects

Traditional plant breeding, such as conventional intergeneric

crosses and chemical/physical mutagenesis are non-specific.

Moreover, introgression of beneficial traits into an elite variety is

often accompanied by introgression of non-target traits because of

linkage drag. Therefore, it is a long-term effort for the development

of new cultivars using traditional breeding methods, especially it is

time-consuming of backcross to segregate the unwanted changes in

their offspring (Hartung and Schiemann, 2014). In contrast,

CRISPR/Cas9 can accelerate plant breeding by modify genomes

rapidly in a precise and predictablemanner. Because of its efficiency,

simplicity, and versatility, CRISPR/Cas9 has recently become a

popular tool for genome editing and has been widely used in

crop resistance breeding (Wolter et al., 2019). CRISPR-Cas9

system can be used for gene knockout, gene insertion and gene

replacement, resulting in loss-of-function, knock down or activation

mutants, which can lead to generation of abiotic/biotic stress-

tolerant crop plants (Figure 1). Meanwhile, the availability of the

genome sequence of crops allows scientists to precisely design its

genome, which facilitates the application of CRISPR/Cas9 in

resistance breeding (Jackson et al., 2011). Firstly, the major genes

controlling important traits of crops have not been identified, which

limits the application of CRISPR/Cas in plant genetic engineering

breeding (Jin et al., 2019). Secondly, pathogens keep to modify its

genome though evolution to break the already available resistance

obtained by CRISPR/Cas gene editing. Therefore, it is required to

design new variants every few years and insert them into the

plants(Ahmad et al., 2020). Thirdly, many genes are represented

by multi-gene families with functional redundancy, making it

difficult to produce resistance phenotype by knocking-out a

single gene (Li et al., 2013). It is required to develop powerful

CRISPR-Cas tools to realize multiplex genome editing.

Off-target effect is another major limitation of CRISPR-

Cas system. Although much work has been done to optimize

CRISPR/Cas system and improve its specificity, there is still

no way to completely avoid editing individuals off-target

(Pattanayak et al., 2013; Fu et al., 2014; Kleinstiver et al.,

2016; Tang et al., 2019). Therefore, the potential off-target risk

cannot be ignored when using CRISPR/Cas for genome

editing. For gene function studies, in order to exclude

misjudgment of results caused by off-target phenomenon,

association analysis between genotype and phenotype

should be carried out in multiple independently edited

individuals to determine whether phenotypic changes are

caused by mutations in target genes. In addition, one big

challenge in crop breeding is efficient delivery of CRISPR/Cas

components into reproductive cells. In the case of plants that

can be transformed, foreign genes can be introduced into their

reproductive cells by genetic transformation methods in a

quite effective way. However, the associated tissue culture and

regeneration steps are time consuming and complex.

Furthermore, many crops are recalcitrant or extremely

difficult to transform. For gene editing to be applied to all

plants, we need technology that can deliver gene editing

reagents independent of tissue culture and plant regeneration.

FIGURE 1
Review of the applications of CRISPR/Cas systems in
improving biotic and abiotic stress tolerance of crop. CRISPR-
Cas9 system can be used for gene knockout, gene insertion and
gene replacement, resulting in loss-of-function, knock down
or activation mutants, which can lead to generation of abiotic/
biotic stress-tolerant crop plants.
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Despite the overwhelming benefits of CRISPR/Cas system for

crop improvement, regulatory policies that classify gene-edited

goods as GMOsmay prevent their use in some nations (Callaway,

2018). However, from a scientific point of view, the mutants

obtained by CRISPR/Cas are exactly the same as those obtained

by natural mutation or conventional mutagenesis after removing

the transgenic label. We think more publicity should be given in

this regard to dispel the prejudice of most people. On January 24,

2022, the Ministry of Agriculture and Rural Affairs of The

People’s Republic of China issued the IGuidelines for Safety

Evaluation of Gene-edited Plants for Agricultural Use (Trial)J
(http://www.moa.gov.cn/ztzl/zjyqwgz/sbzn/202201/t20220124_

6387561.htm). This guideline mainly applies for safety evaluation

of gene-edited plants without introducing exogenous genes

according to different risk levels to apply for production and

application safety certificates. The release of this guideline

provides a basis for the standardized development of gene-

edited crops and a reference for further deregulation of gene-

edited crops in the future.

CRISPR and other gene editing technologies have already

made significant gains in crop breeding, and we expect that this is

just the beginning, with many more exciting developments to

follow. With the development of second-generation sequencing,

gene editing technology and target analysis technology based on

high-throughput sequencing method have a solid technical

foundation, and the acquisition of high-throughput big data

has become more common, convenient and affordable, which

will greatly promote the application of CRISPR/Cas in crop

genetic improvement.
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