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Abstract: Retinal ganglion cell (RGC) death occurs in many eye diseases, such as glaucoma and
traumatic optic neuropathy (TON). Increasing evidence suggests that the susceptibility of RGCs varies
to different diseases in an RGC type-dependent manner. We previously showed that the susceptibility
of several genetically identified RGC types to N-methyl-d-aspartate (NMDA) excitotoxicity differs
significantly. In this study, we characterize the susceptibility of the same RGC types to optic nerve
crush (ONC). We show that the susceptibility of these RGC types to ONC varies significantly, in which
BD-RGCs are the most resistant RGC type while W3-RGCs are the most sensitive cells to ONC. We
also show that the survival rates of BD-RGCs and J-RGCs after ONC are significantly higher than their
survival rates after NMDA excitotoxicity. These results are consistent with the conclusion that the
susceptibility of RGCs to ONC varies in an RGC type-dependent manner. Further, the susceptibilities
of the same types of RGCs to ONC and NMDA excitotoxicity are significantly different. These are
valuable insights for understanding of the selective susceptibility of RGCs to various pathological
insults and the development of a strategy to protect RGCs from death in disease conditions.

Keywords: retinal ganglion cell death; optic nerve crush; NMDA excitotoxicity; RGC
type-specific susceptibility

1. Introduction

In mammals, retinal ganglion cells (RGCs) are the only output neurons that conduct visual signals
from the eyes to the brain. RGCs are classified into at least 40 types based on their morphological,
functional and genetic features [1–9]. RGC death occurs in many blinding retinal diseases, such
as glaucoma and traumatic optic neuropathy (TON). Increasing evidence suggests that RGCs are
susceptible to various injuries in an RGC type-dependent manner. For instance, in experimental
models of ocular hypertension, OFF RGCs exhibit higher rates of cell death than ON RGCs [10–12],
and mono-laminated ON RGCs are found to be more susceptible to elevated intraocular pressure (IOP)
than bi-laminated ON–OFF cells [13]. Similarly, in models of optic nerve injury, OFF RGCs are more
susceptible than ON RGCs, and ON-sustained RGCs seem to be more vulnerable than ON-transient
RGCs [14]. Among several types of RGCs, αRGCs are the least susceptible RGC type to an optic nerve
injury in one report [15] but a more susceptible RGC type in another study [16]. It was shown that
different RGC types have unique gene expression patterns [7,9,17,18], and the same genes could protect
some RGC types but facilitate the death of other RGC types after the same injury [19]. Therefore,
an understanding of the type-specific susceptibility of RGCs may provide valuable insights into the
molecular mechanisms of RGC death and suggest novel treatment strategies.
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Recent studies have provided valuable information regarding the molecular mechanisms of RGC
death in retinal diseases and suggested multiple mechanistic pathogenesis processes. For instance, it
was proposed that glaucomatous damage is a result of elevated intraocular pressure (IOP) followed by
ischemia, hypoxia of the optic nerve head, and consequently, RGC death due to glutamate-induced
excitotoxicity, deprivation of energy and oxygen, an increase in levels of inflammation and alteration of
the flow of trophic factors. These events lead to blockage of anterograde and retrograde axonal transport
with ensuing axotomy and eventually blindness [20–26]. Similar to glaucoma, the precise mechanisms
of RGC death in TON have not been elucidated, but the pathology appears to be multifactorial, and
several mechanisms of RGC death have been postulated, such as axonal transport failure, neurotrophic
factor deprivation, activation of apoptotic signals, mitochondrial dysfunction, excitotoxic damage,
oxidative stress, misbehaving reactive glia and loss of synaptic connectivity [26–29]. Glutamate
excitotoxicity plays an essential role in RGC death of both glaucoma and TON. For instance, elevated
intraocular pressure (IOP) increases the expression of N-methyl-d-aspartate receptors (NMDARs) in
DBA/2J mice (homozygous for Cdh23ahl, Stock No. 000664, Jackson Lab) [30], and activates NMDARs,
which in turn triggers mitochondria-mediated apoptotic cell death in glaucomatous retina [31]. Further,
the numbers of NMDAR-positive RGCs are reduced parallel to the loss of RGC in a rat chronic ocular
hypertension model [32]. However, to what extent NMDA excitotoxicity or direct mechanic crush
causes the death of various types of RGCs has not been systematically investigated.

We previously showed that the susceptibility of twenty RGC types to NMDA excitotoxicity varies
significantly [31]. One of these mouse lines expresses YFP in a direction-selective RGC type (BD-RGC).
BD-RGCs are a type of ON–OFF direction-selective RGCs (DS-RGCs). In mouse retinas, there are
three types of ON–OFF DS-RGCs, tuned to ventral, dorsal, nasal, and temporal motion. BD-RGCs are
sensitive to ventral motion [33,34]. The second mouse line expresses YFP in W3-RGCs. W3-RGCs are
the smallest RGCs in the size of the dendritic field and the most numerous RGCs [33]. There are at
least two subtypes of W3-RGCs. W3B RGCs are ON–OFF motion-sensitive RGCs [33], and W3D RGCs
remain physiologically uncharacterized [35,36]. Both W3-RGC subtypes express YFP in this mouse line.
The third mouse line expresses YFP in αRGCs. There are at least three subtypes of αRGCs in mouse
retinas, in which some are ON cells and some are OFF cells [37,38]. In this mouse line, YFP is expressed
in all three subtypes of αRGCs [15]. The fourth line of the transgenic mice expresses YFP in J-RGCs.
There are three subtypes of J-RGCs in the mouse retina, which differ in dendritic tree morphology
and possibly visual function [3,7,33]. This mouse line expresses YFP in two subtypes of J-RGCs. One
subtype of J-RGCs orients its dendrites ventrally to form a polarized dendritic field and is sensitive
to directional movement, color-opponent responses, and orientation-selective response [3,33,39,40].
The second subtype of J-RGCs has a symmetric dendritic field, and the function of them is not well
characterized [3]. The final mouse line expresses YFP in 12 morphological types of RGCs [41]. Because
it has been widely reported that the susceptibility of RGCs varies based on their dendritic ramification
patterns, type of their light responses, and their genetic profiles [7,9–11,13–15,17,18], we used these
transgenic mouse lines that provided multiple RGC types with various morphological, physiological
and genetic profiles.

In this study, we characterized the susceptibility of the same RGC types as those for NMDA
excitotoxicity to optic nerve crush (ONC). We show that the susceptibility of different types of RGCs to
ONC varies significantly, in which BD-RGCs are the most resistant type of RGCs while theW3-RGCs
are the most sensitive cells to ONC. Further, our results show that the survival rates of BD-RGCs and
J-RGCs after ONC are significantly higher than the survival rates of BD-RGCs and J-RGCs after NMDA
excitotoxicity. These results provide valuable insights for understanding the selective susceptibility
of RGCs to pathological insults and the development of a strategy to protect RGCs from death in
disease conditions.
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2. Materials and Methods

2.1. Animals

The transgenic mouse strains used in this study are the same as in our previous
study [31], which include B6.Cg-Tg(Thy1-YFP)HJrs/J (Thy1-YFP), B6.129(SJL)-Kcng4tm1.1(cre)Jrs/J
(Kcng4Cre), FSTL4-CreER (BD-CreER), JamB-CreER, TYW3, and Thy1-STOP-loxP-YFP (Thy1-Stop-YFP).
The Thy1-YFP (Stock No: 003782) and Kcng4Cre (Stock No: 029414) mice were obtained from The
Jackson Laboratory (Bar Harbor, ME, USA) [15]. BD-CreER, JamB-CreER, TYW3, and Thy1-Stop-YFP
mice were obtained from Dr. Joshua Sanes’ laboratory at Harvard University [3,33]. All transgenic
mice used in this study were on C57BL/6 background and were backcrossed with C57BL/6J mice for
4–5 generations in our lab. Then the BD-CreER, JamB-CreER, and Kcng4Cre mice were bred into the
Thy1-Stop-YFP mice to generate BD-CreER:Thy1-Stop-YFP (BD:YFP), JamB-CreER:Thy1-Stop-YFP
(JamB:YFP) and Kcng4Cre:Thy1-Stop-YFP (Kcng4Cre:YFP) double transgenic mice. YFP was explicitly
expressed in αRGCs without any additional treatment, whereas YFP was only expressed specifically in
BD-RGCs or J-RGCs upon intraperitoneal (IP) injection of Tamoxifen (150 µg) at the ages of postnatal
day 5-15 (P5–15). All of these mice were viable, and no significant defects in general development or
overall formation of eye or retina were noticed. Mice in both sexes were used in this study. All animal
procedures used in this study and care were performed following protocols approved by the IACUC
of the University of Utah (Protocol number: 17-05007) and the IACUC of VA Salt Lake City Health
Care System (Protocol number: A15-04) in compliance with PHS guidelines and with those prescribed
by the Association for Research in Vision and Ophthalmology (ARVO).

2.2. Optic Nerve Crush

The ONC procedure has been described in our previous publication [42] and was performed
unilaterally on all mice at approximately the age of P60–90. Isoflurane (2–5%, MWI, Meridian, ID) was
used through a computerized mouse anesthesia suite (SomnoSuite1 System, Kent Scientific Corporation,
Torrington, CT, USA) to anesthetize the mice. A topical application of 0.5% proparacaine hydrochloride
ophthalmic solution (Falcon Pharmaceuticals, Fort Worth, TX, USA) was also used. Under a stereo
surgical microscope, a small cut was made at the lateral canthus of the eyelid to expose the lateral side
of the eyeball. Then, a small incision was made in the conjunctiva beginning inferior to the eyeball
and around the cornea temporally. Microforceps were used to hold the edge of the conjunctiva next
to the eyeball and retract it. The orbital muscles were gently deflected and the eyeball was rotated
nasally to exposes the posterior aspect of the eyeball and optic nerve. Dumont #N7 cross-action forceps
(cat. #RS-5027; Roboz) were used to hold the optic nerve at approximately 1 mm from the back of
eyeball for 10–30 s (for different experiments, see results), with only pressure from the self-clamping
action of the forceps to press on the nerve. The Dumont cross-action forceps have a spring action,
which applies a constant and consistent force to the optic nerve. After 10–30 s, the optic nerve was
released, and the forceps were removed to allow the eyeball to rotate back into place. A small amount
of surgical lubricant (KY jelly; McNeil-PPC, Skillman, NJ, USA) was applied to the eye to protect it
from drying, and a subcutaneous injection of buprenorphine was administered for post-operative
pain control. The mouse was placed on a warming pad and monitored until it fully recovered from
anesthesia. During the first three days after the procedure, systemic analgesics (buprenorphine) and
topical antibiotic ointment were applied twice daily. The mice were closely monitored for possible
infection, bleeding, and loss of muscular control [43–45]. The effectiveness of the injury of RGC axons
was confirmed by intraocular injection of Alexa Fluor™ 555-conjugated Cholera Toxin Subunit B (CTB,
0.2%, ThermoFisher Scientific, Eugene, OR, USA) to label the optic nerve one week after the ONC.

2.3. Primary Antibodies

Rabbit polyclonal antibody against the green fluorescent protein (GFP) conjugated with AlexaFluor
488 was purchased from Molecular Probes (Eugene, OR, USA; Catalog No. A21311). This antibody
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was raised against GFP isolated directly from Aequorea victoria and has been previously characterized
by immunocytochemistry in granule cells [46], olfactory sensory neurons [47], and hippocampal
neurons that express GFP [48]. An anti-RBPMS (RNA-binding protein with multiple splicing) antibody
was purchased from PhosphoSolutions (Aurora, CO, USA; Catalog #: 1832-RBPMS). This polyclonal
antibody was raised in guinea pigs against a synthetic peptide corresponding to amino acid residues
from the N-terminal region of the rat RBPMS sequence conjugated to KLH. This antibody has been
characterized by Western blotting and verified with immunocytochemistry on mammalian retinas and
demonstrated to be a specific pan-RGC marker which labels all RGCs but not any other cells in the
retina [49–51]. The secondary antibodies were purchased from Jackson Immune Research Laboratories
(West Grove, PA, USA).

2.4. Preparation of Retinal Whole Mounts for Antibody Staining

Retinal ganglion cells were imaged on whole-mount retinal preparation for cell counting and
dendritic morphology recognition. The procedures for fluorescent immunolabeling of YFP-expressing
retinal neurons on retinal whole mounts and slide preparations have been described previously in
detail [31,41,42]. In brief, mice were euthanized with 100% CO2, followed by cervical dislocation.
Retinas were isolated and fixed in 4% paraformaldehyde (PFA) in 0.01M phosphate-buffered saline
(PBS; pH 7.4) for 30 min at room temperature. Fixed retinas were washed 10 min × 3 in 0.01M PBS and
incubated in a blocking solution (10% normal donkey serum) at 4 ◦C for two h. Next, retinas were
incubated in a guinea pig polyclonal anti-RBPMS antibody (1:500) and a rabbit polyclonal anti-GFP
antibody conjugated with Alexa Fluor488 (1:500) for seven days at 4 ◦C to label the total RGCs and
the YFP-expressing RGCs, respectively. A Cyanine CyTM 3-conjugated donkey anti-guinea pig (1:400,
Jackson ImmunoResearch, West Grove, PA, USA) secondary antibody was used overnight at 4 ◦C
to reveal anti-RBPMS antibody staining. After the antibody incubation, the retinas were washed
3 × 10 min, and flat-mounted on Super-Frost slides (Fisher Scientific, Pittsburgh, PA, USA) with
Vectashield mounting medium for fluorescence (Vector Laboratories, Burlingame, CA, USA).

2.5. Confocal Laser Scanning Microscopy and Image Sampling

Fluorescent images of fixed retinal tissue were collected with a dual-channel Zeiss confocal
microscope (Carl Zeiss AG, Germany) with a C-Apochromat 40 × 1.2 W Korr water immersion lens.
Image stacks of YFP-expressing RGCs in whole-mount retinas were collected at intervals of 0.5 µm.
Imaris software (Bitplane, Inc., Concord, MA, USA) was used to align the multistacks of images
together and adjust the intensity and contrast of images.

For image sampling, we use two different strategies for retinas with low or high densities of
YFP-expressing RGCs to avoid potential bias of data sampling when the persons carrying out the
histological analysis were not blinded to the treatment. For Thy1-YFP, BD:YFP and JamB:YFP mice, the
YFP is expressed in a relatively low density of RGCs, and the expression level varies significantly among
mice (from several to several hundreds of YFP-expressing RGCs per retina) but not significantly between
left and right eyes [31]. Therefore, we imaged the whole retina and counted every YFP-expressing
RGCs in the GCL layer of these mice. Mice were only excluded from data analysis when the total
number of YFP-expressing RGCs in the whole retina of the control eye was less than 10 in order to avoid
the results being skewed by mice with an extremely low number of YFP-expressing RGCs. For TYW3
and Kcng4Cre:YFP mice, which constitutively express YFP in all W3-RGCs and αRGCs, the density
of YFP+ RGCs is very high [31] and the expression level does not vary significantly among mice or
between left and right eyes [31]. We included every mouse assigned to this study for data analysis
without exclusion. For image sampling, we scanned four squares (304 µm × 304 µm each) at four
quarters of the retina, 600 µm away from the center of optic nerve head. The density of YFP-expressing
W3-RGCs and αRGCs of each retina was averaged from the four squares. In addition to BD-RGCs and
J-RGCs, BD:YFP mice and JamB:YFP mice also express YFP in a small fraction of amacrine cells located
in the inner plexiform layer (INL) [33] but not displaced amacrine cells in the ganglion cell layer (GCL).
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However, Kcng4Cre:YFP mice express YFP in αRGCs and some bipolar cells [15]. In this study, we only
included the YFP-expressing cells in the GCL of these mice.

2.6. Statistical Analysis

Data are all presented as the mean ± SE in the text and figures (Igor Pro, WaveMetrics, Inc., Lake
Oswego, OR, USA). Student t-tests are used to examine the difference between two means (Excel,
Microsoft, Redmond, WA, USA), and ANOVA tests are used to examine the difference among more
than two means (Statview, Abacus Concepts, Berkeley, CA, USA).

3. Results

3.1. The Effects of Crush Time on RGC Death and the Time Course of RGC Death

ONC is a commonly used model for RGC injury due to TON or glaucoma. Although most of the
experiments were performed using similar cross-action forceps, which apply a constant and consistent
force to press on the optic nerve by the pressure from the self-clamping action of the forceps, different
studies clamped the optic nerve for a different length of time (from 3 s to 60 s) [52–58]. To determine
the potential variation by the ONC procedure on RGC death, we first tested whether various durations
of clamping cause RGCs to die to a different extent. Using the method established in our previous
study and cross-action forceps [42], we clamped the optic nerve of the left eyes of wild-type mice
for 10, 20, and 30 s. We collected the retinas of both the injured left eyes and the uninjured right
eyes seven days after the ONC procedure. The RGCs of both crushed and uncrushed retinas were
labeled using an anti-RBPMS antibody (Figure 1A). The retinas were imaged using a confocal imaging
system to quantify the anti-RBPMS antibody labeled RGCs in both the injured and uninjured retinas.
The density of surviving RGCs from the injured eyes was normalized to their uninjured opposite
right eyes. The results were plotted as a function of the duration of clamping. The effectiveness of
the crush to completely block axonal transport of RGCs was validated by the intraocular injection of
Alexa FluorTM 555-conjugated CTB labeling of the optic nerve one week after the ONC (Figure 1B).
The results demonstrated that the ratios of surviving RGCs with ONC of 10, 20, and 30 s have very
little difference, although the difference is statistically significant (Figure 1D). Therefore, the variation
in clamping time during ONC seems to have minimal effect on the extent of RGC death.

It has been shown that RGCs start to die 1–3 days after ONC and reach the maximum level of
cell death approximately 30 days after ONC [59]. Accordingly, we validated the time course of RGC
death after ONC in our experiments. We crushed the optic nerve for 20 s and examined the density of
surviving RGCs at six time points from 3 days after ONC to 90 days after ONC. Our results showed
that the number of surviving RGCs was reduced to 85% ± 2.3% of the uninjured opposite eyes three
days after ONC (n = 6, p = 0.001, paired t-test, Figure 1E). The survival rate of RGCs gradually reduced
with time after ONC (Figure 1C) and reached 12.7% ± 0.7% of the uninjured opposite eyes 30 days
after ONC (n = 5, p < 0.0001, paired t-test, Figure 1E). After 30 days of post-ONC, the number of
surviving RGCs did not change dramatically. The average number of surviving RGCs remained at
10.2% ± 0.6% (n = 6, p < 0.0001, paired t-test, Figure 1E) of the uninjured opposite eyes 60–90 days after
ONC (Figure 1E). Therefore, the time course of RGC death after ONC in our experiments is consistent
with previous reports [59].

3.2. YFP-Expressing RGCs of YFP-H Mice are More Resistant to ONC Than Total RGCs

Thy1-YFP mice have been used extensively for studying RGC morphology, physiology,
development, and degeneration [31,60–68]. We recently tested whether the death of YFP-expressing
RGCs of these mice could represent the death of total RGCs induced by NMDA excitotoxicity. Our
results show that the survival rate of YFP-expressing RGCs is significantly higher than that of
anti-RBPMS antibody labeled RGCs [31]. To further determine whether Thy1-YFP mice can be a
reliable model for studying overall RGC death due to ONC, we quantified the survival rates of
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YFP-expressing RGCs and total RGCs of the same Thy1-YFP mice after unilateral ONC. Because
the numbers of YFP-expressing RGCs vary significantly among Thy1-YFP mice, while the numbers
of YFP-expressing RGCs of the left and right eyes of the same mice are comparable [31], we first
established a control group for the study. Figure 2A shows representative images of YFP-expressing
RGCs in flat-mount retinas of the left (A1) and right (A2) eye of a Thy1-YFP mouse. Figure 2B shows
the average densities of YFP-expressing RGCs of the left and right eyes of 9 Thy1-YFP mice. Although
a paired t-test showed that the difference between the densities of YFP-expressing RGCs of left and
right eyes is statistically insignificant (paired t-test, p = 0.12), the density of YFP-expressing RGCs
varies significantly among these mice as we reported previously [31]. Figure 2C shows anti-RBPMS
antibody labeled RGCs of flat-mount retinas of the left (C1) and right (C2) eye of the same Thy1-YFP
mouse. Similarly, the densities of anti-RBPMS antibody labeled RGCs of the left and right eyes are
statistically insignificant (paired t-test, p = 0.25, Figure 2D). Therefore, the numbers of YFP-expressing
RGCs, as well as the anti-RBPMS antibody labeled RGCs, of the left and right eyes are comparable.

Figure 1. Evaluation of crush time and time after optic nerve crush (ONC) on the death of retinal
ganglion cell (RGCs). We first validated whether crushing the optic nerve for different lengths of time
causes RGC death to a different extent, and the time course of RGC death after ONC. (A) Representative
images of flat-mount retinas without injury (A1) or seven days after optic nerve clamp for 10 s (A2),
20 s (A3), and 30 s (A4), respectively. RGCs are labeled by anti-RNA-binding protein with multiple
splicing (RBPMS) antibody (red), and all nuclei in the ganglion cell layer (GCL) are labeled by DAPI
(4′,6-diamidino-2-phenylindole) (blue). (B) A representative image of the longitudinal cross-section of
the proximal portion of the optic nerve and the posterior portion of the eye seven days after ONC. The
posterior retina and proximal optic nerve before the crush site are labeled by Cholera Toxin Subunit B
(CTB) (red). The tissue surrounding the optic nerve is labeled by DAPI (blue). The crush site is marked
by the CTB labeling. (C) Representative images of flat-mount retinas in control (C1), three days (C2),
seven days (C3), 30 days (C4), and 90 days (C5) after 20 s of optic nerve clamp. RGCs are labeled by
anti-RBPMS antibody (red), and all nuclei in the GCL are labeled by DAPI (blue). (D) Survival rates
of RGCs labeled by anti-RBPMS antibody as a function of time of optic nerve clamp (ANOVA test).
(E) Survival rates of RGCs labeled by anti-RBPMS antibody as a function of time after ONC (ANOVA
test). ** 0.001 < p < 0.01, *** p < 0.001. Each circle indicates an individual eye. The number of n in each
column of panels D and E indicates the number of eyes for each group.
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Figure 2. YFP-expressing RGCs of YFP-H mice are more resistant to ONC than total RGCs. We
determined whether YFP-expressing RGCs of Thy1-YFP mice could serve as a model to predict overall
RGC death in retinal diseases. (A) Representative images of flat-mount whole retinas of left (A1) and
right (A2) eyes of a Thy1-YFP mouse. (B) Comparison of the densities (cells/mm2) of the YFP-expressing
RGCs of the left and right eyes of the same group of mice. The densities of YFP-expressing RGCs
of left eyes were normalized to the right eyes, and the difference in the densities of YFP-expressing
RGCs between the left and right eyes is not statistically significant (paired t-test, p = 0.118). n.s.: not
significant. (C) Representative magnified views of flat-mount retinas of left (C1) and right (C2) eyes
of a Thy1-YFP mouse. The RGCs are labeled by an anti-RBPMS antibody (red) and the nuclei in the
GCL are labeled by DAPI (blue). (D) Comparison of the anti-RBPMS-labeled RGC densities of the
left and right eyes of the same group of mice shown in panel B. The densities of anti-RBPMS-labeled
RGCs of the left eyes were normalized to the right eyes. The difference between the densities of
RGCs in left and right eyes is not statistically significant (paired t-test, p = 0.252). n.s.: not significant.
E: Representative images of flat-mount whole retinas of a Thy1-YFP mouse without ONC (E1) and
seven days after ONC (E2). (F) Comparison of the density of YFP-expressing RGCs of the left eyes
seven days after ONC to the uncrushed right eyes of the same mice. The densities of YFP-expressing
RGCs of eyes with ONC were normalized to the control eyes. The difference between the control
eyes and the eyes with ONC is statistically significant (paired t-test, p = 0.0003). *** p < 0.001.
(G) Representative magnified views of anti-RBPMS-labeled (red) flat-mount retinas of a Thy1-YFP
mouse without ONC (G1) and seven days after ONC (G2). The nuclei in the GCL are labeled by DAPI
(blue). (H) Comparison of survival rates of anti-RBPMS-labeled RGCs of the eyes seven days after
ONC to the control eyes of the same mice. The densities of anti-RBPMS-labeled RGCs of the eyes
with ONC were normalized to the control eyes. The difference between the control eyes and the eyes
with ONC is statistically significant (paired t-test, p < 0.0001). *** p <0.001. (I) Comparison of the
survival rates of anti-RBPMS-labeled RGCs and YFP-expressing RGCs from the same eyes seven days
after ONC. The densities of anti-RBPMS-labeled and YFP-expressing RGCs of the eyes with ONC
were normalized to their uncrushed control eyes of each mouse. The survival rate of YFP-expressing
RGCs is significantly higher than that of anti-RBPMS-labeled RGCs from the same eyes (paired t-test,
p < 0.0001). *** p < 0.001. The number of n in each column of panels B, D, F, H, and I indicates the
number of eyes for each group, and the circles are individual results.
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Next, we tested whether the death of YFP-expressing RGCs of these mice could represent the
death of total RGCs after ONC by comparing the survival rates of YFP-expressing RGCs and the RGCs
labeled by the anti-RBPMS antibody of the same retinas. Accordingly, we performed a 20 s crush of the
optic nerve of the left eyes of Thy1-YFP mice and used the uncrushed right eyes as controls. We then
quantified the numbers of YFP-expressing RGCs and RGCs labeled by the anti-RBPMS antibody and
normalized the density of surviving RGCs of ONC-treated left eyes to that of uncrushed right eyes.
Figure 2E shows images of Thy1-YFP retinas without ONC (E1, right eye) and seven days after ONC
(E2, left eye, 20 s clamp) of the same mouse. The density of YFP-expressing RGCs in the retina with
ONC is lower than that of the control eye. Quantitatively, the density of YFP-expressing RGCs in the
retinas with ONC is reduced to 62.5% ± 3.4% (n = 8, paired t-test, p < 0.0001) of the uncrushed right
eyes (Figure 2F). On the other hand, the density of the RGCs labeled by anti-RBPMS antibody after
ONC (G2, left eye) seems to have a more significant reduction in comparison with the uncrushed
right eye (G1, right eye) of the same mice. Quantitatively, the average density of RGCs labeled by
anti-RBPMS antibody in retinas with ONC is reduced to 33.3% ± 0.6% (n = 8, paired t-test, p < 0.0001)
of uncrushed right eyes (Figure 2H). Therefore, the survival rate of YFP-expressing RGCs (62.5%) is
significantly higher than that of anti-RBPMS antibody labeled RGCs (33.3%) (Figure 2I, n = 8, paired
t-test, p < 0.0001), which is similar to what we observed in RGC death by NMDA excitotoxicity [31].
Accordingly, using the survival rate of Thu1-YFP RGC of Thy1-YFP H line to predict total RGC survival
rate would significantly underestimate RGC death. Then, we employed four RGC type-specific
transgenic mouse lines to study type-specific RGC death due to ONC.

3.3. BD-RGCs are More Resistant to ONC Than the Total RGC Population

It was reported that RGCs are susceptible to optic nerve injury in an RGC type-dependent
manner [10–16]. We recently showed that the susceptibility of four RGC types to NMDA excitotoxicity
varies significantly, in which the αRGCs are the most resistant type of RGCs to NMDA excitotoxicity.
At the same time, the J-RGCs are the most sensitive RGCs to NMDA excitotoxicity [31]. To determine
whether these four RGC types have different susceptibility to ONC, we used BD-CreER: Thy1-Stop-YFP
(BD:YFP), JamB-CreER:Thy1-Stop-YFP (JamB:YFP), Kcng4Cre:Thy1-Stop-YFP (Kcng4Cre:YFP), and
TYW3 transgenic mice for this study. YFP was expressed in BD-RGCs, J-RGCs, αRGCs, and W3-RGCs
in these mice.

Similar to Thy1-YFP mice, the numbers of YFP-expressing BD-RGCs vary significantly among the
BD:YFP mice, while the numbers of YFP-expressing BD-RGCs of the left and right eyes of the same
mice are comparable [31]. Figure 3A shows a representative image of YFP-expressing BD-RGCs in a
flat-mount BD:YFP retina (A1) and a magnified view of the area in the dash-line box in panel A1 to
show the anti-RBPMS-labeled RGCs (red) and YFP-expressing BD-RGCs (green) (A2). We compared
the density of the YFP-expressing BD-RGCs of the left and right eyes of 6 BD:YFP mice. The results
show that the difference in the densities of YFP-expressing BD-RGCs of the left and right eyes of these
mice is statistically insignificant (n = 6, paired t-test, p = 0.4, Figure 3B). In contrast, the density of
YFP-expressing BD-RGCs varies significantly between individual mice.

We then quantified the susceptibility of BD-RGCs to ONC. Accordingly, we performed unilateral
optic nerve crush for 20 s on the left eyes of BD:YFP mice between the ages of P60 and P90. We collected
the retinas seven days after ONC and compared the densities of YFP-expressing BD-RGCs and the
anti-RBPMS-labeled RGCs of the injured left eye with the uninjured right eye of each mouse. Figure 3C1
shows a representative image of YFP-expressing BD-RGCs in a flat-mount BD:YFP retina seven days
after ONC. Figure 3C2 shows a magnified view of the area in the dash-line box of panel C1 to show the
anti-RBPMS-labeled RGCs (red) and YFP-expressing BD-RGCs (green). Quantitatively, the average
density of YFP-expressing BD-RGCs in retinas with ONC is reduced to 58.9% ± 5.9% (n = 10, paired
t-test, p = 0.006) of the uncrushed right eyes. In contrast, the average density of RGCs labeled by
anti-RBPMS antibody in the same retinas is reduced to 33.7% ± 1.4% (n = 10, paired t-test, p < 0.0001)
of the uncrushed right eyes (Figure 3D). Statistically, the survival rate of YFP-expressing BD-RGCs
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(58.9% ± 5.9%) is significantly higher than that of anti-RBPMS antibody labeled RGCs (33.7% ± 1.4%)
(paired t-test, p = 0.0005).

Figure 3. The vulnerability of BD-RGCs to ONC. To determine the susceptibility of BD-RGCs to ONC,
we clamped the optic nerve of the left eyes of BD:YFP mice. We quantified the density of YFP-expressing
BD-RGCs of the left eyes seven days after ONC and compared results with the density of YFP-expressing
BD-RGCs of the uninjured right eyes of the same group of BD:YFP mice. (A) A representative image of
a flat-mount BD:YFP mouse retina without ONC (A1) only showing YFP-expressing BD-RGCs but not
anti-RBPMS-labeled RGCs, and a magnified view of the dash-line box of A1 to show the anti-RBPMS
staining of all RGCs (red) and YFP-expressing BD-RGCs (green) (A2). (B) Comparison of the average
densities of YFP-expressing BD-RGCs of uncrushed right and left eyes of the same group of BD:YFP
mice. The difference between the right and left eyes is not statistically significant (number of mice n = 6,
paired t-test, p = 0.4). The circles are individual eyes. n.s.: not significant. (C) A representative image
from the retina of a BD:YFP mouse with the labeling of YFP-expressing BD-RGCs (green) 7 days after
ONC (C1) and a magnified view of the boxed area in C1 with labeling of both YFP-expressing BD-RGCs
(green) and RGCs labeled by anti-RPBMS antibody (red, C2). (D) Comparison of the average survival
rates of anti-RBPMS-labeled RGCs and YFP-expressing BD-RGCs from the same eyes seven days after
ONC. The densities of anti-RBPMS-labeled and YFP-expressing BD-RGCs of the eyes with ONC were
normalized to their uncrushed control eyes for each mouse. The survival rates of YFP-expressing
BD-RGCs are significantly higher than that of anti-RBPMS-labeled RGCs from the same eyes (number
of mice n = 10, paired t-test, p = 0.0005). *** p < 0.001. The circles are individual eyes.

3.4. αRGCs are More Resistant to ONC Than the Total RGC Population

αRGCs have been reported to be relatively resistant to ONC. However, the results from different
studies seem to be inconsistent. For instance, αRGCs are the least susceptible RGC type to ONC in one
report [15] but more susceptible RGC type in another report [16]. We estimate their susceptibility to
ONC by comparing the survival rate of αRGCs with the survival rate of the total RGC population
labeled by the anti-RBPMS antibody of the same retinas. Different from BD-RGCs in BD:YFP mice,
the densities of YFP-expressing αRGCs in uninjured Kcng4Cre:YFP mice seem to be more consistent
both between mice and between the left and right eyes (Figure 4A,B). The difference in the densities of
YFP-expressing αRGCs of the left and right eyes of these mice is statistically insignificant (n = 7, paired
t-test, p = 0.64, Figure 4B).
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Figure 4. The susceptibility of αRGCs to ONC. The density of YFP-expressing αRGCs with ONC on
left eyes was quantified, normalized to that of uncrushed right eyes, and compared with the density of
anti-RBPMS-labeled RGCs of the same eyes. (A) A representative image of a flat-mount Kcng4Cre:YFP
mouse retina without ONC (A1, only showing YFP-expressing αRGCs but not anti-RBPMS staining
RGCs), and a magnified view of the left dash-line box of A1 to show the anti-RBPMS-labeled RGCs (red)
and YFP-expressing αRGCs (green) (A2). (B) Comparison of the average densities of YFP-expressing
αRGCs of uncrushed right and left eyes of the same group of Kcng4Cre:YFP mice. The difference
between the right and left eyes is not statistically significant (number of mice n = 7, paired t-test,
p = 0.6395). n.s.: not significant. The circles are individual eyes. (C) Representative image from the retina
of a Kcng4Cre:YFP mouse with the labeling of YFP-expressing αRGCs (green) and anti-RBPMS-labeled
RGCs (red) without ONC (C1) and seven days after ONC (C2). (D) Comparison of the average
survival rates of anti-RBPMS-labeled RGCs and YFP-expressing αRGCs from the same eyes seven days
after ONC. The densities of anti-RBPMS-labeled RGCs and YFP-expressing αRGCs of the eyes with
ONC were normalized to their uninjured control eyes for each mouse. The survival rate of αRGCs is
significantly higher than that of anti-RBPMS-labeled RGCs from the same eyes (number of mice n = 10,
paired t-test, p < 0.0001); *** p < 0.001.

We then performed the same procedure on Kcng4Cre:YFP mice as that on BD-YFP mice and quantified
the survival rate of YFP-expressing αRGCs and anti-RBPMS antibody labeled RGCs of the same eyes seven
days after ONC. The survival rate of αRGCs is significantly higher than that of the anti-RBPMS antibody
labeled RGCs of the same eyes (Figure 4C). Quantitatively, the average density of YFP-expressing αRGCs in
retinas with ONC is reduced to 53.7% ± 2.8% (n = 10, paired t-test, p < 0.0001) of the uncrushed right eyes.
In contrast, the average density of RGCs labeled by anti-RBPMS antibody in the same retinas is reduced
to 31.9% ± 1.2% (n = 10, paired t-test, p < 0.0001) of the uncrushed right eyes (Figure 4D). Statistically,
the survival rate of YFP-expressing αRGCs (53.7% ± 2.8%) is significantly higher than that of anti-RBPMS
antibody labeled RGCs (31.9% ± 1.2%) (paired t-test, p < 0.0001).

3.5. The Susceptibility of J-RGCs to ONC is Similar to that of Total RGC Population

We then examined the susceptibility of J-RGCs to ONC using JamB:YFP mice. JamB:YFP
mice express YFP in two types of J-RGCs with distinctive dendritic morphology, one with an
asymmetric dendritic field and another with a more symmetric dendritic field [3,33]. In this study,
we count the YFP-expressing J-RGCs from both types. Figure 5A shows a representative image of
a JamB:YFP retina (A1) and a magnified view of the area in the dash-line box of panel A1 to show
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the dendritic morphology of the J-RGCs with asymmetric dendritic fields (A2). Similar to BD:YFP
mice, the numbers of YFP-expressing J-RGCs vary significantly among the JamB:YFP mice while
the numbers of YFP-expressing J-RGCs of the left and right eyes of the same mice are comparable
(Figure 5B). Quantitatively, the difference in the densities of YFP-expressing J-RGCs of left and right
eyes of uninjured mice is statistically insignificant (n = 6, paired t-test, p = 0.78).

Figure 5. The vulnerability of J-RGCs to ONC. The densities of YFP-expressing J-RGCs of left and
right eyes of JamB:YFP mice without ONC were compared to determine the YFP expression level of
the left and right eyes without injury. The density of the YFP-expressing J-RGCs of left eyes with
ONC was quantified, normalized to that of uncrushed right eyes, and compared with the density of
anti-RBPMS-labeled RGCs of the same eyes. (A) A representative image of a flat-mount JamB:YFP
mouse retina without ONC (A1) to show the distribution of YFP-expressing J-RGCs in the retina, and
a magnified view of the dash-line box of A1 to show the dendritic morphology of YFP-expressing
J-RGCs (A2). (B) Comparison of the average densities of YFP-expressing J-RGCs from the retinas
of the uncrushed right and left eyes of the same group of JamB:YFP mice. The difference between
the right and left eyes is not statistically significant (number of mice n = 6, paired t-test, p = 0.7871).
n.s.: not significant. The circles are individual eyes. (C) A representative image from the retina of
a JamB:YFP mouse with the labeling of YFP-expressing J-RGCs (green) 7 days after ONC (C1) and
a magnified view of the boxed area in C1 with labeling of both YFP-expressing J-RGCs (green) and
RGCs labeled by anti-RPBMS antibody (red, C2). (D) Comparison of the average survival rates of
anti-RBPMS-labeled RGCs and YFP-expressing J-RGCs from the same eyes seven days after ONC.
The densities of anti-RBPMS-labeled RGCs and YFP-expressing J-RGCs of the eyes with ONC are
normalized to their uncrushed control eyes for each mouse. The survival rates of YFP-expressing
J-RGCs are not significantly different from that of anti-RBPMS-labeled RGCs from the same eyes
(number of mice n = 8, paired t-test, p = 0.9421). n.s.: not significant. The number in each column of
panels B and D is n, and the circles are individual results.

J-RGCs seem to be much more sensitive to ONC than BD-RGCs and αRGCs. Figure 5C shows
a representative image of a JamB:YFP retina seven days after ONC (C1) and a magnified view of
the area in the dash-line box of panel C1 to show both the anti-RBPMS antibody labeled RGCs (red)
and YFP-expressing J-RGCs (green) (C2). In this JamB:YFP retina, the number of YFP-expressing
J-RGCs is significantly reduced in comparison with the uninjured eye of the same mouse (Figure 5A).
Quantitatively, the average density of YFP-expressing J-RGCs in retinas with ONC is reduced to
31.9% ± 4.5% (n = 8, paired t-test, p < 0.012) of the uncrushed right eyes. In contrast, the average
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density of RGCs labeled by anti-RBPMS antibody in the same retinas is reduced to 31.6% ± 1.9%
(n = 8, paired t-test, p < 0.0001) of the uncrushed right eyes (Figure 5D). Statistically, the difference
between the survival rates of the YFP-expressing J-RGCs (31.9% ± 4.5%) and the RGCs labeled by the
anti-RBPMS antibody (31.6% ± 1.9%) in the same retinas are not significant (Figure 5D, paired t-test,
p = 0.94). Therefore, the susceptibility of J-RGCs to ONC is similar to that of the total RGC population.

3.6. W3-RGCs are More Sensitive to ONC

Finally, we examined the susceptibility of W3-RGCs to ONC using TYW3 mice [33]. Similar to
Kcng4Cre:YFP mice, but different from BD:YFP and JamB: YFP mice, TYW3 mice are conditional but not
inducible transgenic mice. Therefore, the densities of YFP-expressing W3-RGCs in these mice are more
consistent between mice and between the left and right eyes. Figure 6A shows a representative image
of YFP-expressing W3-RGCs in a flat-mount TYW3 retina (A1) and a magnified view of the area in one
of the dash-line boxes in panel A1 to show the anti-RBPMS-labeled RGCs (red) and YFP-expressing
W3-RGCs (green) (A2). Quantitatively, the difference in the densities of YFP-expressing W3-RGCs of
the left and right eyes of these mice is statistically insignificant (n = 7, paired t-test, p = 0.96, Figure 6B).

Figure 6. The susceptibility of W3 RGCs to ONC. Similar to other RGC types, the densities of
YFP-expressing W3-RGCs of left and right eyes of TYW3 mice without ONC are compared to determine
the YFP expression level of the left and right eyes without injury. The density of the YFP-expressing
W3-RGCs of left eyes with ONC was quantified, normalized to that of uncrushed right eyes, and
compared with the density of anti-RBPMS-labeled RGCs of the same eyes. (A) A representative image
of a flat-mount TYW3 mouse retina without ONC (A1, only showing YFP-expressing W3-RGCs but
not anti-RBPMS-labeled RGCs), and a magnified view of the left dash-line box of A1 to show the
anti-RBPMS-labeled RGCs (red) and YFP-expressing W3-RGCs (green) (A2). (B) Comparison of the
average densities of YFP-expressing W3-RGCs from the retinas of the uncrushed right and left eyes
of the same group of TYW3 mice. The difference between the right and left eyes is not statistically
significant (number of mice n = 7, paired t-test, p = 0.9561). n.s.: not significant. The circles are
individual eyes. (C) A representative image from the retina of a TYW3 mouse with the labeling
of YFP-expressing W3-RGCs (green) and anti-RBPMS-labeled RGCs (red) without ONC (C1) and
seven days after ONC (C2). (D) Comparison of the average survival rates of anti-RBPMS-labeled
RGCs and YFP-expressing W3-RGCs from the same eyes seven days after ONC. The densities of
anti-RBPMS-labeled RGCs and YFP-expressing W3-RGCs of the eyes with ONC are normalized to their
uncrushed control eyes for each mouse. The survival rates of YFP-expressing W3-RGCs are significantly
lower than that of anti-RBPMS-labeled RGCs from the same eyes (number of mice n = 9, paired t-test,
p = 0.0014). The number in each column of panels B and D is n, and the circles are individual results.
** 0.001 < p < 0.01.
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We then performed a 20 second ONC unilaterally on the left eyes of TYW3 mice as we did for all
other mice. We quantified the survival rate of YFP-expressing W3-RGCs, and anti-RBPMS antibody
labeled RGCs of the same eyes seven days after ONC. Figure 6C shows the magnified images of
the retina without ONC (C1) and the retina seven days after ONC (C2) of a TYW3 mouse. In the
TYW3 retina after ONC (Figure 6C2), the number of both the YFP-expressing W3-RGCs (green) and
anti-RBPMS antibody labeled RGCs (red) is significantly reduced in comparison with the uninjured eye
of the same mouse (Figure 6C1). Quantitatively, the average density of YFP-expressing W3-RGCs in
retinas with ONC is reduced to 25.9% ± 2% (n = 9, paired t-test, p < 0.0001) of the uncrushed right eyes.
In contrast, the average density of RGCs labeled by anti-RBPMS antibody in the same retinas is reduced
to 33.5% ± 0.8% (n = 9, paired t-test, p < 0.0001) of the uncrushed right eyes (Figure 6D). Statistically,
the survival rates of the YFP-expressing W3-RGCs (25.9% ± 2%) are significantly lower than that of the
RGCs labeled by anti-RBPMS antibody (33.5% ± 0.8%) (Figure 6D, paired t-test, p = 0.001). Therefore,
the susceptibility of W3-RGCs to ONC is higher than that of the total RGC population.

3.7. YFP-Expressing RGCs of YFP-H Mice are More Resistant to ONC Than Total RGCs

The results described above clearly demonstrated that the susceptibility of the YFP-expressing
RGCs in the five transgenic mouse lines to ONC varies significantly, in which BD-RGCs are the most
resistant RGC type, and W3-RGCs are the most sensitive RGC type to ONC. In our previous study
of the susceptibility of the same RGC types to NMDA excitotoxicity, we show that αRGCs are the
most resistant RGC type and BD-RGCs and J-RGCs are the most sensitive RGC types to NMDA
excitotoxicity [31]. These results suggest that not only the susceptibility of RGCs to retinal injury is
RGC type specific, but the susceptibility of the same RGC type might also change significantly to
different primary pathological insults.

To further test this possibility, we directly compared the survival rates of the YFP-expressing RGCs
of the five transgenic mouse lines under the conditions in which both ONC and NMDA excitotoxicity
induced a similar survival rate of the RGCs as labeled by the anti-RBPMS antibody. Figure 7 shows the
survival rates of the RGCs labeled by anti-RBPMS antibody (total RGC), the YFP-expressing RGCs
in Thy1-YFP mice (Thy1-RGC), and the YFP-expressing BD-RGCs, αRGC, W3-RGC and J-RGC after
ONC or NMDA excitotoxicity. The survival rates for ONC are the results of 7 days after 20 s of optic
nerve clamping from the current study. The survival rates for NMDA excitotoxicity were the results
of 24 h after the intraocular injection of 2 µL NMDA solution at the concentration of 3.125 mmol/L
from our recent study [31]. The injuries by ONC and NMDA excitotoxicity resulted in similar survival
rates of RGCs labeled by the anti-RBPMS antibody. Quantitatively, the average densities of RGCs
labeled by anti-RBPMS antibody seven days after ONC and 24 h after intraocular injection of NMDA
are 32.8% ± 0.6% (n = 45) and 32.2% ± 1.7% (n = 12), respectively. Statistically, the difference between
these two survival rates is not significant (Figure 7, total RGC, unpaired t-test, p = 0.65).

Although the overall levels of RGC death by ONC and NMDA excitotoxicity are the same
under these conditions, the survival rates of the three RGCs types, especially BD-RGCs and J-RGCs,
are dramatically different. Quantitatively, the average survival rates of BD-RGCs are 58.9% ± 5.9%
(n = 10) 7 days after ONC and 1.8% ± 0.6% (n = 6) 24 h after intraocular injection of NMDA, respectively.
The difference is highly significant (Figure 7, BD-RGC, unpaired t-test, p < 0.0001). Similarly,
the average survival rates of W3-RGCs are 25.9% ± 2% (n = 9) 7 days after ONC and 18.8% ± 1%
(n = 5) 24 h after intraocular injection of NMDA, respectively. These are also significant (Figure 7,
W3-RGC, unpaired t-test, p = 0.025). In addition, the average survival rate of J-RGCs 7 days after
ONC (31.9% ± 4.5%, n = 8) is significantly higher than that of 24 h after intraocular injection of NMDA
(2.1% ± 0.6%, n = 5, Figure 7, J-RGC, unpaired t-test, p = 0.0003), while the average survival rate of
αRGCs 7 days after ONC (53.7% ± 2.8%, n = 10) is not significantly different from that of 24 h after
intraocular injection of NMDA (47.4% ± 0.8%, n = 5, Figure 7, αRGCs, unpaired t-test, p = 0.142). These
results demonstrated that not only the susceptibility of different RGC types to the same pathological
insult varies significantly, the susceptibility of the same RGC types to different pathological insults
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also varies significantly. Therefore, different primary pathological insults might preferentially damage
particular RGC types, which might result in specific functional defects and requires different treatment
strategies. Furthermore, four out of five group/types of RGCs have higher survival rates 7 days after
ONC than 1 day after NMDA injection although the survival rates of RGCs labeled by anti-RBPMS
antibody are not significantly different under these two conditions. These results indicate that ONC
seems to be a less damaging stress than NMDA excitotoxicity to these four group/types of RGCs. These
results also imply that ONC has to be a more damaging stress than NMDA excitotoxicity to other RGC
types in order to maintain a similar level of overall RGC death.

Figure 7. RGC survivability varies depending on the type of injury. A comparison of the survival
rates of Thy1-RGCs, BD-RGCs, αRGCs, W3-RGCs, and J-RGCs after either ONC (blue) or NMDA
excitotoxicity (red). Both insults induced a similar loss of total RGC labeled by the anti-RBPMS antibody.
However, their effects on different RGC types are drastically different. The t-test results of survival rates
of each RGC type/group after ONC or NMDA excitotoxicity are the following: total RGC, p = 0.6478;
Thy1-RGC, p = 0.0066, BD-RGC, p < 0.0001; α-RGC, p = 0.1419; W3-RGC, p = 0.0253; J-RGC, p = 0.0003.
The number in each column is n, and the circles are results of individual eyes. n.s.: not significant.
* 0.01< p < 0.05. ** 0.001 < p < 0.01. *** p < 0.001.

4. Discussion

Our results show that the susceptibility of different types of genetically identified RGCs to ONC
varies significantly. Among the RGC types tested, BD-RGCs are the most resistant RGC type to ONC,
while W3-RGCs are the more sensitive cell types to ONC. On average, the susceptibilities of both
BD-RGCs and αRGCs are significantly lower than the susceptibility of the entire RGC population;
the susceptibility of J-RGCs is not different from the susceptibility of the whole RGC population.
In contrast, the susceptibility of W3-RGCs is slightly higher than the susceptibility of the entire RGC
population. We also show that the survival rates of BD-RGCs, J-RGCs and W3-RGCs after ONC are
significantly higher than their survival rates after NMDA excitotoxicity. These results strongly suggest
that the differences in the genetic background of RGC types might provide valuable insights for the
understanding of the RGC type-specific susceptibility and selective susceptibility of RGCs to different
pathological insults. These results could also assist in the development of strategies for protecting
RGCs under various disease conditions.

4.1. Classification of RGC Types

In mammals, RGCs are classified into at least 40 types based on their morphological, functional
and genetic features [1–9]. This study includes five groups of RGCs with unique structural, functional,
and genetic features. BD-RGCs are a type of ON–OFF direction-selective RGCs (DS-RGCs). In mouse
retinas, there are three types of ON–OFF DS-RGCs, tuned to ventral, dorsal, nasal, and temporal motion.



Cells 2020, 9, 677 15 of 22

BD-RGCs are sensitive to ventral motion [33,34]. W3-RGCs are the smallest RGCs in the size of the
dendritic field and the most numerous RGCs [33]. There are at least two subtypes of W3-RGCs. W3B
W3-RGCs are motion sensitive, and W3D W3-RGCs remain physiologically uncharacterized [35,36].
There are at least three subtypes of αRGCs in mouse retinas [37,38]. Kcng4Cre:YFP mice express YFP
in all three subtypes of αRGCs, and some subsets of bipolar cells [15]. There are three subtypes of
JamB-expressing RGCs in the mouse retina, which differ in dendritic tree morphology and possibly
visual function [3,7,33]. The JamB:YFP mice express YFP in two subtypes of JamB-expressing RGCs
(J-RGCs). One subtype of J-RGCs orients its dendrites ventrally to form a polarized dendritic
field and is sensitive to directional movement, color-opponent responses, and orientation-selective
response [3,33,39,40]. The second subtype of J-RGCs has a symmetric dendritic field, and their function
is not well characterized [3]. Further, YFP is expressed in approximately 12 morphological types
of RGCs in Thy1-YFP mice [41]. Altogether, these transgenic mice provide a total of 8 RGC types
individually or in small groups, including 1 DS-RGCs, 2 W3-RGCs, 3 αRGCs, 2 J-RGCs, and a mouse
strain for a group of 12 types of RGCs.

4.2. RGC Death in Optic Neuropathy and Glutamate Excitotoxicity

RGC death is a crucial element in the pathogenesis of many blinding eye diseases, such as
optic nerve injury and glaucoma. Recent studies have provided valuable information regarding
the molecular mechanisms of RGC death in retinal diseases and suggested multiple mechanistic
pathogenesis processes. Although the precise mechanisms of RGC death in TON have not been
elucidated, the pathogenesis appears to be multifactorial, and several mechanisms of RGC death
have been postulated, such as axonal transport failure, neurotrophic factor deprivation, activation
of apoptotic signals, mitochondrial dysfunction, excitotoxic damage, oxidative stress, misbehaving
reactive glia and loss of synaptic connectivity [26–29].

On the other hand, glutamate excitotoxicity has been reported to participate in RGC death by both
glaucoma and TON [20,22,69]. Glutamate excitotoxicity is the pathological process by which neurons are
damaged and killed by excessive stimulation of glutamate receptors, such as the N-methyl-D-aspartate
(NMDA) receptor. Excessive stimulation of NMDA receptors can cause excitotoxicity by allowing
high levels of calcium ions (Ca2+) to enter into cells [70]. Ca2+ influx into cells activates a number of
enzymes, including phospholipases, endonucleases, and proteases. These enzymes can damage cell
structures such as the cytoskeleton, cell membrane, and DNA [71,72]. In addition, a calcium influx
through NMDA receptors can cause apoptosis through activation of a cAMP response element binding
(CREB) protein shut-off [73]. In the retina, NMDARs are expressed by all RGCs [74,75] and NMDA
excitotoxicity is thought to cause RGC death in several retinal diseases [20,22,23,26,69].

In ONC models, the NMDA antagonists, memantine and MK-801, protect RGCs from death [76,77].
Further, the AMPA-KA antagonist, DNQX, also protects RGCs after ONC [78]. Therefore, NMDA
excitotoxicity seems to participate in RGC death induced by optic nerve injury. However, to what
extent NMDA excitotoxicity or direct mechanic crush causes the death of various types of RGCs has
not been systematically investigated. The results from this study and our previous study on NMDA
excitotoxicity show that the susceptibilities of BD-RGCs and J-RGCs to ONC and NMDA excitotoxicity
vary dramatically. This difference could not be interpreted as showing that ONC is a weaker stressor
because the overall survival rates of RGCs labeled by the anti-RBPMS antibody are the same. Therefore,
the most plausible interpretation would be that the mechanisms leading to death of these RGC types in
ONC and NMDA excitotoxicity might be different. However, this possibility needs to be further tested
at a molecular level.

One might argue that the loss of YFP-expressing RGCs in our study might due to loss of YFP
expression in RGCs under severe injuries. We have previously examined this possibility by injecting
NMDA into the eyes of Thy1-GFP mice, in which most, if not all, RGCs are GFP expressing. We
labeled these NMDA-treated retinas using an anti-CASP3 antibody to identify cells undergoing
apoptosis. We show that CASP3-positive RGCs are still GFP positive, indicating that RGCs actively
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undergoing apoptosis are still GFP positive [31]. Therefore, severe injury to RGCs does not lead to
selective loss of Thy1-mediated fluorescent reporter expression. Similarly, one might argue whether
the anti-RBPMS antibody labels all RGCs in health and severe injured retinas. Several reports
showed that almost 100% of RGCs retrogradely labeled by FluoroGold (FG) were also labeled by
anti-RBPMS antibody, and approximately 94% to 97% of RBPMS-positive cells were also positive
for Thy-1, neurofilament H, and III β-tubulin [49]. In B6.Cg-Tg(Thy1-CFP)23Jrs/J mice, in which
Thy1-CFP fluorescence is predominantly expressed in RGCs, RBPMS immunoreactivity is localized
to CFP-fluorescent RGCs [51]. In addition, all Brn3a, SMI-32 and melanopsin immunoreactive RGCs
express RBPMS immunoreactivity [51]. In retinas injured by ONC or NMDA excitotoxicity, most
RBPMS-positive cells are lost [51] but over 95% of remaining RBPMS-positive cells were FG positive
and III β-tubulin–positive [50]. Therefore, it was concluded that the anti-RBPMS antibody is a robust
reagent that exclusively identifies RGCs and can reliably be used as an RGC marker for quantitative
evaluation of RGC degeneration, regardless of the nature and the location of the primary site of the
injury and the extent of neurodegeneration [49–51].

4.3. RGC Type-Specific Susceptibility to Retinal Diseases

Increasing evidence suggests that RGCs are susceptible to various injuries in an RGC
type-dependent manner. For instance, the susceptibility of RGCs to elevated IOP depends on
soma size, and RGCs with large somata or big axons are more susceptible to elevated IOP [79,80].
Functionally, OFF RGCs appear to be more susceptible to elevated IOP, with defeated synaptic function
and dendritic morphology [81,82]. OFF RGCs also exhibited higher rates of cell death and a more
rapid decline in both structural and functional organization compared to ON RGCs [10–12], but ON
RGCs were more susceptible to elevated IOP than ON–OFF RGCs [13]. Further, the transient OFF
αRGCs exhibited a higher rate of cell death, while neither sustained OFF αRGCs nor sustained ON
αRGCs have reduced synaptic activity due to elevated IOP [12]. Similar to models with elevated
IOP, OFF RGCs were more susceptible than ON RGCs to ONC, and ON-sustained RGCs seem to
be more susceptible than ON-transient RGCs in models of optic nerve injury [14]. Among αRGCs,
intrinsically photosensitive melanopsin-expressing RGCs (ipRGCs), direction-selective (DS) RGCs,
and W3-RGCs, αRGCs seem to be the least susceptible type to ONC [15]. However, αRGCs seem to
be a more susceptible RGC type in another report [16]. In animal models of glutamate excitotoxicity,
larger RGCs at peripheral retina are more sensitive to kainate excitotoxicity while smaller RGCs at
central retina are more sensitive to NMDA excitotoxicity [83], and ipRGCs are resistant to NMDA
excitotoxicity [84,85]. These results are consistent with the notion that the susceptibility of RGCs to
retinal diseases is RGC type specific and might depend upon the type of pathological insults.

Our recent results on the susceptibility of RGCs to NMDA excitotoxicity [31] and the results
presented in this study also support the general conclusion that the susceptibility of RGCs to retinal
injury is RGC type specific. However, different from some previous reports, our results do not provide
a clear correlation between RGC morphology and susceptibility to ONC or NMDA excitotoxicity.
Among the five groups of genetically identified RGCs tested in this study and the recent study of
the susceptibility of the same RGC types to NMDA excitotoxicity, their susceptibility seems not to be
directly correlated to the size of their soma and dendritic field. For instance, the J-RGCs have a much
higher susceptibility to both ONC and NMDA excitotoxicity than αRGCs, which are known to have the
biggest size of soma and dendritic field, and W3-RGCs, which are the RGCs with the smallest soma and
dendritic field [33]. This notion is opposite to the observations by several previous studies [79,80,83].
It was also reported that OFF RGCs appear to be more vulnerable to elevated IOP and ONC than
ON RGCs [10–12,14,81,82]. ON RGCs are more susceptible to elevated IOP than ON–OFF RGCs [13].
However, the ON and OFF inputs seem not to play a critical role in NMDA-induced RGC death to
BD-RGCs, which are ON–OFF RGCs [33,34], and J-RGCs, which are OFF-RGCs [3,33,39,40]. However,
the survival rate of J-RGCs is much lower than that of BD-RGCs after ONC in this study. These
results raised a critical question of whether the inconsistent results of RGC susceptibility to various
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pathological insults reported by different studies are due to RGC type-specific susceptibility, the
insult-specific effect, or experimental variations.

Although very few studies have directly compared the susceptibility of the same type of RGCs to
different pathological insults, the results from this study and our previous study on the susceptibility
of RGCs to NMDA excitotoxicity provided such an opportunity. Because different pathological insults
might injure RGCs differently, such as NMDA excitotoxicity elevating intracellular calcium [70–72,86,87]
while ONC reducing axonal transportation [26–29], it is highly likely that the underlying molecular
mechanisms of RGC death are different. Therefore, the susceptibility of the same RGC types might vary
significantly to different kinds of pathological insults. Consistent with this possibility, the susceptibility
of four out of the five RGC groups/types tested in these two studies varies dramatically with types of
injuries, although the overall RGC death remained at a similar level. This is particularly evident for
both BD-RGCs and J-RGCs, which have the highest susceptibility to NMDA excitotoxicity, but both of
them have much lower susceptibility to ONC and, especially, the survival rate of BD-RGCs after ONC
is the second highest among the five RGC groups/types. Therefore, we conclude that the susceptibility
of different types of RGCs is likely to be determined by an interaction between the pathological insults
and the cell’s intrinsic response mechanisms. Different types of pathological insults might trigger
different intrinsic response mechanisms in different RGC types, which might have different efficacy
in the activation of the cell death processes in various types of RGCs. If this is a general rule for
type-specific RGC death in retinal diseases, it may not be reliable to predict the pattern of RGC death
in one condition based on models of other diseases.

Then, an important question is what are the underlying processes that contribute to these
inconsistent observations. At least two critical factors might play significant roles in this RGC
type-specific susceptibility: the way RGC types are categorized and the types of pathological insults.
RGCs are classified into types based on morphological, functional and genetic properties [1–9,88].
Most previous studies of RGC type-specific susceptibility are based on morphological and functional
classification [10–14,79–83]. Because these morphologically and functionally classified RGC types are
likely to have heterogeneous gene expression profiles and, if the gene expression profiles of RGCs
contribute to the type-specific susceptibility, how the RGCs are grouped into types could have a
significant influence on the observed susceptibility. Consistent with this possibility, it was reported
that the same genes could protect some RGC types but facilitate the death of other RGC types after the
same injury [19]. Therefore, a more in-depth understanding of the type-specific susceptibility of RGCs
to various pathological insults may provide valuable insights into the molecular mechanisms of RGC
death. More importantly, this information could help the development of novel cell type-specific and
insult-specific treatment strategies.

5. Conclusions

In conclusion, we compared the susceptibility of five RGC groups/types to ONC. We showed that
BD-RGCs are the most resistant type of RGCs to ONC among the tested RGC types, while he W3-RGCs
are the most sensitive cells to ONC. On average, the susceptibilities of both BD-RGCs and αRGCs are
significantly lower than the susceptibility of the entire RGC population. The susceptibility of J-RGCs
is not different from the susceptibility of the whole RGC population. However, the susceptibility of
W3-RGCs is slightly higher than the susceptibility of the entire RGC population. Further, we compared
the results of this study to our previous study of the susceptibilities of the same RGC types to NMDA
excitotoxicity. We show that BD-RGCs and J-RGCs are more vulnerable to NMDA excitotoxicity than
to ONC. These results demonstrate that the susceptibilities of RGC to diseases are not only RGC type
specific but also insult dependent.
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