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Abstract: Image security is a hot topic in the era of Internet and big data. Hyperchaotic image
encryption, which can effectively prevent unauthorized users from accessing image content, has
become more and more popular in the community of image security. In general, such approaches
conduct encryption on pixel-level, bit-level, DNA-level data or their combinations, lacking diversity
of processed data levels and limiting security. This paper proposes a novel hyperchaotic image
encryption scheme via multiple bit permutation and diffusion, namely MBPD, to cope with this issue.
Specifically, a four-dimensional hyperchaotic system with three positive Lyapunov exponents is firstly
proposed. Second, a hyperchaotic sequence is generated from the proposed hyperchaotic system
for consequent encryption operations. Third, multiple bit permutation and diffusion (permutation
and/or diffusion can be conducted with 1–8 or more bits) determined by the hyperchaotic sequence
is designed. Finally, the proposed MBPD is applied to image encryption. We conduct extensive
experiments on a couple of public test images to validate the proposed MBPD. The results verify
that the MBPD can effectively resist different types of attacks and has better performance than the
compared popular encryption methods.

Keywords: hyperchaotic; image encryption; permutation; diffusion; multiple bit operation

1. Introduction

In the current era of Internet and big data, billions of images are produced, stored and
transmitted every day. How to protect image content from illegal acquisition, especially for
military, medical, and privacy purposes, has become a hot topic in recent years. Because of
some attributes of images, such as high redundancy, strong correlation, and bulky data,
traditional encryption methods for common text and data are usually not the best choice for
image encryption. In recent years, various chaos-based image encryption approaches have
emerged and they have been demonstrated very effective in improving image security. The
reason why chaotic image encryption has become so popular is that chaotic systems have
some characteristics that are very suitable for image encryption, such as extreme sensitivity
to initial values, unpredictability, pseudorandomness, and ergodicity [1–3].

In chaotic image encryption, chaotic sequences are generated from the chaotic systems
and they usually are applied to change the positions and/or values of image data. Early
schemes usually used single low-dimensional chaotic systems, such as Logistic map, Tent
map, Baker map, Cat map, etc., to encrypt images [4–8]. For example, Chen et al. extended
2D Cat map to a 3D one and designed a fast symmetric encryption approach, and the
experiments demonstrated the approach was superior to the compared methods in terms
of security and speed [4]. Pisarchik et al. proposed a pixel-by-pixel image encryption with
Logistic maps [7]. Although these schemes achieved satisfactory encryption results at that
time, the relatively simple structure of low-dimensional chaotic systems made them have
a certain risk of being cracked. To solve this issue, possible directions are to use a more
complex chaotic system or to combine two or more simple chaotic systems. In recent years,
a variety of researchers have attempted to improve the performance of image encryption in
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these two directions. According to the theory of chaos, Lyapunov exponent (LE) can be used
to characterize the variable of a chaotic/hyperchaotic system. A dynamic system is chaotic
if it has one positive LE, while it is hyperchaotic if it has two or more positive LEs. In general,
image encryption schemes based on hyperchaotic systems are more secure than those with
chaotic systems. In real-world encryption, Lorenz system and its extensions are among
the most popular chaotic/hyperchaotic systems [9–12]. Wang and Zhang applied a 4D
Lorenz-like hyperchaotic system with two positive LEs and genetic recombination to image
encryption [10]. Li et al. used 5D and 7D hyperchaotic systems, dynamic filtering, DNA
permutation and bit cuboid operations for image encryption, and the experimental results
prove the effectiveness [13,14]. Unlike most schemes that carry out encryption in spatial
domain, Wu et al. used 2D discrete wavelet transform (2D DWT) and a 6D hyperchaotic
system to encrypt images in both spatial domain and frequency domain [15]. In addition
to integer-order hyperchaotic systems, fractional-order hyperchaotic systems are becoming
more and more popular with image encryption [16–19]. Zhu and Sun proposed a Logistic-
Tent map for image encryption [20]. Luo et al. cooperated a piecewise linear chaotic
map and a 4D hyperchaotic map for parallel image encryption [21]. Other combinations
include Henon-Sine map [22], Logistic map and Lu system [23], Logistic-Sine map [24–29],
Logistic-Tent-Sine map [30,31], Rossler-Sine map [32], etc. These combinations have been
proven effective in improving the security of encryption.

The aim of image encryption is to prevent unauthorized users from discovering any
meaningful content in the image. In other words, encrypted images are entirely random-
like for them. There are many operations to convert informative images (plain images) to
random-like ones (cipher images), among which permutation and diffusion are two major
ones. Permutation changes the positions of image content, while diffusion changes the
values of images. Most existing image encryption schemes adopted both the operations,
separately or jointly, to achieve good security [33–37]. Among them, pixel-level (8 bits)
data or bit-level (1 bit) data are the most widely used encryption units. In recent years,
DNA computing has been introduced into image encryption; hence, DNA-level (2 bits)
data has also be used to encrypt images [38–42]. Most studies focus on one or two bit
levels in image encryption and the bit levels of encrypted data need to be enhanced to
improve the effectiveness of image encryption. In fact, besides the mentioned 1 bit, 2 bit
and/or 8 bit encryption operations, other multiple bit data, such as 3–7 bit data, can also
be used to permutate and/or diffuse images. More bit-level data enhances the diversity of
encrypted units and may have the potential to improve encryption performance. However,
few existing studies have paid attention to this point.

Motivated by the above analysis, this paper proposes multiple bit permutation and
diffusion, namely MBPD, for hyperchaotic image encryption. We first extend a modified
3D Lorenz chaotic system to a 4D hyperchaotic system with 3 positive LEs, and its charac-
teristics are analyzed. Second, the hyperchaotic system is used to generate a hyperchaotic
sequence for the consequent encryption operations. The initial values of the hyperchaotic
system are considered as keys for the purpose of encryption. Then, the operations of
multiple bit permutation and multiple bit diffusion are presented to encrypt images. The
MBPD treats several bits (e.g., 3 bits) as a processing unit for permutation and diffusion,
and different lengths of bits can be chosen for encryption. For the permutation, the order
of the hyperchaotic sequence is used to scramble the multiple bit data, while the sequence
will be converted into an integer mask for the diffusion. Finally, the proposed MBPD with
different lengths of bits is applied to image encryption to improve security.

The contributions of this paper are the following:

(1) A new 4D hyperchaotic system with 3 positive LEs is presented, and some related
hyperchaotic characteristics are analyzed.

(2) Multiple bit permutation and diffusion is proposed for image encryption, which is
very different from most existing image encryption schemes that encrypt images only
with 1 bit, 2 bit and/or 8 bit data. To the best of our knowledge, it is the first time that
multiple bit operations are proposed for image encryption.
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(3) Extensive experiments demonstrate that the proposed MBPD significantly outper-
forms the state-of-the-art compared image encryption schemes in terms of the evalua-
tion indicators.

The rest of this paper is organized as follows: Section 2 presents a new 4D hyperchaotic
system with 3 positive LEs. Section 3 proposes MBPD and details the encryption steps. In
Section 4, experimental results are reported and analyzed. Finally, we conclude the paper
in Section 5.

2. Presented 4D Hyperchaotic System
2.1. Lorenz System

Since the chaotic attractor was first found by Lorenz in 1963, chaos theory has attracted
researchers from many fields, such as economics, mathematics, physics, and communica-
tions [9]. The initial Lorenz system has been extended to many versions. One modified
generalized Lorenz system is formulated as Equation (1) [43].

ẋ = −ax + by
ẏ = cx + dy− xz
ż = −ez + x2

, (1)

where a, b, and e are positive real constants, and c and d are real parameters meeting
d > − bc

a [44]. By introducing a 1D linear system to Equation (1), a new 4D system can
be obtained, as Equation (2). 

ẋ = −ax + ay
ẏ = bx + cy− xz
ż = −dz + x2

ẇ = ey + f w

. (2)

In this system, a, b, c, d, and f are real constant parameters, while f is a coupling
parameter. When the parameters (a, b, c, d, e, f ) = (35, 7, 35, 5, 1.5, 1), the system has the
following LEs: LE1 = 1.284559, LE2 = 0.937533, LE3 = 0.007986, and LE4 = −38.230078.
Since three LEs are positive, the system is hyperchaotic [44].

2.2. 4D Hyperchaotic System

Although Equation (2) is hyperchaotic, the introduced component w will increase
exponentially after a certain number of iterations, and then its value will become positive
infinity and its applications will be limited. To cope with this issue, we modify the fourth
item of Equation (2) and add the component w to the first equation. A new 4D system can
be obtained, as shown in Equation (3).

ẋ = −ax + ay + w
ẏ = bx + cy− xz
ż = −dz + x2

ẇ = ey + f wsin(w)

, (3)

where parameters a− f are the same as Equation (2).
We use the 4th-order Runge-Kutta method to plot the attractors of the presented 4D

hyperchaotic system with parameters (a, b, c, d, e, f ) = (35, 7, 35, 5, 1.5, 1) and initial values
(x0, y0, z0, w0) = (0.12, 0.23, 0.34, 0.45) in 2D space and 3D space, as shown in Figure 1.
From this figure, we can see that the component w falls within an appropriate range.
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Figure 1. Attractors of the presented 4D hyperchaotic system with the parameters (a, b, c, d, e, f ) =
(35, 7, 35, 5, 1.5, 1) and initial values (x0, y0, z0, w0) = (0.12, 0.23, 0.34, 0.45).

By using Wolf’s method [45], we fix (a, b, c, d, e) = (35, 7, 35, 5, 1.5) and let f vary from
0 to 2 to plot the dynamics of LEs, as shown in Figure 2. We can see that the new system
has three positive LEs in many ranges. For example, when f = 1, the LEs of the system
are LE1 = 2.253019, LE2 = 1.406374, LE3 = 0.054342, and LE4 = −38.339706 and the
three positive LEs (LE1, LE2, and LE3) are much larger than the corresponding positive
LEs of Reference [43]. Therefore, the new system is also hyperchaotic, and it is better than
Equation (2).
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Figure 2. Dynamics of Lyapunov exponents of the proposed 4D hyperchaotic system with the
parameters (a, b, c, d, e) = (35, 7, 35, 5, 1.5), variable f from 0 to 2, and initial values (x0, y0, z0, w0) =

(0.12, 0.23, 0.34, 0.45).
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In this paper, we will use the new 4D hyperchaotic system for image encryption.
The reasons lie in: (1) Although it has only 4 dimensions in total, it has 3 positive LEs.
The hyperchaotic characteristics make it very suitable for image encryption. (2) It has a
simpler mathematical form when compared with some hyperchaotic systems of higher
dimensions. (3) All the components fall within appropriate ranges, making it easy to sort
for permutation and convert hyperchaotic sequences into integers for diffusion.

3. MBPD: Multiple Bit Permutation and Diffusion

This section will detail the steps of multiple bit permutation and diffusion for image
encryption, including how to generate the hyperchaotic sequence, operations of multiple
bit permutation and multiple bit diffusion, and the encryption algorithm.

3.1. Hyperchaotic Sequence Generation

In chaotic image encryption, a chaotic sequence is required to generate index for
permutation and a mask for diffusion. Given the parameters and the initial values, we
use the Fourth-order Runge-Kutta method and an interval of 0.001 to solve the presented
4D hyperchaotic system in Section 2.2 and then construct the hyperchaotic sequence for
encryption. The detailed steps are as follows:

Step 1: Given the initial values IV = {x0, y0, z0, w0}, we solve the 4D hyperchaotic system
to obtain long enough state values. The state values in the i−th iteration can be
denoted as si = {xi, yi, zi, wi}.

Step 2: To remove the adverse effects, the state values obtained by the first it0 iterations
are discarded.

Step 3: When the iteration terminates, we can get a hyperchaotic sequence H by concate-
nating all the sj(j = 1, 2, · · · , N) as Equation (4):

H = {s1, s2, · · · , sN} = {x1, y1, z1, w1, · · · , xN , yN , zN , wN}
= {h1, h2, h3, h4, · · · , h4N−3, h4N−2, h4N−1, h4N},

(4)

where N is the iteration times excluding it0.
Step 4: Since the elements in H come from different equations in Equation (3) and, hence,

have different ranges, we use the following formulation to further map each
element in H to a uniform interval [0, 1).

hi =
∣∣∣hi × 108

∣∣∣− b∣∣∣hi × 108
∣∣∣c, (5)

where |·| and b·c are the mathematical computation of absolute value and floor-
ing, respectively.

It can be seen that each element in H is a real value in [0, 1). With an element hi , we
can use the following formula to map it to an integer I in the range of [0, N]:

I = b((|hi| − b|hi|c)× 1014)c%N, (6)

where % is the modulo operation.

3.2. Multiple Bit Permutation

Permutation is to rearrange the image content on a certain basis. For the permutation
in chaotic image encryption, the positions of the image data to be permuted are usually
determined by an index vector that can be obtained by sorting a hyperchaotic sequence.
Typical permutation is conducted on pixel-level, DNA-level, and/or bit-level data [46].
The pixel-level data and DNA-level data in the current encryption technique actually refer
to 8-bit data and 2-bit data, respectively. Few studies have focused on other numbers of
bit data for encryption, such as 3–7 bits. In this paper, multiple bit permutation means
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conducting permutation on different numbers of bit data. n-bit permutation refers to using
n bits as a minimum permutation unit.

All multiple bit operations require a bit stream of an image. Without loss of generality,
given a bit stream B of length L, a hyperchaotic sequence H, and the number of bits to be
permutated n, the first step is to calculate the number of permutation units PU and the
remaining bits RB by PU = bL/nc and RB = L%n, respectively. It is clear that RB < n.
Then, the PU units need to rearrange according to the index of sorting PU values in H and
the RB bits can be embedding into the rearranged bit stream at a position decided by a
value in H.

The n-bit permutation can be described as Algorithm 1:

Algorithm 1 n-bit permutation.

Input: a bit stream B, a hyperchaotic sequence H, and the number of bits to be permuted
in a unit n

Output: a permutated bit stream PB, the number of used elements PU in H
1: function BITPERMUTE(B, H, n)
2: L← length(B); //length of B
3: PU ← bL/nc;
4: RB← L%n;
5: PB ← reshape(B(1 : PU ∗ n), [PU, n]); //reshape the first PU ∗ n bits in B into a

vector PB having PU n-bit units
6: [v, idx]← sort(H(1 : PU)); // ascending sort to get the index vector idx
7: PB(1 : idx)← PB; // permute the PU units
8: PB← reshape(PB, [1, PU × n]); // reshape the matrix PB to a bit stream
9: if RB <> 0 then

10: PU ← PU + 1;
11: Generate a random position pos in the range of [1, PU] from H(PU) via

Equation (6);
12: Insert the remaining RB bits B(L− RB + 1 : L) into PB at pos;
13: end if
14: return PB, PU;
15: end function

When n equals 1 or 8, Algorithm 1 degenerates to bit-level permutation or pixel-level
permutation. Hence, the common bit-level permutation and pixel-level permutation are
the special cases of Algorithm 1.

Here, we take 2-bit permutation and 3-bit permutation as an example to illustrate the
detailed permutation procedure, as shown in Figure 3.

order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

H 0.46 0.86 0.13 0.27 0.95 0.75 0.28 0.86 0.82 0.95 0.49 0.74 0.24 0.33 0.19 0.59 0.08 0.94 0.95 0.22 0.04 0.98 0.67 0.27 0.35 0.66 0.271456874102351

idx 3 15 13 4 7 14 1 11 16 12 6 9 2 8 5 10 5 1 4 8 9 10 7 2 3 6

pos 5
Obtained by mapping H27

P 12 23 B1 3-bit permutation
134 245

PB1 B2 011 100 000 101 001 110 011 100 110 100 10

C1 112 83 PB2 100 100 110 000 011 100 011 101 001 110
156 251

PB3 100 100 110 000 011 10 100 011 101 001 110

C2 147 7
71 78

PB2 with the 2-bit unit embedding at pos

Final cipher image of P by 2-bit
permutation and 3-bit permutation

Cipher image of P by 2-bit permutation

Bit stream of P shown in 2-bit units

Permutated B1 by 2-bit permutation with I1 Bit stream of C1 shown in ten 3-bit units and one 2-bit unit

The ten 3-bit units of B2 permuted by 3-bit permutation with I2

I2: Index obtained by sorting H17:H26

Plain image

2-bit permutation

00 00 11 00 00 01 01 11 10 00 01 10 11 11 01 01

01 11 00 00 01 01 00 11 10 01 11 00 11 01 00 10

I1: Index obtained by sorting H1:H16

Figure 3. Illustration of 2-bit and 3-bit permutation.
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A 2× 2 plain image P is firstly converted into a bit stream B1 and the bits are grouped
into 16 2-bit units. We get an index vector idx from the first 16 elements of the given
hyperchaotic sequence H. It can be further grouped into two small vectors: I1 and I2.
Then, we use I1 to rearrange the 16 units to get the permutated PB1. Since the RB is equal
to 0 for this 2-bit permutation, there are no remaining bits needed to be embedded. Up
to now, the 2-bit permutation completes. The obtained PB1 by the 2-bit permutation is
actually the cipher image C1, which is clearly different from P. Then, it starts to conduct
3-bit permutation on the PB1. The 32 bits can be grouped into 10 complete 3-bit units
and 2 remaining bits, as shown by B2. For the 10 3-bit units, we can rearrange them by
I2, and then obtain the PB2 before embedding. H27 can be mapped to an integer 5 using
Equation (6), and the remaining 2 bits can be inserted after the 5-th 3-bit unit in PB2, shown
as PB3 after embedding in the figure. The final PB3 is actually the cipher image C2, a
totally different image from P. From this illustration, we can see that the proposed n-bit
permutation can also cause the change of the pixel values in plain images.

3.3. Multiple Bit Diffusion

The purpose of diffusion is to change the values of image data. The existing image
encryption schemes mainly conduct diffusion on pixel-level data and/or DNA-level data
(two bits). Similar to n-bit permutation, we propose n-bit diffusion that can be conducted
on n-bit data per unit.

With the B, L, H, and n given for n-bit permutation, the number of n-bit units to be
diffused DU is equal to bL/nc and the length of the last unit LL is L%n. If LL equals 0,
the last unit is null; otherwise, its length is less than n (we call it non-n-bit unit) and it
needs special handling. In this paper, we use a ciphertext diffusion in crisscross pattern
(CDCP)-like idea to conduct n-bit diffusion [47]. Specifically, the bit stream B is transformed
into a vector P of n-bit unit and then divided into two parts, and the two parts are diffused
in crisscross pattern with two rounds. A mask vector M and an initial n-bit integer V can
be mapped from H. When DU is an even, the first n-bit unit of each part can be initialized
by Equation (7). {

C1 = P1 ⊗ ((V −M1)%2n)
CDU/2+1 = PDU/2+1 ⊗ ((C1 −MDU/2+1)%2n)

, (7)

where ⊗ is the bitwise XOR (exclusive or) operation, and C is the vector of an cipher image.
After that, the other n-bit units of each part can be updated as Equation (8):{

Ci = Pi ⊗ ((CDU/2+i−1 −Mi)%2n)
CDU/2+i = PDU/2+i ⊗ ((Ci −MDU/2+i)%2n)

, i = 2, 3, · · · , DU/2. (8)

There are two cases that need to be handled specially. When DU is an odd, we use the
following formulation to encrypt the (DU + 1)/2-th unit.

C(DU+1)/2 = P(DU+1)/2 ⊗ ((CDU −M(DU+1)/2)%2n). (9)

Another case is about the non-n-bit unit. When it exists, we use the following formulation
which is similar to Equation (9) to handle it.

CDU+1 = PDU+1 ⊗ ((CDU −MDU+1)%2LL). (10)

The second round diffusion is the same as the first round, except that CDU is used as
the initial value to replace V in Equation (7).

The n-bit diffusion can be described as Algorithm 2.
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Algorithm 2 n-bit diffusion.

Input: a bit stream B, a hyperchaotic sequence H, and the number of bits to be diffused in
a unit n

Output: a diffused bit stream DB, the number of used elements PU in H
1: function BITDIFFUSE(B, H, n)
2: L← length(B); //length of B
3: DU ← bL/nc;
4: LL← L%n;
5: P ← reshape(B(1 : DU ∗ n), [DU, n]); //reshape the first DU ∗ n bits in B into a

vector P having DU n-bit units
6: PDU+1 = B(DU ∗ n + 1 : end) //Use PDU+1 to denote the remaining L%n bits in B

if they exist;
7: PU ← L/8;
8: Map H(1 : PU) to a vector of 8-bit unsigned integers M;
9: Map H(PU + 1) to a n-bit unsigned integer V;

10: PU ← PU + 1;
11: Conduct the first round diffusion with P, V and M by Equations (7)–(10);
12: P← C, V ← CDU ;
13: Conduct the second round diffusion with P, V and M by Equations (7)–(10);
14: DB = reshape(P, [1, L]);
15: return DB, PU;
16: end function

An illustration on 2-bit diffusion and 3-bit diffusion is shown in Figure 4.

order 3 4 5 6 7 8 9 10

H 0.975... 0.355… 0.325… 0.009… 0.480… 0.786… 0.777… 0.299174461427701

integer 32 104 169 193 3 31 82 50

binary 00100000 01101000 10101001 11000001 00000011 00011111 01010010 00110010

2-bit diffusion
P 12 23 B1

134 245

M1

V1 01

R1

3-bit diffusion
R2 B2

Bit stream of C1 shown in ten 3-bit units and one 2-bit unit

C1 138 91 M2
67 199

V2 010

R3

R4

C2 119 43
147 36

      Cipher image of P by 2-bit diffusion

1 2

0.834076243076637 0.879...

207 185

11001111 10111001

00 00 11 00 00 01 01 11 10 00 01 10 11 11 01 01

11 00 11 11 10 11 10 01 00 10 00 00 01 10 10 00

11 01 11 10 00 01 00 11 11 10 10 11 11 11 01 00

10 00 10 00 01 01 10 11 01 00 00 11 11 00 01 11 100 010 000 101 101 101 000 011 110 001 11

110 000 010 000 001 100 011 111 010 100 10

I1: Integers obtained by mapping H1:H5 I2: Integers obtained by mapping H6:H10

Binary of I1 Binary of I2

Plain image
Bit stream of P shown in 2-bit units

Mask vector from I1 shown in 2-bit units

Result of 1st round  2-bit diffusion

Result of 2nd round  2-bit diffusion

A 2-bit initial integer extracted from I1(5)

Mask vector from I2 shown in 3-bit units

000 011 110 001 101 001 000 100 001 000 01

011 101 110 010 101 110 010 011 001 001 00

Final cipher image of P by 2-bit
diffusion and 3-bit diffusion

A 3-bit initial integer extracted from I2(5)

Result of 1st round  3-bit diffusion

Result of 2nd round  3-bit diffusion

Figure 4. Illustration of 2-bit and 3-bit diffusion.

As done in Figure 3, the same plain image P is transformed into a binary sequence
B1. A hyperchaotic sequence H having 10 elements are mapped into 8-bit integers and a
further binary sequence (“binary” in the figure) by Equation (6). The sequence can also be
split into I1 and I2. Note that some elements in H only show their first four digits to save
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spaces of the figure. The I1 can be further shown in a two-bit format as M1. The initial
values V1 is extracted from the last 2 bits from I1(5), as shown in red. When the 2-bit
diffusion completes using Equation (7)/Equation (8) for the first/second round, we can
obtain R1 and R2, respectively. R2 is actually the cipher image C1, which is totally different
from the plain image P. Similarly, C1 can be encrypted by performing 3-bit diffusion. Note
that since it has a 2-bit unit, when all the 3-bit units are encrypted, the remaining 2-bit unit
needs to be encrypted by Equation (10). After the first and the second round 3-bit diffusion,
we can obtain R3 and R4, respectively. R4 represents the final cipher image C2, where we
can not find any visually information of the plain image P.

3.4. MBPD: Multiple Bit Permutation and Diffusion for Image Encryption

The main characteristic of the proposed MBPD lies in the permutation and diffusion
can be conducted on multiple bit level data, which is very different from the common
1-bit, 2-bit (DNA) and/or 8-bit (pixel) permutation and 8-bit diffusion operations in most
existing image encryption schemes.

With the aforementioned analysis, the detailed steps of the proposed MBPD are
described as Algorithm 3.

Algorithm 3 MBPD: Multiple bit permutation and diffusion.

Input: a plain image P, initial values IV = (x0, y0, z0, w0) for the hyperchaotic system, and
iteration numbers of the discarded sequence it0

Output: a cipher image C
1: function MBPD(P, IV,it0)
2: Generate a hyperchaotic sequence H with IV and it0 as described in Section 3.1;
3: Get the height h and the width w of P;
4: Convert P to a bit stream B of length L = h ∗ w ∗ 8;
5: i← 0;
6: for n = 1→ 8 do
7: B, ul ← BITPERMUTE(B, H(i + 1 : end), n); //n-bit permutation
8: i← i + ul;
9: B, ul ← BITDIFFUSE(B, H(i + 1 : end), n); //n-bit diffusion

10: i← i + ul;
11: end for
12: Convert B to an image C;
13: return C;
14: end function

The key steps of Algorithm 3 consist of a hyperchaotic sequence generation (Line 2),
conversion the plain image to a bit stream (Line 3–4), conducting multiple bit permutation
and diffusion on the bit stream (Line 6–11), and converting the bit stream back to an image
(Line 12). Note that Algorithm 3 is proposed for gray images, but it can be easily extended
for color images. The easiest way is to consider an RGB color image as three gray images
and encrypt each gray image independently. The current proposed algorithm considers
8-bit permutation and diffusion at most, and it might be extended for 9-bit, 10-bit and even
more bit permutation and diffusion. In addition, the proposed MBPD can be performed
more than one round to enhance the effect of encryption. On the other hand, in real-world
applications, it is not necessary to conduct all n-bit (n = 1, 2, · · · , 8) operations to save
time. The proposed MBPD can also be considered as a typical application of the strategy of
“divide and conquer” [48,49].

To obtain a decrypted image, it only needs to execute the steps in Algorithm 3 reversely.

4. Experimental Results
4.1. Experimental Settings

We select the initial values IV = (x0, y0, z0, w0) for the presented 4D hyperchaotic
system as the security keys of the MBPD. Instead of conducting all bit levels permutation
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and diffusion, we only perform 6 types of n-bit permutation (n = 1, 2, 3, 5, 6, 7) and 2 types
of n-bit diffusion (n = 4, 8). Specifically, we list all the parameters in Table 1. Although
we use fixed security keys for all test images, they can also be optimized by evolutionary
algorithms for each image [50–52].

Table 1. Experiment parameters.

Parameter Description Value

Hyperchaotic system’s parameters (a, b, c, d, e, f ) = (35, 7, 35, 5, 1.5, 1)
Security keys (x0, y0, z0, w0) = (0.12, 0.23, 0.34, 0.45)
Iteration number to generate discarded
sequence it0 = 500

Bit levels of permutation n = 1, 2, 3, 5, 6, 7
Bit levels of diffusion n = 4, 8
Rounds of encryption 1

We use 16 publicly accessible 256-level gray images as test images in most experiments.
The size of each image is 256× 256 or 512× 512. We name each image by the format of
“name+width”. For example, “Lena512” represents gray Lena image of size 512× 512. To
demonstrate the performance of the proposed MBPD, we compare it with three popular
gray image encryption schemes in most experiments: DFDLC [13], HCDNA [38], and
CDCP [47].

All the experiments are conducted with MATLAB R2020b on a PC with 64-bit Windows
10 OS, an i5-9500 CPU @3.00 GHz, and 32 GB RAM.

4.2. Security Key Analysis

The security key is very important in cryptography, regardless of whether the encryp-
tion object is text, ordinary data or multimedia information. Key space and key sensitivity
are two important indicators for evaluating security keys in image encryption.

4.2.1. Key Space

A good encryption scheme should have an enough large key space. An image en-
cryption scheme with a key space larger than 2100 is able to resist brute-force attacks from
modern computers. As far as the proposed MBPD is concerned, the initial value of the 4D
hyperchaotic system can be considered as the security key. According to the IEEE standard,
the precision of each element of the initial values is 10−15; hence, the total key space is
(1015)4 ≈ 2199, which is far larger than 2100. In addition, the parameters of the hyperchaotic
system, the iteration number to generate discarded sequence, and the combination of
permutation and/or diffusion at n bits can be thought of as parts of security key to further
enlarge the key space. Therefore, the key space of the proposed MBPD is so large that it
can resist brute-force attacks.

4.2.2. Key Sensitivity

A hyperchaotic system is extremely sensitive to the key. A tiny change in the key
will produce a different hyperchaotic sequence and, hence, result in completely different
decrypted images. To demonstrate the sensitivity of the proposed MBPD, we use the
corrected security K1 = (x0, y0, z0, w0) = (0.12, 0.23, 0.34, 0.45) and a slightly different key
K2 = (x0 + 10−15, y0, z0, w0) to decrypt some cipher images. The decrypted images with
K1 and K2 are shown in the first row and the second row of Figure 5, respectively.
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Figure 5. Results of key sensitivity. The first row and the second row show the decrypted images by
K1 and K2, respectively. From left to right: Clock256, Cameraman256, Finger512, Lena512, Baboon512,
Bw512, Couple512, and Peppers512.

From this figure, we can find that the MBPD can decrypt the cipher images correctly
with K1 and even a tiny change (10−15) that occurs in one element of K1 will result in
random-like images. It reveals that the MBPD is very sensitive to the security key.

To quantitatively demonstrate the sensitivity, we further use the SSIM to measure the
structural similarity between the two decrypted images with K1 and K2 [53]. The lower the
SSIM value, the higher the sensitivity. If the SSIM value is very close to 0, it reveals that the
two images are almost completely different. Therefore, if a tiny change in the security key
produces an SSIM value close to 0, we can say that the security key is very sensitive, from
the review of decrypted images. The SSIM values of the decrypted images in Figure 5 are
listed in Table 2. From this table, we can observe that all the SSIM values are very close to
0, showing the sensitivity of security keys.

Table 2. The SSIM values of decrypted images with K1 and K2.

Image Name SSIM Value Image Name SSIM Value

Clock256 0.0083 Cameraman256 0.0087
Finger512 0.0081 Lena512 0.0093
Baboon512 0.0107 Bw512 0.0047
Couple512 0.0110 Peppers512 0.0098

We also use the SSIM to verify the structural similarity between the two cipher images
by K1 and K2. The results are shown in Table 3. Again, we can find that the SSIM values
are far below 0.01 and very close to 0, indicating that the security keys are very sensitive to
cipher images.

Table 3. The SSIM values of cipher images with K1 and K2.

Image Name SSIM Value Image Name SSIM Value

Clock256 0.0011 Cameraman256 0.0021
Finger512 0.0052 Lena512 0.0081
Baboon512 0.0087 Bw512 0.0060
Couple512 0.0052 Peppers512 0.0054

In summary, both the visual decrypted images and the quantitative analysis for
decrypted images and cipher images show that the proposed MBPD has sensitive security
keys for image encryption.

4.3. Statistical Analysis

In this subsection, we will analyze the MBPD via information entropies, histograms
and correlations, which are all among the typical statistical analysis indicators in the area
of image encryption.
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4.3.1. Information Entropy

Entropy is an important concept in physics, communication, information theory, and
others. It is often used to measure the uncertainty or randomness of a specific complex
system. Given an L-level gray image I and the probability pi of each gray level i occurs in
the image, the information entropy of I, denoted by E(I), can be calculated by:

E(I) = −
L−1

∑
i=0

pilog2(pi). (11)

For a 256-level test image in the experiment, if it has only one level, for example,
all-white image, its information entropy will equal the minimal value, 0. If each level
appears with an identical probability, 1

256 , the corresponding information entropy is equal
to the maximal value, 8. Therefore, the closer the information entropy to 8, the better
the encrypted image. We list the information entropies of all plain images and their
corresponding cipher images by the MBPD and the other compared schemes in Table 4,
where the highest entropy of each image is shown in bold.

Table 4. Information entropies of the testing images.

Image Name Plain Image
Cipher Image

MBPD DFDLC [13] HCDNA [38] CDCP [47]

Airplane256 6.4523 7.9970 7.9974 7.9961 7.9975
Clock256 6.7057 7.9970 7.9974 7.9957 7.9972

Cameraman256 7.0492 7.9976 7.9972 7.9961 7.9975
Cameraman512 7.0480 7.9994 7.9992 7.9982 7.9993

Finger512 6.7279 7.9994 7.9993 7.9991 7.9993
Gray512 4.3923 7.9992 7.9993 7.9920 7.9993
Lena512 7.4460 7.9993 7.9994 7.9989 7.9993

Baboon512 7.1391 7.9994 7.9994 7.9993 7.9993
Barbara512 7.6321 7.9993 7.9994 7.9993 7.9993

Boat512 7.1914 7.9992 7.9994 7.9990 7.9993
Bw512 1.0000 7.9992 7.9992 7.9154 7.9993

Couple512 7.0572 7.9993 7.9993 7.9992 7.9994
Houses512 7.6548 7.9993 7.9993 7.9993 7.9992
Peppers512 7.5925 7.9994 7.9994 7.9992 7.9994
Pirate512 7.2367 7.9993 7.9993 7.9990 7.9993
Truck512 6.0274 7.9994 7.9994 7.9991 7.9993

We can see that all plain images’ information entropies are much less than those
of their cipher images. Specifically, the entropies of plain images fall in the range of
[1.0000, 7.6548], where the lower bound and the upper bound are achieved by Bw512 and
House512, respectively. However, those values of cipher images of size 256× 256 are
greater than 7.9957. For cipher images of size 512× 512, except for HCDNA’s 7.9154 for
Bw512, the lowest information entropy is 7.9920, which is very close to the maximal value,
8. The proposed MBPD, DFDLC, HCDNA, and CDCP achieve the highest information
entropies in 8, 10, 1, and 6 out of 16 cases, respectively. In terms of information entropy, the
MBPD significantly outperforms HCDNA and achieves comparable results with CDCP
and DFDLC, revealing that the MBPD is able to resist entropy attacks effectively.

4.3.2. Histogram

The histogram of an image reflects the distribution of pixel levels. A natural image
often has a histogram with certain irregular shapes, such as mountain peaks and valleys. A
well-designed encryption scheme should break the original distribution of gray-levels and
make the new distribution as even as possible. The histograms obtained by the MBPD are
shown in Figure 6, where the test images’ orders are the same as in Table 4.
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Figure 6. Histograms of plain images and their corresponding cipher images. Each plain image is
followed by its histogram, the corresponding cipher image, and its histogram.

From this figure, we can find that all the natural images (those except for Gray512
Bw512) appear irregular histograms. Since plain Gray512 and Bw512 have evenly 21 and
2 gray-levels, respectively, they only have 21 and 2 bars in the histograms. However, the
distributions of the pixel values of the cipher images are so uniform that the tops of the
bars in the histograms appear as horizontal lines, even for Gray512 and Bw512. The results
reveal that the proposed MBPD can effectively break the distributions of cipher images
and produce sufficiently uniform histograms.

4.3.3. Correlation

Strong correlation among neighboring pixels is a key attribute of plain images. A
practical image encryption scheme should reduce such correlation significantly. The lower
the correlation in cipher images, the better an encryption scheme. Given two sequences s1
and s2, the correlation (γ) between them can be computed by:

γ =
ρ(s1, s2)√

D(s1)D(s2)
, (12)

where ρ denotes the covariance of two sequences, and D is the standard deviation of a
sequence. According to this equation, the highest value of correlation will be 1 if s1 and s2
are identical, while it will be 0 if they are independent.

Given an image, there are many ways to construct s1 and s2. Typically, when a pixel is
put into s1, its horizontal, vertical, or diagonal adjacent pixel can be placed in s2. In this
way, we can use Equation (12) to calculate the correlations at the horizontal (γh), vertical
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(γv), and diagonal (γd) directions. We use all the pixels in an image to construct s1, and then
construct corresponding s2 to compute γh, γv, and γd. The correlations of plain images and
cipher images are shown in Table 5, where the best results are in bold.

Table 5. The correlation coefficients γ of the testing images.

Image Name γ Plain Image
Cipher Image

MBPD DFDLC [13] HCDNA [38] CDCP [47]

Airplane256
γh 0.9562 −0.0062 0.0004 −0.0049 −0.0003
γv 0.8742 0.0006 −0.0042 −0.0045 −0.0006
γd 0.8995 0.0019 0.0001 0.0038 −0.0022

Clock256
γh 0.9540 −0.0024 0.0034 0.0017 0.0020
γv 0.9734 −0.0107 0.0022 −0.0060 −0.0017
γd 0.9376 0.0013 0.0026 −0.0015 −0.0031

Cameraman256
γh 0.9554 −0.0059 0.0015 −0.0006 −0.0013
γv 0.9710 0.0007 0.0023 −0.0012 0.0001
γd 0.9377 0.0052 −0.0053 0.0012 −0.0030

Cameraman512
γh 0.9830 −0.0013 −0.0016 −0.0014 0.0011
γv 0.9887 0.0014 0.0015 0.0029 −0.0026
γd 0.9746 −0.0017 0.0002 −0.0022 0.0010

Finger512
γh 0.9343 0.0022 −0.0010 −0.0012 −0.0002
γv 0.9168 0.0007 −0.0012 −0.0005 −0.0005
γd 0.8664 0.0017 0.0001 −0.0003 −0.0003

Gray512
γh 0.9913 0.0028 −0.0006 0.0017 0.0001
γv 0.9989 0.0009 0.0021 −0.0010 0.0017
γd 0.9964 0.0005 −0.0006 −0.0007 0.0007

Lena512
γh 0.9705 0.0005 0.0014 0.0022 −0.0028
γv 0.9856 0.0002 −0.0004 −0.0004 0.0038
γd 0.9649 0.0000 0.0021 −0.0008 0.0023

Baboon512
γh 0.8652 −0.0018 0.0024 0.0020 −0.0024
γv 0.7524 −0.0017 −0.0000 0.0027 0.0024
γd 0.7210 0.0022 0.0026 0.0011 0.0012

Barbara512
γh 0.8940 0.0000 0.0001 0.0007 −0.0001
γv 0.9572 0.0002 0.0034 −0.0018 −0.0001
γd 0.8942 0.0004 −0.0006 −0.0001 −0.0014

Boat512
γh 0.9368 0.0022 −0.0015 −0.0022 −0.0052
γv 0.9709 0.0007 0.0008 −0.0004 0.0025
γd 0.9240 −0.0007 0.0012 0.0015 0.0021

Bw512
γh 1.0000 −0.0013 −0.0009 −0.0001 −0.0022
γv 0.9922 0.0031 0.0050 −0.0016 −0.0019
γd 0.9961 −0.0011 −0.0019 0.0002 −0.0008

Couple512
γh 0.9451 0.0013 0.0020 0.0007 0.0019
γv 0.9514 0.0011 0.0002 0.0020 0.0032
γd 0.9116 −0.0015 −0.0011 −0.0006 0.0001

Houses512
γh 0.9077 −0.0013 0.0028 0.0014 −0.0030
γv 0.9173 −0.0002 0.0000 −0.0026 0.0016
γd 0.8439 0.0014 0.0005 0.0010 −0.0011

Peppers512
γh 0.9733 −0.0009 0.0006 −0.0004 0.0001
γv 0.9763 −0.0021 −0.0024 0.0007 −0.0006
γd 0.9650 0.0005 0.0007 0.0011 −0.0008

Pirate512
γh 0.9593 −0.0006 0.0014 −0.0020 −0.0020
γv 0.9675 −0.0022 0.0006 −0.0008 0.0006
γd 0.9432 0.0002 −0.0010 −0.0003 −0.0023

Truck512
γh 0.9610 0.0005 0.0000 0.0012 0.0035
γv 0.9164 0.0018 0.0001 0.0003 −0.0004
γd 0.9048 −0.0028 −0.0003 −0.0016 −0.0005

From this table, we can observe that all the plain images have high correlations. In
particular, the γh of plain Bw512 is equal to the highest value, i.e., 1. However, these high
correlations are reduced to a very low level by the encryption schemes. More specifically,
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the correlations by the encryption schemes are very close to or even equal to 0, showing
that all the schemes can break the high correlations in plain images. As far as the four
schemes, MBPD achieves the lowest correlations in 15 out of 48 times, followed by CDCP’s
13 times, DFDLC’s 12 times, and HCDNA’s 11 times, indicating that MBPD performs better
than the compared encryption schemes.

To further analyze the correlations, we randomly pick up 4000 pairs of horizontally
adjacent pixels from plain images and cipher images by the proposed MBPD and then
plot their gray levels as x-values and y-values in a 2D plane, as shown in Figure 7. We
can observe that the plots of all the plain images except for Bw512 appear near the main
diagonals, showing that there exist strong correlations in the cipher images. Since Bw512
has only two gray levels: 0 and 255, most points are piled up at (0, 0) and (255, 255), which
are also on the main diagonal. In contrast, the plots of all the cipher images fill with the
whole planes, suggesting low correlations in cipher images.
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Figure 7. Horizontal correlations of plain images and their corresponding cipher images.

4.4. Differential Attack Analysis

Differential attacks compare the variations in a plain image with variations in the
cipher image to find the plain image and/or desired security key. To resist differential
attacks, a well-designed image encryption scheme must produce a completely different
cipher image even for a tiny change in the corresponding plain image.

There are two popular indicators in the community of image security to measure
image encryption schemes’ capability of resisting differential attacks. One is the number of
pixels change rate (NPCR), which can be defined as Equation (13). And the other is the
unified average changing intensity (UACI) defined by Equation (14).

NPCR =
∑H

h=1 ∑W
w=1 d(h, w)

H ·W × 100%, (13)

UACI =
∑H

h=1 ∑W
w=1|C1(h, w)− C2(h, w)|

255 · H ·W × 100%, (14)

where H and W denote the height and the width of the cipher images C1 and C2, and
d(h, w) is used to judge whether the gray levels of C1 and C2 at the position (h, w) are
different, as formulated by Equation (15).

d(w, h) =
{

0, C1(h, w) = C2(h, w)
1, C1(h, w) 6= C2(h, w)

. (15)
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Given two 8-bit gray images, if they are identical, their both NPCR and UACI obtain
the minimal value, 0. If one is all-white and the other is all-black, their NPCR and UACI
values will be the maximal value, 1. Since the cipher images are all random-like, the
NPCR and UACI values of a pair of cipher images usually fall into a certain range. The
study by Wu et al. reveals that, given a significance level α = 0.05 and a 256× 256 8-bit
gray levels image, if the NPCR is greater than N 1

0.05 = 99.5693% and the UACI falls
into the range of

(
U 11

0.05,U 1u
0.05
)
= (33.2824%, 33.6447%), the encryption scheme is said

to pass NPCR test and UACI test separately at α = 0.05 [54]. Similarly, for a 512× 512
image, the corresponding NPCR threshold and UACI range are N 2

0.05 = 99.5893% and(
U 21

0.05,U 2u
0.05
)
= (33.3703%, 33.5541%), respectively.

We compute NPCR and UACI values from the cipher image by the exact plain image
and a cipher image by a slightly changed plain image generated by adding one to the least
significant bit of a random pixel. The computation procedure is repeated 20 times, and the
average NPCR and UACI are reported in Tables 6 and 7, respectively, where the values
that pass the tests are shown in bold. Moreover, the times of passing the test, the standard
deviation, and the average value of the 16 test images by each scheme are shown in the last
three lines of the tables.

From Table 6, we can find that the MBPD passes the NPCR test on all images, following
by DFDLC and CDCP’s in 15 out of 16 cases. The HCDNA fails to the test because it has
no operations to expand a tiny change in the plain images to the whole cipher images.
Although CDCP achieves the highest average NPCR value (99.6773%) for the 16 test
images, but its standard deviation (0.0723%) is not as low as that of MBPD (0.0037%),
indicating that the MBPD achieves the stablest NPCR values. Regarding UACI, again,
MBPD passes the test on all test images and achieved the lowest standard deviation, and
CDCP and DFDLC fails one image, i.e., Bw512 and Pirate512, respectively. HCDNA
performs the worst and fails all the test images. To summarize, the proposed MBPD
outperforms the other compared schemes in terms of NPCR and UACI and can effectively
resist differential attacks.

Table 6. The average NPCR (%) of running the schemes 20 times.

Image MBPD DFDLC [13] HCDNA [38] CDCP [47]

Airplane256 99.6014 % 99.6125% 76.4828% 99.6374%
Clock256 99.6114% 99.6085% 65.7269% 99.7081%
Cameraman256 99.6099% 99.6196% 73.4785% 99.7564%
Cameraman512 99.6112% 99.6078% 67.1009% 99.6590%
Finger512 99.6083% 99.6108% 76.2949% 99.6928%
Gray512 99.6088% 99.6131% 61.1288% 99.6767%
Lena512 99.6062% 99.6084% 66.5552% 99.6849%
Baboon512 99.6104% 99.6077% 64.3461% 99.6372%
Barbara512 99.6113% 99.6114% 73.5446% 99.5927%
Boat512 99.6093% 99.6089% 75.0493% 99.4786%
Bw512 99.5997% 89.6501% 64.8879% 99.7000%
Couple512 99.6033% 99.6045% 63.5847% 99.7910%
Houses512 99.6037% 99.6092% 75.8256% 99.7578%
Peppers512 99.6090% 99.6100% 73.8790% 99.6849%
Pirate512 99.6082% 99.6087% 73.9838% 99.6765%
Truck512 99.6063% 99.6070% 66.5778% 99.7033%

Pass/Fail/All 16/0/16 15/1/16 0/16/16 15/1/16
Std. 0.0037% 2.4899% 5.3211% 0.0723%
Mean 99.6074% 98.9874% 69.9029% 99.6773%
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Table 7. The average UACI (%) of running the schemes 20 times.

Image MBPD DFDLC [13] HCDNA [38] CDCP [47]

Airplane256 33.4400 % 33.4256% 30.6926% 33.4682%
Clock256 33.4610% 33.4992% 28.3912% 33.5090%
Cameraman256 33.4312% 33.4529% 31.3096% 33.4766%
Cameraman512 33.4618% 33.4547% 27.7148% 33.4765%
Finger512 33.4552% 33.4766% 33.6617% 33.4796%
Gray512 33.4628% 33.4638% 25.1829% 33.4842%
Lena512 33.4545% 33.4581% 27.2038% 33.4484%
Baboon512 33.4590% 33.4528% 26.1169% 33.4996%
Barbara512 33.4905% 33.4746% 28.2405% 33.5072%
Boat512 33.4684% 33.4781% 31.6422% 33.4881%
Bw512 33.4899% 30.1296% 22.3338% 33.4655%
Couple512 33.4661% 33.4853% 25.9647% 33.4975%
Houses512 33.4682% 33.4631% 31.4138% 33.4587%
Peppers512 33.4409% 33.4255% 29.2497% 33.4637%
Pirate512 33.4808% 33.4251% 30.3032% 33.5917%
Truck512 33.4612% 33.4609% 28.0393% 33.4589%

Pass/Fail/All 16/0/16 15/1/16 0/16/16 15/1/16
Std. 0.0164% 0.8328% 2.8880% 0.0335%
Mean 33.4620% 33.2516% 28.5913% 33.4858%

4.5. Robustness

From the above analysis, we know that a tiny change in a plain image will result in a
completely different cipher image for a well-designed image encryption scheme. However,
contamination in cipher images is unavoidable during transmission and storage. Therefore,
a good encryption scheme should recover a contaminated cipher image to some extent.
Noise and cropping are two typical types of contamination.

To validate the robustness to noise and cropping, we first add 0.5%, 1%, 2%, 4%, and
10% salt-and-pepper noise to the cipher images, and decrypt them with the proposed
MBPD. The results are shown in Figure 8, where we can find that when the noise level is
less than 4%, the MBPD can recover the cipher images very well and even for 10% noise
level, the profile of Lena can be clearly recognized. Then, we crop the images with 1%,
2.78%, 6.75%, 11.11%, and 25% data loss, the cropped cipher images and the corresponding
decrypted images are shown in Figure 9. We can see that Lena can be easily recognized
when the data loss levels are less than 11.11%. When the level equals to 25%, it is hard to
recognize the profile of Lena. Another finding is that, even if the data loss is concentrated
in the center of an encrypted image, the contaminated locations in the decrypted image are
evenly distributed throughout the image.

To summarize, the MBPD can effectively resist noise and cropping attacks to some extent.

Figure 8. Noise test. The first row, from left to right: cipher images with 0.5%, 1%, 2%, 4%, and 10%
salt-and-pepper noise added. The second row: the decrypted images from the corresponding cipher
images in the first row.
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Figure 9. Cropping test. The first row, from left to right: cipher images with 1%, 2.78%, 6.75%, 11.11%,
and 25% data loss. The second row: the decrypted images from the corresponding cipher images in
the first row.

4.6. Running Time

Running time is used to measure the efficiency of the encrypted algorithms. Table 8 lists
the running time of encryption and decryption operations on images with sizes 256× 256
and 512× 512. We can find that CDCP takes the least time among the four schemes, while the
HCDNA takes the most time. The running time of HCDNA is about 30 times that of CDCP.
The results of MBPD and DFDLC are somewhere in between and are very close but the former
is slightly less than the latter. The major reasons why MBPD is somewhat time-consuming
are that it conducts encryption at multiple bit levels and the operations with most multi-bit
levels involve string operations. Two possible directions for decreasing running time are:
using parallel computing and reducing the number of bit levels for multi-bit operations, e.g.,
encrypting images only with 1-bit permutation and 4-bit diffusion.

Table 8. Running time of encryption and decryption (in seconds).

Operation Size MBPD DFDLC [13] HCDNA [38] CDCP [47]

Encryption 256× 256 0.8158 0.8479 3.4635 0.1268
512× 512 3.3833 3.4261 14.2808 0.5240

Decryption 256× 256 0.8136 0.8366 4.7181 0.1305
512× 512 3.3624 3.4116 19.5680 0.5126

4.7. Discussion

From the above experimental results and the corresponding analysis, we can see that
the proposed MBPD is a promising scheme for image encryption.

In addition to the proposed 4D hyperchaotic system and the extensive experiments,
the major contribution of the paper lies in proposing a novel multiple bit permutation and
diffusion scheme for image encryption. The MBPD can encrypt images not only with 1-bit,
2-bit, and 8-bit (one pixel) data that are widely processed by existing image encryption
schemes but also with 3–7 bit data that few studies have focused on.

The proposed MBPD’s main advantage over the existing image encryption schemes is
that it can perform permutation and diffusion with multiple different bits. The diversity
of each encrypted unit’s length is enhanced, and the proposed MBPD finally achieves
promising results in terms of the evaluation metrics when compared with four state-of-the-
art image encryption schemes, as demonstrated by the experiments.

Sixteen publicly accessible 256-level gray images of two sizes are used to evaluate
the proposed MBPD. They include 14 natural images in different scenes, as well as two
handcrafted images, which are very popular in the evaluation of image encryption schemes.
The MBPD performs quite well with all the test images. Although the MBPD is proposed to
encrypt gray images only in this paper, it can be easily extended for color image encryption.
The simplest way is to treat each channel of a color image as a gray image, and each channel



Entropy 2021, 23, 510 19 of 22

can be separately encrypted by the MBPD. Here, we use miscellaneous images of different
sizes, different scenes and different channels (a 3-channel image means a color image)
from the SIPI image database (http://sipi.usc.edu/database/database.php?volume=misc,
accessed on 19 April 2021) to verify the generality of the proposed MBPD. Note that the
data set has 39 images in total, consisting of 24 gray images and 15 color ones. Six of them
have been tested in the above experiments; hence, they are excluded in this experiment.
The results of entropy, γh, γv, γd, NPCR, and UACI of the rest 33 images obtained by the
proposed MBPD are reported in Table 9, where the test images are sorted by size and image
name. Note that the table reports the average of the three channels for color images.

Table 9. Results obtained by the proposed MBPD on miscellaneous images from the SIPI image database.

Image Size Entropy γh γv γd NPCR UACI

5.1.10 256× 256 7.9973 0.0010 −0.0024 −0.0003 99.6053% 33.4448%
5.1.13 256× 256 7.9976 0.0011 0.0000 −0.0016 99.6127% 33.4409%
5.1.14 256× 256 7.9974 −0.0022 0.0000 −0.0010 99.6114% 33.5188%
Moonsurface256 256× 256 7.9973 0.0023 −0.0042 −0.0012 99.6093% 33.4342%
5.2.10 512× 512 7.9992 0.0010 −0.0040 0.0005 99.6116% 33.4516%
7.1.02 512× 512 7.9993 −0.0007 0.0018 −0.0004 99.6083% 33.4698%
7.1.03 512× 512 7.9993 −0.0040 0.0017 −0.0004 99.6070% 33.4621%
7.1.04 512× 512 7.9993 0.0001 −0.0006 −0.0027 99.6060% 33.4578%
7.1.05 512× 512 7.9993 −0.0017 −0.0027 0.0013 99.6114% 33.4616%
7.1.06 512× 512 7.9994 0.0028 0.0015 −0.0027 99.6074% 33.4786%
7.1.07 512× 512 7.9993 0.0018 −0.0006 −0.0004 99.6066% 33.4736%
7.1.08 512× 512 7.9994 0.0007 −0.0012 −0.0000 99.6093% 33.4505%
7.1.09 512× 512 7.9993 0.0003 −0.0035 0.0011 99.6142% 33.4582%
7.1.10 512× 512 7.9992 −0.0026 −0.0007 −0.0000 99.6109% 33.4435%
Aerial512 512× 512 7.9993 0.0002 −0.0016 0.0004 99.6075% 33.4789%
ruler.512 512× 512 7.9993 −0.0045 −0.0001 −0.0010 99.6134% 33.4642%
5.3.01 1024× 1024 7.9998 −0.0006 −0.0017 0.0002 99.6117% 33.4545%
5.3.02 1024× 1024 7.9998 0.0014 0.0000 0.0004 99.6090% 33.4637%
7.2.01 1024× 1024 7.9998 0.0005 −0.0001 −0.0006 99.6127% 33.4609%
4.1.01 256× 256× 3 7.9969 0.0016 0.0031 0.0027 99.6155% 33.4652%
4.1.02 256× 256× 3 7.9975 −0.0068 −0.0037 0.0032 99.6149% 33.4376%
4.1.03 256× 256× 3 7.9971 0.0029 −0.0029 −0.0001 99.6168% 33.4728%
4.1.04 256× 256× 3 7.9972 0.0013 0.0024 0.0001 99.5991% 33.4596%
4.1.05 256× 256× 3 7.9974 0.0030 0.0031 −0.0008 99.6046% 33.4304%
4.1.06 256× 256× 3 7.9971 −0.0030 0.0009 0.0020 99.6051% 33.3983%
4.1.07 256× 256× 3 7.9972 0.0002 −0.0003 −0.0049 99.6139% 33.4285%
4.1.08 256× 256× 3 7.9970 0.0024 −0.0008 0.0003 99.6086% 33.4542%
4.2.01 512× 512× 3 7.9993 0.0014 −0.0005 −0.0006 99.6051% 33.4530%
4.2.03 512× 512× 3 7.9992 −0.0011 0.0032 0.0017 99.6102% 33.4833%
4.2.05 512× 512× 3 7.9994 −0.0004 −0.0002 −0.0004 99.6111% 33.4447%
4.2.06 512× 512× 3 7.9993 0.0004 −0.0016 −0.0006 99.6106% 33.4843%
4.2.07 512× 512× 3 7.9993 −0.0013 −0.0001 −0.0000 99.6087% 33.4446%
house 512× 512× 3 7.9992 −0.0012 0.0005 −0.0010 99.6079% 33.4962%

From this table, we can find that the experimental results are very ideal in terms of all
the evaluation indicators, regardless of the image content, size, and the number of channels.
Specifically, the entropies are very close to the theoretical best value, 8, and all the correlations
in all directions are close to 0. All the images pass the NPCR and UACI tests. Therefore, the
extensive test images demonstrate that the proposed MBPD has good generality.

5. Conclusions

Most existing image encryption schemes involve 1-bit level, 2-bit level (DNA com-
puting), and/or 8-bit level (pixel) data. Few studies focus on other bit-level data, which
limits the diversity of encrypted data units and ultimately negatively affects the encryption
effect. To this end, this paper proposes a novel multi-bit permutation and diffusion scheme

http://sipi.usc.edu/database/database.php?volume=misc
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(MBPD) for image encryption. The key characteristic of MBPD is that it can perform
permutation and diffusion at different bit-level data, such as 1-bit permutation, 3-bit dif-
fusion, and 6-bit permutation, to encrypt images. The results of extensive experiments
demonstrate that the proposed MBPD can resist different types of attacks and has high
security. One limitation of the MBPD is that it is somewhat time-consuming. In the future,
we will study how to speed it up and apply it to color image encryption.
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