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Background: To support malaria control strategies, prior knowledge of disease risk is necessary. Developing a

model to explain the transmission of malaria, in endemic and epidemic regions, is of high priority in

developing health system interventions. We develop, fit and validate a non-spatial dynamic model driven by

meteorological conditions that can capture seasonal malaria transmission dynamics at the village level in a

malaria holoendemic area of north-western Burkina Faso.

Methods: A total of 676 children aged 6�59 months took part in this study. Trained interviewers visited

children at home weekly from December 2003 to November 2004 for Plasmodium falciparum malaria

infection detection. Anopheles daily biting rate, mortality rate and growth rate were evaluated. Digital

meteorological stations measured ambient temperature, humidity and rainfall in each site.

Results: The overall P. falciparum malaria infection incidence was 1.1 episodes per person year. There was

strong seasonal variation in P. falciparum malaria infection incidence with a peak observed in August and

September, corresponding to the rainy season and a high number of mosquitoes. The model estimates of

monthly mosquito abundance and the incidence of malaria infection correlated well with observed values. The

fit was sensitive to daily mosquito survival and daily human parasite clearance.

Conclusion: The model has demonstrated potential for local scale seasonal prediction of P. falciparum malaria

infection. It could therefore be used to understand malaria transmission dynamics using meteorological

parameters as the driving force and to help district health managers in identifying high-risk periods for more

focused interventions.
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M
alaria continues to be a deadly disease and

action towards its control remains challenging

for researchers and policymakers. To support

control strategies, prior knowledge of disease risk is

necessary. Developing a model to explain the transmis-

sion of malaria, in endemic and epidemic regions, is of

high priority in developing health system interventions.

As malaria is a vector-borne disease, the life cycle of its

vector, the female Anopheles mosquito, drives the trans-

mission. The life cycles of both the vector and the

parasite within the vector depend on the microclimate.

Since the early 20th century, there have been attempts

to understand malaria transmission dynamics, through

mathematical modelling, to support control efforts. Ross

developed the first model to predict malaria transmission

and spread of the disease, and later concluded that

increasing vector mortality significantly could eradicate

malaria (1, 2). In the 1950s, George MacDonald, building

on Ross’ model, concluded that, at equilibrium, the

weakest link in the cycle of malaria transmission is the

adult female Anopheles (3). His conclusions formed

the basis of the global malaria eradication campaign,

with DDT targeted at adult female Anopheles. In the

1970s, Dietz and Molineaux, in the Garki project,

developed a more sophisticated model, clearly consider-

ing human immunity interacting with transmission (4�6).
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Further, Halloran and colleagues considered the po-

pulation-level effects of potential stage-specific vaccines

(7). Since then, malaria modelling has drawn significant

attention. Populations are modelled as large numbers of

interacting individual humans and individual mosqui-

toes, each with its own characteristics and dynamics (6).

Further steps towards biological realism have included

the effects of weather (8�16). With the shift back from

malaria control to elimination and possible eradication

(17�20), a number of current models are focusing on drug

resistance (21, 22) and vaccine development (23).

The lack of data in many components of malaria

transmission has restricted modelling efforts to a regional

scale, since a significant pool of data is needed to test and

fit the different sets of parameters. Even though available

models are informative for developing global, regional or

national malaria control strategies, they are limited in

their applicability at local sites. However, local conditions

are the main drivers of malaria transmission (24). Thus,

better understanding of these conditions and transmis-

sion dynamics through modelling may be more informa-

tive and relevant for local control efforts.

This study elected to develop and validate a non-spatial

dynamic model, driven by meteorological conditions,

which can capture seasonal malaria transmission dy-

namics, at the scale of a single village. This was achieved

by using comprehensive field data that included incident

cases of human Plasmodium falciparum (Pf) malaria

infection, as well as entomological and meteorological

data. The focus for human infection was on children

under five years, since they are the most vulnerable, and

because most infections in this age group will be

symptomatic and, therefore, more easily detected.

Methods

Study sites
This study was conducted in the town of Nouna and the

villages of Cissé and Goni. These three sites are part of

the Nouna Demographic Surveillance System (DSS) area

(25). A detailed description of the study sites is given

elsewhere (26).

Study population
A total of 676 children (Cissé: 171, Goni: 240 and Nouna:

265), aged 6�59 months, took part in this study. The

children were selected in each site by systematic cluster

sampling of households from the DSS database. A

detailed description of the study population is given

elsewhere (27).

Active case detection: Plasmodium falciparum
infection
In each site, site-based interviewers visited the children

weekly to assess their Pf malaria infection status and

collect housing conditions data. The case detection

methods are extensively described by Yé and colleagues

(27).

The outcome measure was a Pf infection episode,

defined as an axillary temperature of at least 37.58C plus

a positive malaria parasite test.

Entomological data
Mosquito population abundance was monitored by using

a standard Center for Disease Control (CDC) Light Trap

(LT) (28) from December 2003 through November 2004.

Mosquitoes were captured on the first and second day of

each month at each site in four randomly selected houses.

LTs fitted with incandescent bulbs were installed close

to human volunteers sleeping under untreated mosquito

nets in these houses for two consecutive nights from 18:00

to 06:00 hours. In addition, we used the Human Landing

Collection (HLC) method, which involves one person

sitting inside an uninhabited house and another outside,

collecting mosquitoes that land on their exposed legs by

using torchlight and test tubes. This was done in two

shifts (18:00�24:00 hours and 24:00�06:00). HLC volun-

teers gave informed consent. They were given malaria

prophylaxis and checked for fever for a fortnight after

their participation in the study.

Field supervisors transported the mosquitoes caught to

the laboratory in a cold-box. A technician in entomology

counted and sorted the specimens by species. He classi-

fied mosquitoes caught by LT and HLC as ‘unfed’,

‘partly-fed’, ‘fully fed’, ‘semi-gravid’ or ‘gravid’ by

external inspection (LT) or dissection (HLC). The

technician checked for parity the ovaries of unfed HLC

mosquitoes as described by Detinova (29) and Gilles and

Warrell (30).

The age structure of the Anopheles gambiae population

was assessed by calculating the parity (number of times

eggs laid previously). A high fraction of nulliparous

mosquitoes (mosquitoes that had never laid eggs) sig-

nifies a young population. This is used to estimate the

proportion of infectious vectors to calculate the value of

the infectious bite rate parameter.

Indoor human bite rates (3) were calculated for each

month and site, as follows: Human bite rate: ma�Bs/P/n,

where Bs is the number of A. gambiae caught indoors by

HLT; P is the number of people involved in the capture

and n is the total number of nights.

A. gambiae mortality (k-value) was calculated for each

month and site. This expresses the number of vectors

surviving from the egg stage to the adult stage. The

monthly number of vectors was transformed into a

natural logarithm. For a month with no vectors, the

logarithm of one was calculated. Based on previous

studies, we assumed the maximum number of eggs

oviposited by individual mosquitoes was, e�100 eggs

(31, 32) on average. To calculate k-value, the following
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formula (33) was used:

log (potential_eggs; month 1)� log (adults_mosquito

�1; month 1)�log (e) and k-valuemonth 1�p-log

(adults-mosquito; month 2)

The resulting k-value was used to calculate the monthly

mortality rate (m), an important parameter of our model,

by using the formula: m�1�10�k-value.

Measurement of meteorological parameters
Three site-based meteorological units measured rainfall,

temperature and relative humidity on the ground. Units

were set for 10-second measurement cycles and 10-minute

recording cycles. Details are given elsewhere (27).

Model development
Model description

We used the so-called ‘‘compartmental model’’ developed

by Ross (1) and adapted by MacDonald (3). These

models were based on the assumption that the human

population can be subdivided into three compartments:

(1) susceptible (do not have malaria); (2) infected (have the

parasite, but it has not yet developed to the gametocyte

stage); and (3) infectious (are symptomatic and have the

parasite at the gametocyte stage). Similarly, the vector

population can be classified as: (1) susceptible (do not

carry the parasite); (2) infected (fertilisation and spor-

ogony); and (3) infectious (sporozoites in the salivary

glands). The transmission process starts when an infected

vector takes a blood meal from a human. The changes

among the subpopulations in each compartment are

determined by a set of parameters, like mosquito

mortality, bite rate, growth rate, sporogony and gono-

trophic cycle duration, and human malaria-induced

mortality and parasite clearance rates. Most malaria

models were constructed on these basic assumptions, as

was the model by McKenzie and others (34) from which

our model is derived. In our model, the mosquito

population was divided into two subpopulations, non-

infected and infected, since we assumed that every

mosquito that feeds on an infected human would have

100% probability of becoming infectious if it survived

long enough. The state and transition of the model

(Fig. 1) shows the changes in each subpopulation given

different parameters. These parameters are labelled with

Greek characters and defined in Table 1. This model is an

extension of a previous model, which was set to detect

malaria in the dry season (35). That model was driven by

entomological data and did not simulate the dynamics of

the vector population. This current one has vector

population dynamics, which is driven by temperature

and rainfall. Since the dry season in the study region is

characterised by total absence of rainfall, a model driven

by rainfall would not have been appropriate to capture

transmission. Appendix 1 provides the details of the

mathematical expressions of the model and the specific

assumptions.

Model implementation, prediction and testing

The model was driven by temperature, which defines the

sporogonic and gonotrophic cycles, and by rainfall. Both

meteorological values were used to calculate the carrying

capacity (kt) described in Appendix 1. To train the model

most of the parameters were estimated using field data

collected in 2004. Because we did not have data for 2005,

the outputs of the model, which consist of monthly

mosquito numbers and cases of malaria infection, were

compared with data from 2004. The model outputs were

normalised to allow comparison with observed values.

The normalisation was done by multiplying the monthly

value of the model outputs with a constant obtained by

dividing the highest value of the observed with the

highest value of the model output.

The model was implemented in a Microsoft Excel

spread sheet using a set of difference equations with one

day step. Each of the variables representing the human

and mosquito subpopulations was followed in a separate

column. In addition, at each stage, the model calculated

the daily changes of these variables. An offset function

was used for processes with delay, such as mosquitoes

becoming infectious at the end of the sporogonic cycle.

The model’s goodness of fit D was determined by using

the residual sum of squares (SS) of the difference between

the predicted and the observed values of all months. The

value of each parameter was determined successively by

minimising SS (Table 2). This was continued for all

parameters, until no further improvements in fit were

possible, which was the common minimum for all

parameters. Around the determined joint-optimal value

for all parameters, each parameter was varied in turn to

determine whether the fit was highly sensitive to the
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Fig. 1. State and transition of the dynamic model. Human:

S, susceptible; I, infected; G, infectious. Vector: U, suscep-

tible; F, infectious.
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parameter values. A parameter was ‘sensitive’ if 10%

variation in the parameter value caused 30% variation in

D. This process was employed in lieu of sufficient data to

allow calculation of confidence intervals. The Microsoft

Excel ‘Solver Add-In’ function, which uses the General-

ized Reduced Gradient (GRG2) method, was used for

this process.

The model predicted mosquito abundance and malaria

incidence for each month and site for the year 2004.

Output values were normalised versus the expected, by

multiplying each predicted monthly value by a ratio

which was obtained by dividing the observed highest

value by the predicted value. The variances for the

normalised prediction and observed values were calcu-

lated to assess the fit of the model for each site. Small

variance suggests good representation of the field data by

the model. The fit was also presented graphically, by

plotting the monthly predicted and observed values.

Results
During follow up, out of the 676 children, 20 (3.0%) left

the cohort, either because of death (11) or migration out

of the study sites (9). Children were not always present at

each visit; therefore, the overall person-years (PY)

observed were 594.9.

Plasmodium falciparum malaria infection incidence
Out of 1,274 fever episodes, 635 were positive for Pf

malaria infection, giving an infection incidence of 1.1

episodes per PY. The lowest incidence was observed in

Nouna (0.8 per PY). In Cissé and Goni, the incidences

were 1.2 and 1.3, respectively, but not significantly

different. There was strong seasonal variation in the

incidence, with higher rates in August and September

(Table 3).

Entomological patterns
Using the LT and HLC method combined, with all

species included across all sites, 16,657 mosquitoes were

caught. The largest proportion of captured mosquitoes

was Culex (72.19%), followed by A. gambiae (15.57%),

Aedes (6.3%), Mansonia (4.6%), Anopheles funestus

(1.5%) and Anopheles nili (0.1%). The highest number

of A. gambiae was caught in Goni (n�1,431), followed

by Cisse (n�598) and Nouna (n�565).

Table 1. Definition of model parameters

Parameters Definition Source

a Daily natural per-capita human birth rate DSS, recalculated in daily birth rate

b1 Daily natural per-capita human death rate DSS, recalculated in daily death rate

b2 Daily malaria-induced per capita death rate in humans Noun DSS, recalculated in daily death rate

q Daily malaria clearance rate in humans Fitted and compared with field data

v Time delay for human host, from becoming infected to

becoming infectious

Dietz et al. (4)

m Daily mortality rate of vectors Calculated and fitted

r Daily mosquito per-capita intrinsic growth rate Theoretical maximum of 10, precise value fitted from model

B Daily bite rate of vectors The lower bound if 1/gonotrophic cycle, precise value fitted

from model

b Daily rate at which vectors bite humans b�B�HBI

g Daily probability of vector becoming infected after infectious

bite

Fitted

c Time delay for vector from infection to infectious stage Sporogonic cycle, calculated using Detinova formula 111/

(T8C �18)

Kt Environmental carrying capacity Kt�Pmm�akt

Table 2. Model parameter values and bounds

Parameters

Cissé

[bounds]

Goni

[bounds]

Nouna

[bounds]

a 0.000126 0.000126 0.000126

b1 0.000096 0.000096 0.000096

b2 0.000041 0.000041 0.000041

q 0.12 [0.10�

0.17]

0.12 [0.10�

0.17]

0.12 [0.10�0.17]

v 10 days [9�15] 10 days [9�15] 10 days [9�15]

r 2 2 2

m 0.15 [0.06�

0.20]

0.15 [0.07�

0.22]

0.14 [0.05�0.22]

b 0.56 [0.5�0.6] 0.56 [0.5�0.6] 0.56 [0.5�0.6]

g 0.79 0.79 0.79

c 10.6 days

[9�14]

13.3 days

[9�14]

9.9 days [9�14]
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Meteorological conditions
All sites presented a similar pattern of meteorological

conditions. The rainfall was concentrated in the months

from May to October. The total amount of rainfall was

higher in Nouna than in Cissé or Goni. The relative

humidity pattern followed that of rainfall. The mean

temperature was more or less similar in all sites. The

average mean temperature for the whole period was lower

in Goni, however, with high variation as compared to

Cissé and Nouna. A detailed description of the meteor-

ological conditions is given elsewhere (27).

Model simulation
Simulation of daily Anopheles gambiae abundance

In all three sites, rainfall was followed by an increase in

the mosquito population two weeks later (Fig. 2). In

Cissé, mosquitoes were few (fewer than 10 per day) over

the first 120 days of the year, corresponding to January

through April. The first peak in mosquito numbers was

observed on the 122nd day of the year, followed by a

second peak, one month later. These peaks were all

observed after a peak in rainfall. Two other peaks in

mosquito abundance were observed after the second

peak. These increases corresponded to July and August,

months with high rainfall. From August on, the vector

population decreased significantly and continued to do so

towards the end of year, after the end of the rainy season.

In Goni, the simulation produced several peaks in the

vector population, following each peak in rainfall. As in

Cissé, these peaks were clustered within a period from the

121st to 301st days of the year. This period corresponds

with May through October. In contrast to Cissé, although

there was some daily variation, the vector population

remained high over this period, probably because of the

higher amounts of rainfall. After the end of the rainy

season, we observed a drop in the mosquito population.

The Nouna site had about the same pattern of

mosquito abundance and distribution as Goni, even

though rainfall was more abundant. The mosquito

population increased shortly after the onset of the rainy

season. It remained high (about 100/day), with some

variation until the end of the rainy season, when levels

decreased to less than 10 mosquitoes daily. As at the

other two sites, the highest peak in the mosquito

population was observed about two weeks after the

highest peak of rainfall in August.

Monthly prediction of Anopheles gambiae abundance

compared to observed vector numbers

The model predicted a peak in vector numbers for all sites

in September, matching the observations for Goni and

Nouna (Fig. 3). In Cissé, the peak in the number of

caught mosquitoes was observed one month earlier, in

August and this, therefore, did not match the prediction.

Consistent across all sites, the model prediction matched

with observed numbers from January through April,

though the numbers were small. In June, in Cissé and

Goni, there was a predicted increase in mosquito

population which was not observed in the field. At all

three sites, there was a significant decline (both predicted

and observed) in the vector population in October, and

both remained low in November and December.

Overall, the model predictions fit the observed data.

The fit was better in Nouna, where we observed the least

variance (D�S(Oi�Pi)
2�1696.5, SD�8.8); where Oi is

the observed number in the vector population in a

month, and Pi is the number predicted by the model.

The variances for Goni and Cissé were 11,630.4 and

35,292.2, respectively.

Monthly predicted Plasmodium falciparum malaria

infection episodes compared to observed

Incident cases of Pf malaria infection among children

were also simulated by the model, per site and per month

(Fig. 4). For all sites, there was a seasonal pattern in Pf

infection incidence. From December through June, the

incidence decreased progressively, and then increased

from July through September, after which another

decrease was observed. Although the predicted

and observed incidences were similar, there were some

specific variations, expressed by the variation D.

The model predictions matched the observed episodes

better in Goni, where the smallest variance was observed

(D�626.8, SE�6.6), versus Nouna (D�733.7, SE�4.8)

and Cissé (D�882.8, SD�6.7).

Table 3. Plasmodium falciparum malaria infection incidence

rates, per 1,000, per month and site

Villages

Months Cissé Goni Nouna All

Dec-03 159.2 122.0 88.9 136.6

Jan-04 43.6 37.6 34.1 37.3

Feb-04 137.9 38.1 57.5 69.1

Mar-04 123.4 85.4 42.6 82.6

Apr-04 14.6 59.2 125.3 72.0

May-04 6.7 31.0 22.0 26.2

Jun-04 6.3 29.1 12.4 20.9

Jul-04 14.2 111.4 35.6 58.0

Aug-04 268.6 220.7 83.2 220.2

Sep-04 163.7 272.6 107.0 223.7

Oct-04 129.6 200.1 126.5 152.5

Dec-04 87.1 112.6 58.5 84.7

Total 1166.4 1278.7 692.1 1067.3
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Sensitivity of the model to different parameters

The dependence of the variance on the various parameters

is presented in Fig. 5(a�f). Each parameter (X axis) is

plotted against the variance (Y axis). The best value of the

parameter is the one that causes the smallest variance. For

instance in Fig. 5a: m shows that a value below 13% as well

as values above cause high variance, but this stabilises

after 40%; in Fig. 5b: the best value of b is 0.6 (one bite

every two days); in Fig. 5c: the best value of v is 13 days; in

Fig. 5d: the best value of c is nine days; in Fig. 5e: the best

value of q is 11.6% and in Fig. 5f: the best value of g is

71%.
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Fig. 2. Mean temperature and rainfall-based predictions of A. gambiae population abundance for each site: (a) Cissé, (b) Goni

and (c) Nouna. Simulated A. gambiae population abundance (black curve) is plotted against the daily temperature (red curve)

and the preceding two weeks’ cumulative rainfall (blue curve).
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Discussion
A dynamic model to predict malaria transmission among

children under age five was developed. The model is

composed of five difference equations that express

changes in infectious status of the human and vector

populations given temperature and rainfall conditions.

The model simulated the vector population abundance

and the human Pf malaria infection incidence for each of

three ecological settings over one year. Most of the model

parameters were calculated based on field data, and then

fitted. The model was a good representation of Pf

malaria infection in the region. The predicted mosquito

populations and Pf malaria infection incidences were

close to observed values.

Simulation of mosquito dynamics
Rainfall and temperature drive the vector population

abundance. The dynamic model represented this ade-

quately in all sites. Peak vector numbers observed about

two weeks after a peak in rainfall are characteristic of the

vector�rainfall relationship. Indeed, in ideal temperatures

(288C) and conditions, the development of A. gambiae

from the egg to adult stage takes about 14 days (32, 36).

The presence of water pools generated by rainwater

allows the mosquitoes to lay their eggs, which then

develop into adult mosquitoes if the water pools are

sustained for at least 14 days. Some potential breeding

sites could be expected in the area surrounding wells

throughout the year. This is because of the constant

spillage of water when people are fetching it. Sometimes,

intentional pools are created for purposes of watering

cattle. However, these pools are not common and only

support a few mosquitoes. Because of the dry conditions

in the area, the most important source of breeding sites

remains rainfall water, and this explains the high

Fig. 3. Predicted monthly A. gambiae, compared to observed

vector numbers in Cissé (a), Goni (b) and Nouna (c). The

monthly prediction (broken line) of A. gambiae is compared

with those caught in the field (full line).
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Fig. 4. Predicted monthly Plasmodium falciparum infection

episodes versus observed episodes in Cissé (a), Goni (b) and

Nouna (c). The monthly prediction (broken line) of episodes

is compared with those observed in the field (full line).
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abundance of mosquitoes during the rainy season.

Rainfall was the main driver of vector abundance.

As expected, in all sites the model detected few vectors

(B10) during the dry season but vectors persisted, despite

the total absence of rainfall during this season, probably

because of breeding sites created around wells.

Monthly predictions of the number of vectors fit the

numbers caught in the field, and, both predicted and

observed numbers followed a similar pattern at all sites.

This suggests that the model is a good representation of

mosquito population dynamics. Some difference in the

timing of peak abundance was observed in Cissé; where

there was a deviation of one month between the predicted

(September) and observed (August) peak. This may have

been because of the soil texture in Cissé, which probably is

not able to hold water on the surface long enough to allow

vector development. However, this was not captured by

the current model. Consistent across all sites, the model

predicted vectors in May and June, though no vectors

were observed in the field. This could be explained by the

model being sensitive to any amount of rainfall; whereas,

in the field, the quantity of rainfall in May and June was

not enough to keep vector breeding sites.

Although the model produced a fair representation of

the mosquito population, it could be improved by also

simulating the immature stage (eggs, larvae and pupae) of

the vector, which are strictly dependant on surface water

availability. Mosquitoes need water to reproduce and the

oviposition rate is assumed to be proportional to

mosquito numbers and the daily rainfall filling local

water pools (16). Further, direct correlation of rainfall

amount with mosquito abundance could result in some

estimation bias. This is because the availability and

duration of surface water are also dependant upon the
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Fig. 5. Variation between the observed Plasmodium falciparum infection and the model output for single parameters.
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evaporation index, soil texture and moisture index. High

evaporation will cause quick drying out of pools, whereas

a lower consistency of soil texture and dry soil will lead to

faster infiltration.

Simulation of Plasmodium falciparum malaria
infection cases
Although some monthly differences were observed,

probably due to the small number of cases, the general

seasonal pattern was represented well by the model.

However, the model is not sensitive to the sporogonic

cycle. This implies that a small variation in ambient

temperature would not result in major changes in

incidence, and that time from human infection to

gametocyte development is not a key in determining

incidence rates.

The daily vector bite rate was found to be 0.56 per day.

This would represent a gonotrophic cycle of 1.5 days, if

every bite achieves a full blood meal. However, this is not

always the case, as mosquitoes often return for second

bites, if interrupted during their meal. Thus, the gono-

trophic cycle may be longer than predicted by this model.

The model is insensitive to precise values of b, (human

bites per day) and this reduces the validity of the model as

an estimator of gonotrophic cycle length. In addition, the

model was developed assuming all vectors are anthro-

pophillic, which is not necessarily the case. In fact, we

expect this parameter to vary from one season to another

(37).

The incidence of Pf malaria is dependent on two key

parameters, which are the daily mortality rate of the

vector and the parasite clearance rate in humans. These

parameters can both be influenced by public health

interventions. The daily mortality rate of the vector can

be increased by vector control methods, such as indoor

residual spraying, and vector numbers can be reduced by

removing breeding sites. Effective treatment of patients

will increase the malaria clearance rate in human (q), by

protecting not only sick individuals, but also the

surrounding population. The parasitological clearance

rate (12%) was slightly slower than can be deduced from

Müller and others (38), who witnessed 27% seven-day

parasitological failure with chloroquine treatment. This

would reflect 17% daily clearance. This discrepancy

probably is a result of Müller and colleagues (38) having

measured the asexual form clearance, while our focus was

on the sexual form.

The model is driven by parasitological data for children

under five, while the entire population contributes to the

transmission. To account for this effect, we would need to

survey the general population. This would require

checking large numbers of asymptomatic individuals for

subclinical infections. This raised technical and ethical

issues. Nevertheless, it was assumed that parasite pre-

valence among children under five was not unlike that of

the general population, even though clinical symptoms

would not be present in many older individuals.

The model can be a useful tool for malaria control

strategies especially in a low transmission context. It has

the ability to quantify the context-specific risk of malaria,

a precondition for cost-effective interventions. Although,

the model was developed based on data collected in a

specific context it can be used in a different setting. In

that case the parameters would have to be measured

locally and fitted without the need to change the model

formulation. The fitting of the model was based on field

data to make sure that mathematical formulae are

plausible and describe the biological process of the

transmission of the disease. For use in predicting malaria

incidences in other settings, the critical inputs will be

rainfall and temperature data, which nowadays can

be obtained from satellite sources. Other parameters

to be fitted may be obtained from the literature.

The strength of this model lies in its simplicity and its

respect for the biological process of malaria transmission

on the ground. However, to be cost-effective, the model’s

major drivers which are rainfall and temperature could be

derived from remote sensing data as ground-based

measurements are expensive to implement at local scale.

Although this is an academic work to reproduce the

biological process of malaria transmission given different

meteorological conditions, the ultimate aim is to produce

a tool that can be used to refine malaria control strategies

at health district level. The practical use of the model is in

its prediction of the expected monthly number of malaria

cases among under five children in different villages from

given health districts based on rainfall and temperature

data from either national meteorological stations or

forecasting data from satellite. Such prior prediction of

cases will help health planners at local level to better

mobilise and allocate scarce resources to areas with most

need. We plan to develop user-friendly software with the

model in the background. The software will allow the

input of basic data in order to produce the estimated

monthly cases of malaria for different villages. However,

we will first validate the model for different years within

the frame of future studies that will generate relevant data

for this purpose.

Conclusion
The model shows potential for local-scale seasonal

prediction of Pf malaria infection rates and distribution.

Thus, it could be used to understand malaria transmis-

sion dynamics, using meteorological parameters as a

driving force, to help local district health bodies to

identify the risk period for more focused interventions.

However, we do not pretend to have captured 100% of the

transmission dynamics. Further improvements to the

model can be made.

Weather based prediction of malaria transmission
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graphy and health in developing countries. Volume 1. Popula-

tion, health and survival at INDEPTH sites. Chapter 19 Nouna

DSS. Canada: IDRC; 2002.
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Appendix 1. Model description
The dynamic concept in contrast to the static concept,

tries to capture the transmission and biological processes

of the disease. The model driven by temperature and

rainfall was based on the assumption that the human

population is divided into three categories: susceptible

(S), malaria-infected (I) and infectious (G), and mosquito

population is classified into two compartments: non-

infections (U) and infectious, strongly affected by tem-

perature and rainfall.

dS�a(S�I�G)�q(I�G)

�
�

1�
�

S � I � G � 1

S � I � G

�bF�
S�b1S; (1)

dI�
�

1�
�

S � I � G � 1

S � I � G

�bF�
S�(1�(b1�b2�q))v

�
��

1�
�

S � I � G � 1

S � I � G

�bF�
S

�
t�v

�(b1�b2�q)I ; (2)

dG�(1�(b1�b2�q))v

�
��

1�
�

S � I � G � 1

S � I � G

�bF�
S

�
t�v

�(b1�b2�q)G; (3)

dU�
r(U � F )�

1 �
(U � F )

Kt

���bU
G

S � I � G

�
t

g�mU ; (4)

dF �(1�m)c

�
bU

G

S � I � G

�
t�c

g�mF : (5)

Equations 1�3 describe the change in the human popula-

tion while Equations 4 and 5 describe change in vector

population. Each term is explained in detail below.

Change in uninfected human population:

dS�a(S�I�G)�q(I�G)

�
�

1�
�

S � I � G � 1

S � I � G

�bF�
S�b1S: (1)

Equation 1 describes the changes in the uninfected

human population and includes four terms:

. The first term is the natural growth rate which is

expressed by a(S�I�G), assuming people are born

healthy and irrespective of the health of the mother.

As the model is simulated daily, this is expected to be

negligible.

. The second term is the malaria clearance expressed by

q(I�G). We assume that people clear the infection at a

fixed rate from all stages of the disease. We also

assume that there is no immunity and no super-

infection (additional infection starts after a new

hepatic stage), contrary to Dietz et al. (4).

. The third term is the human infection expressed by 
1�

 
S � I � G � 1

S � I � G

!bF!
S: It expresses the daily

new infection within the human population. The

expression
S � I � G � 1

S � I � G
�1�

1

S � I � G
is the

probability of a single person not getting a bite from

a specific mosquito; bF is the number of infectious

mosquito biting in a day, given a daily biting rate per

mosquito of b,

 
S � I � G � 1

S � I � G

!bF

is the probability

of a specific person not getting bitten by any of the

infectious mosquitoes. 1�

 
S � I � G � 1

S � I � G

!bF

is the

probability of a specific person getting bitten by one or

more of infectious mosquitoes. Multiplying by S gives

the number of uninfected peoples being bitten by at

least one infectious mosquito in a day.

. The fourth term b1 is the death rate in the population

from all causes except malaria, assuming there is not

link with malaria. Then b1S is the number of death

within the uninfected population.

In addition the following assumptions were made:

1. A mosquito bites only once in a gonotrophic cycle.

2. Mosquitoes bite randomly. No specific attraction to

any subpopulation.

3. The stage of infection does not influence the

mosquitoes biting habits.

4. An infectious bite necessarily causes Plasmodium

falciparum infection.

Change in infected human population:

dI�
�

1�
�

S � I � G � 1

S � I � G

�bF�
S�(1�(b1�b2�q))v

�
��

1�
�

S � I � G � 1

S � I � G

�bF�
S

�
t�v

�(b1�b2�q)I : (2)
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Equation 2 describes the changes in the infected (but not

infectious) human population and includes three terms:

. The first term is

 
1�

 
S � I � G � 1

S � I � G

!bF!
S and as

described above is the number of uninfected people

being bitten by at least one infectious mosquito in a

day.

. The second term

" 
1�

 
S � I � G � 1

S � I � G

!bF!
S

#
t�v

represents people that became infected v days ago.

They have now mature gametocytes and are infectious.

However, not all of those people are still available.

They may have either died of malaria or other disease

or they may have cleared their infection. For each

day the probability of leaving the group early will be

b1�b2�q. The probability of remaining in the group

for a day is 1�(b1�b2�q). The probability

of completing the whole process of v days is (1�

(b1�b2�q))v.

. The third term �(b1�b2�q)I represents the number

of people that leave the infected stage by death or

clearance.

In addition, the following assumptions were made:

1. b2 is constant and does not change according to the

stage of the infection. We know the mortality could

change per stage. We may leave it out of this

equation for biological reasons.

2. q is not specific to the stage of the infection. We have

two types of q clearance because of treatment and

clearance because of immune system (natural clear-

ance). We could also decide there is no natural

clearance. We also know that drugs are stage specific

(liver stage and blood stage).

Change in infectious human population:

dG�(1�(b1�b2�q))v

�
��

1�
�

S � I � G � 1

S � I � G

�bF�
S

�
t�v

�(b1�b2�q)G: (3)

Equation 3 describes the changes in the infectious human

population and includes two terms:

. The first term (1�(b1�b2�q))v

/

"
ð1�

 
S � I � G � 1

S � I � G

!bF!
S

#
t�v

is described above.

. The second term �(b1�b2�q)G represents the num-

ber of people that leave the infectious stage by death or

clearance.

Change in the size of uninfected vector population:

dU�
r(U � F )�

1 �
(U � F )

Kt

���bU
G

S � I � G

�
t

g�mU : (4)

Equation 4 describes the changes in the uninfected vector

population and includes three terms:

. The first term
r(U � F )"

1 �
(U � F )

Kt

# is the maturation of

the larval stage. This term describes the number of

larvae surviving to become mature mosquitoes. The

numerator is the number of larvae expected to survive

to maturity under ideal conditions. U�F is the total

number of mosquitoes, assuming infectious status

does not influence the fertility. r is the per mosquitoes

fertility (number of eggs oviposited per day multiplied

by the probability of each to develop into a mature

mosquito under ideal condition). The denominator

reflects the decrease in survival because of non-ideal

conditions. The U�F expresses the density dependent

limitation on larvae survival. The precise character-

istic of this dependence is determined by the carrying

capacity Kt. In principle, Kt varies with temperature,

rainfall and humidity and should be measured from

the field. Thus the number of larvae increases with the

number of mosquitoes but is limited by carrying

capacity. The number of the larvae surviving is

dependent on the surface water available. As at this

stage of research a full evapo-transpiration model is

not available, Kt is therefore assumed to be propor-

tional to the previous weekly aggregated rainfall. Kt�

Pmm�akt. The value of akt is to be determined

empirically.

. The second term bU
G

S � I � G
represents the new

infections of mosquito at time t. bU is the number of

uninfected mosquitoes biting in a day. The fraction is

the probability of a single mosquito biting at random

an infectious human out of the total human popula-

tion. We multiply this by g to reflect the probability of

becoming infected.

. The third term, mU, is the mortality of uninfected

mosquitoes or the number of uninfected mosquitoes

dying per day. m was calculated from the k-value (log

generation mortality). In the study site setting, due to

the constantly warm temperature, the gonotrophic

cycle varies between two and three days. The survival

of mosquitoes depends on the gonotrophic cycle and

due to the stability of the cycle m was treated as
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constant. The precise value of m was empirically

determined by fitting the model.

In addition the following assumptions were made:

1. Mosquitoes bite randomly and independent of their

infectious status.

2. Survival is independent of the infectious status.

Change in the size of the infectious vector population:

dF �(1�m)c

�
bU

G

S � I � G

�
t�c

g�mF : (5)

Equation 5 describes the changes in the infected vector

population and includes two terms:

. The first term, (1�m)c

"
bU

G

S � I � G

#
t�c

g is the

number of mosquitoes infected c days ago, reduced by

the survival. c is the sporogonic cycle given by

Detinova (39) as 111/(T8 �18).

. The second term �mF is the number of infectious

mosquitoes dying in a day.

In addition the following assumptions were made:

1. Infectious mosquitoes never clear their infectious

status.

2. Mosquitoes are either infected or infectious.
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