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Abstract: The aim of this study was to investigate an antimicrobial and degradable composite
material consisting of melt-blown poly(lactic acid) nonwoven fabrics, alginate, and zinc. This
paper describes the method of preparation and the characterization of the physicochemical and
antimicrobial properties of the new fibrous composite material. The procedure consists of fabrication
of nonwoven fabric and two steps of dip-coating modification: (1) impregnation of nonwoven
samples in the solution of alginic sodium salt and (2) immersion in a solution of zinc (II) chloride. The
characterization and analysis of new material included scanning electron microscopy (SEM), specific
surface area (SSA), and total/average pore volume (BET). The polylactide/alginate/Zn fibrous
composite were subjected to microbial activity tests against colonies of Gram-positive (Staphylococcus
aureus), Gram-negative (Escherichia coli) bacterial strains, and the following fungal strains: Aspergillus
niger van Tieghem and Chaetomium globosum. These results lay a technical foundation for the
development and potential application of new composite as an antibacterial/antifungal material in
biomedical areas.

Keywords: alginate; alginic acid; antibacterial activity; biodegradable composite; composite; melt-
blown; nonwoven fabric; polymer; poly(lactide) PLA; zinc(II)chloride

1. Introduction

Wound healing is a dynamic and complex process (phases: hemostasis, inflammation,
proliferation, and maturation) affected by several factors, which needs an appropriate
surrounding to achieve accelerated healing [1]. Modern wound healing dressing should
exhibit non-toxic and non-allergenic properties, be capable of maintaining high humid-
ity at the wound site while removing excess exudate, antibacterial characteristics or at
least impermeability to bacteria, enable gaseous exchange, and be cost effective [2–5].
These requirements are partly fulfilled by the physico-chemical properties of PLA (bio-
compatibility, biodegradability, mechanical strength) [6–15] and to a much larger extent
by PLA-composites equipped with a wide spectrum of antimicrobial agents, including
inorganic microbials [16,17].

Among the various inorganic bactericides applied in antibacterial polymers [18–37]
increasing attention has focused on zinc salts [38], which is vitally essential for many
biological processes [39], toxic to microbials and nontoxic to higher organisms [40], and a
cheap and antibacterially efficient [41–47] inorganic antimicrobial. The zinc biochemistry
and biology are determined by the complexation and hydration of zinc ions [48–54]. The
zinc (II) coordination environment (tetrahedral vs. octahedral zinc complexes [55]) is
limited in proteins to oxygen, nitrogen, and sulfur donors from the side chains of a few
amino acids [31,33]. In living organisms, usually tetracoordinated Zn(II) is redox-inert since
its standard reduction potential is negative (Zn2+(aq) + 2e− → Zn(s); Eo = −0.76V) [56].

Since an effective antibacterial PLA composite should exhibit prolonged antibacterial
activity, a stable surface deposition/attachment of zinc to PLA presents a major problem.
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Due to the low affinity of metallic cations to carboxylic ester bonds [57], PLA weakly
binds zinc ions, and its antibacterial PLA-Zn(2+) composites require an interface covering
layer with high affinity to copper. Such requirements fulfill alginates, biodegradable
biopolymers [58–63] applied as a basis for drug delivery [64–78], tissue engineering [79–89],
and wound dressings [90–98].

The role of alginate in antibacterial finishing of textiles was reviewed recently by
Li et al. [99]. PLA-ALG have been investigated in a few papers for various applications [100–107].

The strong affinity of alginates to metal cations allows their application as antibacterial
hybrids (e.g., [108–111]). ALG-Zn(2+) complexes have been described in 792 papers [112]
(e.g., [113–124]).

As part of our investigations focused on the functionalization of textile materials [125–131],
we propose the use of an alginate film covering the PLA matrix (PLA-ALG), which, after
adding copper salts, was cross-linked to form an outer space coating with strongly bound
copper ions (Figure 1). Such a PLA-Alg-Zn(2+) composite slowly releases zinc ions, ensuring
its long-lasting antibacterial activity (Figure 2).
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Figure 1. The reactions involved in the preparation of fibrous composite: PLA→PLA-ALG-Na(+) →PLA-ALG-Zn(2+).
The structure of alginate is presented as a linear copolymer –[GM]n- with homopolymeric blocks of (1-4)-linked β-D-
mannuronate (M) and its C-5 epimer α-L-guluronate (G) residues.
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Figure 2. The reactions involved in the release of zinc ion from the PLA-ALG-Zn(2+) composite in an aqueous environment.

2. Materials and Methods
2.1. Materials

• Alginic acid sodium salt, C5H7O4COONa (CAS: 9005-38-3) were purchased from
Millipore Sigma (St. Louis, MO, USA);
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• Bacterial strains: Escherchia coli (ATCC 25922) and Staphylococcus aureus (ATCC 6538)
were purchased from Microbiologics (St. Cloud, MN, USA);

• Fungal strains: Aspergillus niger van Tieghem (ATCC 6275) and Chaetomium globosum
(ATCC 6205) were purchased from Microbiologics.

• Poly(lactic acid) was provided by NatureWorks LLC (Minnetonka, MN, USA), type
Ingeo™ 3251D, with an MFR value of 30–40 g/10 min (at 190 ◦C/2.16 kg);

• Zinc (II) chloride, ZnCl2, 98% (CAS: 7646-85-7) was purchased from Millipore Sigma.

2.2. Methods
2.2.1. Preparation of Fibrous Material—Melt-Blown Process

The poly(lactic acid) melt-blown nonwoven fabrics with a basis weight of 250 g/m2

were produced by using a one-screw laboratory extruder (Axon, Limmared, Sweden). The
extruder head has 30 holes with a 0.25 mm die orifice diameter each. The polylactide (PLA)
granulate for melt blowing was dried at 80 ◦C to constant weight. The process parameters
of melt blowing are given in Table 1.

Table 1. Processing parameters of the melt blown process.

Parameter Value

Extruder screw zone temperatures 195–260 ◦C
Extruder head temperature 260 ◦C

Air temperature 260 ◦C
Air flow rate 8 m3/h

The area density of nonwoven fabric 250 g/m2

2.2.2. Modification—Dip-Coting

The PLA melt-blown nonwoven fabrics samples were modified by dip-coting, a two-
step method: (1) impregnation in the solution of alginic acid sodium salt and (2) immersion
in the solution of zinc (II) chloride. Samples of PLA nonwoven fabric were impregnated in
a homogeneously dispersed polysaccharide solution (0.5%) for 1 min (sample: PLA-Alg-
Na(+)), then each sample was immediately transferred into two different aqueous solutions
of zinc (II) chloride and re-immersed for 1 min (sample PLA-Alg-Zn(2+)-1 re-immersed
in 5% ZnCl2 solution and sample PLA-Alg-Zn(2+)-2 re-immersed in 10% ZnCl2 solution).
Then, the samples were squeezed and dried for 5 h at 50 ◦C to constant weight. The
modifier components are given in Table 2.

Table 2. Composition of the dip-coating solution of poly(lactide) (PLA) surface modifier (%).

Sample
Assignments/Name

Mixture Components of Film-Forming Material (%)

Sodium Alginate Solution Zinc (II) Chloride Solutions

0.5% 5% 10%

PLA − − −
PLA-Alg-Na(+) + − −

PLA-Alg-Zn(2+)-1 + + −
PLA-Alg-Zn(2+)-2 + − +

2.2.3. Morphological and Structural Characterization—Scanning Electron Microscopy

Examination of the microscopic structures was carried out using a HITACHI S-4700
scanning electron microscope equipped with a Thermo NORAN EDS X-ray microanalyzer.
The topographic analysis of the tested samples was carried out in low vacuum with a beam
energy of 10 kV and at magnifications of 800× and 1600×.
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2.2.4. Morphological and Structural Characterization—Specific Surface Area

The specific surface area was determined by the Brunauer, Emmet, and Teller method
(BET). Measurements were carried out on an Autosorb-1 apparatus (Quantachrome Instru-
ments, Boynton Beach, FL, USA), using nitrogen as a sorption agent and an adsorption
isotherm at 77 K. In each experiment, approximately 1–2 g of a given sample were weighed
and used. Prior to the analysis, the samples were dried in 105 ◦C for 24 h and degassed at
room temperature. Measurements were made in duplicate, and the results were presented
as a mean value.

2.2.5. Morphological and Structural Characterization—Contact Angle and Wettability

Surface wettability was determined by static measurements of the water wetting angle.
The wetting angle was measured by the “sitting droplet” method using a drop shape
analysis (DSA) system DSA 10 Mk2 (Kruss GmbH, Hamburg, Germany). Water drops
of 0.25 µL were applied to each clean and dry sample. The apparent contact angle was
calculated as the average of 10 measurements [132].

2.2.6. Chemical Characterization—Atomic Absorption Spectrometry with Flame Excitation

Determination of the zinc content in PLA-Alg-Zn(2+) composites was assessed by the
FAAS method. The previous sample was mineralized (Figure 3) using a single-module
Magnum II microwave mineralizer from Ertec (Wroclaw, Poland), in similar way as was
described earlier [133].
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Figure 3. Mineralization of PLA-Alg-Zn(2+).

Determination of the zinc (II) ions was performed by atomic absorption spectrometry
with flame excitation using a Thermo Scientific Thermo Solar M6 (LabWrench, Midland,
ON, Canada) spectrometer equipped in similar way as was described earlier [133,134].
Measurements were made in triplicate and the results were presented as a mean value.

2.2.7. Antimicrobial Activity

The antibacterial activity of PLA-Alg-Zn(2+) material was assessed according to stan-
dard PN-EN ISO 20645:2006 [135] against a representative colony of Gram-negative and
Gram-positive bacteria (Escherchia coli/Staphylococcus aureus). The antifungal activity of
composites was tested according to PN–EN 14119:2005 [136] against an Aspergillus niger
van Tieghem (ATCC 6275) and Chaetomium globosum (ATCC 6205). All tests (modified
samples and unmodified PLA) were carried out in duplicate.
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3. Results and Discussion
3.1. Scanning Electron Microscopy

The presented SEM images illustrate changes in the morphology of the fiber surface of
the investigated samples. These changes are the result of modification of PLA nonwoven
fabric with sodium salt solution of alginic acid and ZnCl2.

The SEM image of the unmodified nonwoven fabric presents a mesh of randomly ori-
ented fibers with interconnected pores and a comparatively smooth surface (Figure 4). Mod-
ification of the nonwoven fabric with sodium alginate solution (PLA→PLA-ALG(−) Na(+))
induced the formation of a film on the fiber surface, during which the PLA fibrous structure
serves as a matrix for a deposited alginate, presumably by the formation of hydrogen bonds
between the HO group of alginate and the carbonyls of the carboester functions of PLA.
This modification slightly affected the overall morphology of the formed composite surface,
maintaining the fibrous structure of the PLA→PLA-ALG(−)Na(+) composites but with
more irregular shapes and less visible pores. Additionally, agglomerates of sodium alginate
(ALG-Na(+)) can be seen on single fibers of PLA-ALG-Na(+) (Figure 5). Further modification
of the temporary composite PLA-ALG(−)Na(+) with ZnCl2, (PLA-ALG(−) Na(+)→PLA-
ALG-Zn(2+)) led to immense changes in its morphology, probably due to the formation of
interchain complexes PLA1-ALG1-Zn(2+)-ALG2-PLA2 (PLA1-ALG1(−)Na(+)→PLA1-ALG1-
Zn(2+)→PLA1-ALG1-Zn(2+)-ALG2-PLA2). Therefore, the fibrous structure of the resulting
composite was largely deformed with an increase of surface roughness, with multiple zinc
agglomerates (Figure 6), resembling a polymer film, with integrated PLA fibers.

Figures 7–9 present example of the EDS spectra for PLA, PLA-Alg-Na(+), and PLA-
Alg-Zn(2+) (10%) samples (EDS data are presented as a plot of the peak intensity versus
energy (keV)). Table 3 shows the chemical composition of the tested materials, obtained
by quantitative analysis using EDS X-ray microanalysis. The table presents the averaged
results obtained from five measurement points.
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Table 3. Quantitative results of the EDS analysis of PLA, PLA-ALG-Na(+), and PLA-ALG-Zn(2+).

PLA

Atom C O
At. % 54.70 45.30

Std. dev. 0.18 0.18
Wt. % 47.55 52.46

Std. dev. 0.18 0.18

PLA-ALG-Na(+)

Atom C O Na
At. % 54.42 43.93 1.65

Std. dev. 1.61 2.55 0.03
Wt. % 45.45 52.09 2.47

Std. dev. 0.54 0.13 0.29

PLA-ALG-Zn(2+)

Atom C O Na Zn Cl
At. % 31.31 34.05 3.42 14.22 17.01

Std. dev. 1.21 3.58 0.76 0.52 1.29
Wt. % 14.62 21.18 4.61 36.14 23.45

Std. dev. 2.08 2.38 0.88 1.52 4.13

When analyzing the spectrum in Figure 7, it can be observed that the sample contains
elements characteristic for polylactide, that is, carbon and oxygen. Whereas the PLA-
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ALG-Na(+) sample, because of the modification with sodium alginate, is characterized
by the presence of an additional peak, derived from Na atoms (Figure 8). Additionally,
modification of PLA-ALG-Na(+) nonwoven fabric with zinc (II) chloride contributed to the
presence of further peaks, originating from zinc and chloride. The presence of chloride is
confirmed by the content of NaCl in the samples.

Quantitative EDS analysis showed that modification of PLA nonwoven fabric with
sodium alginate did not significantly change the carbon and oxygen contents of the samples.
Slight decreases in the content of these elements were observed: about 0.28 at. % and about
1.38 at. % for carbon and oxygen, respectively. Additionally, small concentrations of sodium
(1.65 at %) were noted for the PLA-ALG-Na(+) sample. The EDS results for the samples
modified with ZnCl2 show that the content of Zn and Cl in the samples increased with the
increasing chloride concentration. However, because it showed the best antibacterial and
antifungal properties, the results are presented for the PLA-ALG-Zn(2+) sample (10%). We
can observe that because of the rapid cross-linking of the sample surface and the formation
of a kind of film on the surface, the sodium content increased twice, compared to the
PLA-ALG-Na(+) sample. On the other hand, the high content of zinc (14.22%) confirms
that the agglomerates shown in the photos are agglomerates of a divalent metal (Figure 9).
Moreover, it can be seen that when the samples were modified with ZnCl2, the carbon and
oxygen content decreased significantly (by 23.39 at. % and 11.26 at. %, respectively). A high
value of standard deviation indicates an irregular distribution of the chemical components.

3.2. Specific Surface Area

The specific surface area [m2/g] and total pore volume [cm3/g] of the composites are
presented in Table 4.

Table 4. The specific surface area and total pore volume for unmodified PLA nonwoven and PLA-
ALG-Zn(2+) composites.

Sample Name Specific Surface Area
[m2/g]

Total Pore Volume
[cm3/g]

PLA 0.221 ± 0.03 9.10 × 10−4

PLA-Alg-Na(+) 0.587 ± 0.03 1.64 × 10−3

PLA-Alg-Zn(2+)-1 0.521 ± 0.02 2.75 × 10−3

PLA-Alg-Zn(2+)-2 0.833 ± 0.03 3.09 × 10−3

The results of the specific surface area and the total pore volume measurements
correspond to our previous studies [111]. The modification of poly(lactic acid) (PLA)
nonwoven fabric with alginate (PLA-Alg-Na(+)) and zinc (II) chloride (PLA-Alg-Zn(2+)-
1/PLA-Alg-Zn(2+)-2) leads to significant growth of the specific surface area (BET). The BET
of the poly(lactic acid) sample was equal to 0.221 [m2/g]. The impregnation of unmodified
PLA nonwoven fabric in the solution of alginic acid sodium salt resulted in an increase in
the value of the specific surface area (0.58 [m2/g]). The dip-coating two-step modification,
i.e., impregnation in a solution of alginic acid sodium salt and immersion in a ZnCl2
solution (5%/10%), caused an even further increase in BET to 0.5211 and 0.8331 m2/g,
respectively. The increase of the observed specific surface area for the modified samples
(PLA-Alg-Na(+)/PLA-Alg-Zn(2+)-1/PLA-Alg-Zn(2+)-2) may be related with their higher
mesoporosity. Higher mesoporosity was confirmed by the total pore volume, which
increased from 9.102 × 10−4 cm3/g for the PLA nonwoven fabric to 1.64 × 10−3 cm3/g
for PLA-Alg-Na(+), 2.750 × 10−3 cm3/g for PLA-Alg-Zn(2+)-1, and 3.093 × 10−3 cm3/g for
PLA-Alg-Zn(2+)-2.

3.3. Contact Angle and Wettability

The analysis of the contact angle enabled an assessment of the wettability of the
surfaces of the tested materials. The results demonstrated that PLA and PLA-ALG Zn(2+)

nonwoven fabrics were characterized by a hydrophobic character of the surface, for which
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the average contact angle was 122.79◦ and 114.98◦, respectively (Figure 10a,c). In contrast,
the modification with sodium alginate changed the character of the material surface, which
became hydrophilic with an average contact angle of 45.67◦ (Figure 10b).
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Figure 10. Contact angle images for: (a)—PLA, (b)—PLA-ALG-Na(+), (c)—PLA-ALG-Zn(2+).

As shown in Figures 10 and 11, modification of PLA nonwoven fabric with sodium
alginate significantly changed the nature of the nonwoven fabric surface from hydrophobic
to hydrophilic. This is due to the presence of the Na+ ions contained in alginate, which
make it soluble in water. On the other hand, another modification with ZnCl2 resulted in
substitution of sodium ions with divalent metal ions (Zn2+), thanks to which the crosslink-
ing process occurred on the surface and alginate covering fibers became insoluble in water.
This changed the nature of the nonwoven surface from hydrophilic to hydrophobic again.
However, it is characterized by lower surface hydrophobicity than the PLA nonwoven
fabric, due to the Na+ ions present on the surface in small amounts, which was confirmed
by SEM-EDS analysis.
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3.4. Flame Atomic Absorption Spectrometry

Determination of the metal concentration in the PLA-Alg-Zn(2+) samples was assessed
by the FAAS spectrometry, and the results are shown in Table 5.
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Table 5. Zinc concentration in PLA-Alg-Zn(2+) samples.

Sample Zn Concentration [g/kg]

PLA 0.003
PLA-Alg-Na(+) 0.003

PLA-Alg-Zn(2+)-1 11.55
PLA-Alg-Zn(2+)-2 39.71

The results of the determination of the zinc concentration in PLA-Alg-Zn(2+) samples
show that the metal content in complex materials depends on the variant of applied
modifier dip-coating solution and type of solution of Zinc (II) chloride (Table 5). The higher
concentration of the used zinc (II) chloride solutions (10%) resulted in the higher content
of the metal on PLA-Alg-Zn(2+)-2 material (39.71 g/kg), and the lower concentration of
zinc (II) chloride (5%) gave a relatively lower content of Zn in the sample (PLA-Alg-Zn(2+)-
1—11.55 g/kg). Additionally, the FAAS spectrometry measurements also indicate that the
distribution of zinc in the material is quite uniform (approximately 7.5%).

3.5. Antimicrobial Activity—Disc-Diffusion Assay

The antimicrobial activity of PLA-Alg-Zn(2+) composites was investigated by the disk
diffusion method using Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria
(Table 6, Figure 12) and representative fungus species: Aspergillus niger and Chaetomium
globosum (Table 7, Figure 13).

Control samples as unmodified PLA and modified by alginic acid sodium salt material
(PLA-Alg-Na(+)) exhibited strong growth of bacterial and fungal colonies covering the
entire surface of the samples placed on Petri dishes (Figures 12a,c and 13a,c). Poly(lactic
acid) material functionalized with a zinc/alginate complex, regardless of the metal concen-
tration in PLA-Alg-Zn(2+) composites in the range from 11 to 39 [g/kg] (Table 5), showed
an inhibitory effect against S. aureus bacteria and fungus species expressed by zones of
inhibition and no visible growth on/under the samples (Tables 6 and 7). The increase of the
zinc concentration in PLA-Alg-Zn(2+) composites caused an increase of the antimicrobial
properties of the material. The PLA-Alg-Zn(2+)-2 (39 [g/kg] of Zn) sample showed antimi-
crobial properties for all variants of the tested microorganisms (Figures 12b,d and 13b,d).
The results obtained in accordance with the EN-ISO 20645:2006 and EN 14119:2005 stan-
dards confirm the antimicrobial protection of PLA-Alg-Zn(2+) complexes against various
microorganisms [135,136].

Table 6. Antibacterial activity results according to standards EN-ISO 20645:2006 of PLA-Alg-Zn(2+)

composites [135].

Sample
Average Inhibition Zone (mm)

E. coli S. aureus

PLA nonwoven 0 0
PLA-Alg-Na(+) 0 0

PLA-Alg-Zn(2+)-1 0 >1
PLA-Alg-Zn(2+)-2 >1 >1

Concentration of inoculum [CFU/mL]: E. Coli—1.8 × 108, S. Aureus—1.6 × 108
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Table 7. Antifungal activity results according to standards EN 14119:2005 of PLA-Alg-Zn(2+) compos-
ites [136].

Sample
Average Inhibition Zone (mm)

Visual Evaluation
A. niger C. globosum

PLA nonwoven
0 0

Visible, strong growth
on/under the samplePLA-Alg-Na(+)

PLA-Alg-Zn(2+)-1
<1 <1

No visible growth
on/under the samplePLA-Alg-Zn(2+)-2

Concentration of inoculum [CFU/mL]: A. niger—2.8 × 106, C. globosum—2.2 × 106Antibiotics 2021, 10, x FOR PEER REVIEW 12 of 19 
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4. Conclusions

In this study, we developed and characterized a complex material consisting of alginic
acid sodium salt, poly(lactide), and zinc (II) chloride. PLA-ALG-Zn(2+) composite was
fabricated from biodegradable PLA polymer by the melt-blown method, and then the
obtained fibrous material was modified by dip-coating, using alginic acid sodium salt and
zinc (II) chloride. Structural characterization of the new material was achieved by scanning
electron microscopy (SEM), and determination of the specific surface area and wettability.
The chemical compositions of the PLA-Alg-Zn(2+) composites were identified using energy-
dispersive X-ray spectroscopy EDS (C, O, Zn surface analysis) and atomic absorption
spectrometry with flame excitation (Zn content in bulk). The obtained complex material
exhibited an antimicrobial in vitro action against representative bacteria: Escherichia coli and
Staphylococcus aureus, and fungus species: Chaetomium globosum and Aspergillus niger. From
the point of view of our previous work, these results are promising regarding the material’s
applicability in different fields of materials science in the medical or healthcare industry.
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126. Kudzin, M.H.; Mrozińska, Z. Biofunctionalization of textile materials. 2. Antimicrobial modification of poly(lactide) (PLA)
nonwoven fabrics by fosfomycin. Polymers 2020, 12, 768. [CrossRef] [PubMed]
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133. Stańczyk, B.; Dobrzański, L.; Góra, K.; Jach, K.; Jagoda, A. Hydrophobic organic layers on smooth and 3-dimensional developed
surfaces. Electron. Mater. 2015, 43, 3.

134. Analytical Methods for Atomic Absorption Spectroscopy. The Perkin-Elmer Corporation, 1996. Available online: www1.lasalle.
edu/ (accessed on 3 July 2020).

135. EN ISO 20645:2006. Textile Fabrics. Determination of Antibacterial Activity—Agar Diffusion Plate Test; International Organization for
Standardization: Geneva, Switzerland, 2006.

136. EN 14119: 2005 Point 10.5 (B2). Testing of Textiles. Evaluation of the Action of Microfungi. Visual Method; International Organization
for Standardization: Geneva, Switzerland, 2005.

http://doi.org/10.3390/app10196990
http://doi.org/10.3390/md18120660
http://www.ncbi.nlm.nih.gov/pubmed/33371380
http://doi.org/10.3390/antibiotics10020203
http://www.ncbi.nlm.nih.gov/pubmed/33669752
www1.lasalle.edu/
www1.lasalle.edu/

	Introduction 
	Materials and Methods 
	Materials 
	Methods 
	Preparation of Fibrous Material—Melt-Blown Process 
	Modification—Dip-Coting 
	Morphological and Structural Characterization—Scanning Electron Microscopy 
	Morphological and Structural Characterization—Specific Surface Area 
	Morphological and Structural Characterization—Contact Angle and Wettability 
	Chemical Characterization—Atomic Absorption Spectrometry with Flame Excitation 
	Antimicrobial Activity 


	Results and Discussion 
	Scanning Electron Microscopy 
	Specific Surface Area 
	Contact Angle and Wettability 
	Flame Atomic Absorption Spectrometry 
	Antimicrobial Activity—Disc-Diffusion Assay 

	Conclusions 
	References

