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A B S T R A C T   

The sudden outbreak of coronavirus disease 2019 (COVID-19) revealed the need for fast and reliable automatic 
tools to help health teams. This paper aims to present understandable solutions based on Machine Learning (ML) 
techniques to deal with COVID-19 screening in routine blood tests. We tested different ML classifiers in a public 
dataset from the Hospital Albert Einstein, São Paulo, Brazil. After cleaning and pre-processing the data has 608 
patients, of which 84 are positive for COVID-19 confirmed by RT-PCR. To understand the model decisions, we 
introduce (i) a local Decision Tree Explainer (DTX) for local explanation and (ii) a Criteria Graph to aggregate 
these explanations and portrait a global picture of the results. Random Forest (RF) classifier achieved the best 
results (accuracy 0.88, F1–score 0.76, sensitivity 0.66, specificity 0.91, and AUROC 0.86). By using DTX and 
Criteria Graph for cases confirmed by the RF, it was possible to find some patterns among the individuals able to 
aid the clinicians to understand the interconnection among the blood parameters either globally or on a case-by- 
case basis. The results are in accordance with the literature and the proposed methodology may be embedded in 
an electronic health record system.   

1. Introduction 

COVID-19, the disease associated with the SARS-CoV-2 virus, was 
declared a pandemic by the World Health Organization (WHO) on 
March 11th, 2020 [1]. This pandemic has impacted all aspects of life, 
politics, education, economy, social, environment and climate and set 
off a warning about how governments, civil society and health systems 
can deal with an unknown disease. Although many scientific advances 
have been made and an intense vaccination program is being carried out 
in several countries, the severe situation is not effectively controlled yet. 

An accurate and reliable diagnosis is crucial in providing timely 
medical aid to suspected or infected individuals and helps the govern-
ment agencies to prevent its spread and save people’s lives. The standard 
test for COVID-19 is the Reverse Transcriptase Polymerase Chain 

Reaction, known as RT-PCR, reviewed in Ref. [2]. However, it has 
limitations in terms of resources and specimen collection [3], it is 
time-consuming [3–6], it has high specificity and low sensitivity1 [3,7, 
8], high misclassification in the early symptomatic phase [6] and, also, it 
is unavailable in many countries and societies making the real extent of 
the spread still unknown [8,9]. 

In addition to the RT-PCR, AI-based approaches may be used to assist 
in the screening of patients suspected of being contaminated by SARS- 
CoV-2, supporting the medical decision. In the field of Machine 
Learning (ML), a branch of Artificial Intelligence (AI) that studies 
methods that allow computers to learn tasks by examples, many re-
searches studied the diagnosis of COVID-19 either through the analysis 
of medical images or routine blood tests, as in Refs. [6,8–19]. 

Routine blood tests play an important role in the diagnosis of COVID- 
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19 and other respiratory diseases. Parameters such as white blood cells 
(WBC), C-reactive protein (CRP), neutrophils (NEU), lymphocytes 
(LYM), monocytes (MONO), eosinophils (EOS), basophils (BAY), 
aspartate and alanine aminotransferase (AST and ALT, respectively), 
lactate dehydrogenase (LDH) and others have shown high correlations 
in patients diagnosed with COVID-19 [6,8–10,14,18–23]. 

These hematological features have been used for identifying patterns 
through ML approaches to verify whether the patient is infected or not. 
Meng et al. [4] used different indicators of whole blood count, coagu-
lation test, and biochemical examination to build a Multivariate Logistic 
Regression (MLR) that was embedded in a COVID-19 diagnosis aid 
system. Kukar et al. [11] provided a model called “Smart Blood Ana-
lytics (SBA)” based on routine blood tests for patients with various 
bacterial and viral infections and COVID-19 patients. Wu et al. [13] 
extracted 11 blood indices through Random Forest (RF) algorithm to 
build an online assistant discrimination tool. Batista et al. [9] used 
Artificial Neural Networks (ANN), RF, Gradient Boosting Tree (GBT), 
Logistic Regression (LR) and Support Vector Machines (SVM) to predict 
the risk of positive COVID-19 using as predictors only results from 
emergency care admission exams. Brinati et al. [8] developed two 
classification models using hematological values from Italian patients. 
RF and Three-Way RF (TWRF) models showed the best results. A Deci-
sion Tree was used for explanation. Barbosa et al. [14,15] proposed the 
Heg. IA as a support system for the diagnosis of COVID-19. RF is used as 
the classifier. 

Although these models bring promising results in COVID-19 diag-
nosis, their transparency and trust can be questionable. A model can be 
defined as explainable if a human can understand its decisions [24]. Any 
fully automated method without the possibility for human verification 
would be potentially dangerous in a practical setting, in particular, in 
the medical field. Explainable ML, or Explainable AI (xAI), typically 
refers to post hoc analysis and techniques used to understand a 
pre-trained model or its predictions. The ability of a system to explain its 
decisions is a central paradigm in symbolic or logic-based machine 
learning [25]. A model-agnostic explainer [25] can interpret a black-box 
model prediction without assumptions on the underlying black-box 
model. They are usually employed after the training step (post-hoc 
explainability), see for instance LIME [26] and SHAP [27], providing an 
understandable output by showing graphically the results and high-
lighting the features that most contributed to the black-box model 
decision. 

In this work, we search for an accurate ML model for COVID-19 
screening based on hematological data and propose the use of a deci-
sion tree explainer to improve the interpretability of the best model. We 
argue that a decision tree more closely resembles the decision-making 
process of a human healthcare worker and because of that it may be 
more useful in a real-world environment. We also introduce a criteria 
graph to aggregate explanations allowing for a generalization of the 
decision process and a deeper understanding of the interaction of factors 
leading to a diagnosis. 

The main contributions and findings are listed below:  

• A literature review of ML methods applied to COVID-19 screening in 
routine blood tests;  

• Reasonable results from different ML techniques (including an 
ensemble) to support the diagnosis of COVID-19 using usual blood 
exams;  

• A decision tree-based methodology for the explanation of the model 
which can be given to the health teams; 

• Individual explanations in a graph that shows the relative impor-
tance of each attribute and their interactions;  

• Further evidence that simple blood tests might help identifying false 
positive/negative RT-PCR tests. 

The remainder of the paper is organized as follows: Section 2 reviews 
the application of AI for diagnosing COVID-19. Section 3 discusses the 

Decision-Tree based Explainer (DTX) used for local interpretation. Sec-
tion 4 presents the proposed Criteria Graph that can be used for global 
model interpretation. Section 5 explains the ML process, such as models 
and dataset used, evaluation process and explainability. Section 6 pre-
sents the results and discussion. Section 7 provides future directions and 
conclusions. 

2. AI-based approaches in the COVID-19 pandemic 

Since the announcement of the pandemic, the scientific community 
has been working hard to investigate SARS-CoV-2 dynamics. As a result, 
the volume of papers about COVID-19 has increased exponentially [5]. 
Reviews were carried out to organize, summarize, and merge the 
amount of information available in such a short time. For instance, 
Mohamadou, Halidou and Kapen [28] revised 61 studies dealing with 
mathematical modelling, AI and datasets related to COVID-19. They 
reported that most models are either based on 
Susceptible-Exposed-Infected-Removed (SEIR) as in Ref. [29] or SIR 
model. Toledo et al. [17] provided a historic review of the virus, its 
epidemiology and pathophysiology, emphasizing the laboratory diag-
nosis, particularly in hematological changes found during the disease. 
Wynants et al. [30] provided a systematic review and critic appraisal of 
current models for COVID-19 for the prognosis of patients and for 
identifying people at increased risk of becoming infected or being 
admitted to hospital with the disease. Kermali et al. [10] revised 34 
papers discussing biomarkers and their clinical implications. Zheng et al. 
[31] provided a meta-analysis of the risk factors of critical/mortal cases 
and non-critical COVID-19 patients, with 13 studies including 3027 
patients, in which critical patient conditions and parameters were 
highlighted. 

Regarding AI and ML-based works, Yan et al. [21] applied an 
Extreme Gradient Boosting Machine (XGBoost) algorithm to predict risk 
mortality, in which a single-tree was used to build an explanation for the 
model. Tian et al. [32] investigated the predictors of mortality in hos-
pitalized patients in a total of 14 studies documenting the outcome of 
4659 patients. Comorbidities such as hypertension, coronary heart dis-
ease, and diabetes were associated with a significantly higher risk of 
death amongst infected patients. Clinical manifestation laboratory ex-
aminations that could imply the progression of COVID-19 were pre-
sented. Shi et al. [33] analyzed AI techniques in imaging data 
acquisition, segmentation, and diagnosis. These images, either X-ray or 
CT images, can improve the work efficiency of the specialists by an 
accurate delineation of infections. Also in the AI context, Bullock et al. 
[5] revised datasets, tools, resources to confront many aspects of the 
COVID-19 crisis at different scales including molecular, clinical, and 
societal applications. In the clinical aspect, medical images, outcomes 
prediction and noninvasive measurements were discussed. Although 
these works have made valuable contributions to dealing with the 
pandemic, the decision made by the automatic learning model on the 
samples is still unclear. 

In the revised literature, important hematological features were 
highlighted such as CRP [21], LDH [8,21,23,34], AST, ALT, NEU [8], 
LYM and WBC [8,9,11,34], EOS [8,9] and others, see also [4,6,13,14,16, 
20]. These features are detailed in Table 2 with a short description of 
each hematological parameter, the reference value for males and female 
and the percentage of missing rates presented in the dataset used. In the 
literature, they were commonly estimated either through statistics as in 
Refs. [6,16,20] or a ML model or metric, such as RF in Ref. [8], Least 
Absolute Shrinkage and Selection Operator (LASSO) in Ref. [4], 
Multi-tree XGBoost in Ref. [21] or an evolutionary strategy as in 
Ref. [14]. 

The state-of-the-art algorithms have been the most used, such as the 
Support Vector Machine (SVM) in Refs. [9,16], XGBoost in Refs. [11,21] 
and RF in Refs. [8,13]. For the sake of simplicity, in Table 2 we sum-
marize the works that used ML techniques to classify patients suspected 
of being infected with SARS-CoV-2 using hematological parameters. 
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There is a short description of the papers, methods used (the best one is 
in bold), features analyzed, and the results for each performance metric. 

A series of recently published papers have reported the epidemio-
logical and clinical characteristics of patients with COVID-19 disease, 
however there is no standard for data collection. Many public datasets 
available have different features and a large number of missing values, 
making it difficult to aggregate this data into a single ML model. 

Although many papers have presented ML-based support approaches 
to deal with COVID-19 screening in routine blood tests, only Brinati 
et al. [8] and Yan et al. [21] have raised the necessity of some sort of 
transparency in the model’s decisions. The former presents a Decision 
Tree as an interpretable model but in doing so accuracy is getting 
sacrificed. In the latter, the authors used the XGBoost algorithm to 
obtain the relative importance of the features and built a Single-Tree 
XGBoost on the three most important (LDH, LYM and high-sensitivity 
CRP). Again, this is an approach that trades accuracy by interpretability. 

In this paper, we evaluate different ML methods, including ensem-
bles, for COVID-19 diagnosis from routine blood tests. Besides, our 
methods include cleaning and pre-processing steps, imbalance class 

treatment, the creation of ensemble models, and an interpretability 
module. The proposed methodology can be generalized to other contexts 
as a pipeline for the ML workflow. Local interpretability is provided by 
using a Decision Tree-based explainer (DTX) (Section 3) and global 
interpretability is obtained with the criteria graph (Section 4) proposed 
herein. The DTX presents an explanation for the high-accuracy black- 
box model. Therefore, the quality of the predictions does not have to be 
sacrificed. On the other hand, this means that the explanations are in-
dividual. Thus, to get an insight into the models global behaviour, the 
Criteria Graph compresses the information of all the explanations and 
presents it in a single image. 

3. Decision–tree based explainer 

The post hoc explanation approaches aim to explain the predictions of 
a particular pre-trained ML model. These explanations can be of two 
types: 

Table 1 
Description of the features used, abbreviation (Abb.) often used/adopted, reference values for male and female, missing rates (Miss. %) and some related references 
that reported the feature’s relationship with COVID-19.  

Abb. Feature Description Reference Value Miss. 
% 

Ref 

Female Male 

HCT Hematocrit The amount of whole blood that is made up of red blood cells 36–46% 41–53% 0.82 [11,35] 
HGB Hemoglobin It is the oxygen-carrying component of red blood cells 12–16 g/dL 13.5–17.5 g/dL 0.82 [11,35] 
PLT Platelets A tiny, disc-shaped piece of cell that helps form blood clots to slow or stop 

bleeding and to help wounds heal 
150–400 ×
109/L  

150–400 ×
109/L  

0.98 [6,10,35] 

RBC Red blood Cells The blood cell that carries oxygen 3.5–5.5 ×
1012/L  

4.3–5.9 ×
1012/L  

0.98 [35] 

LYM Lymphocytes A type of white blood cells 0.5–4.0 × 109/

L  
0.5–4.0 × 109/

L  
0.98 [10,21, 

36] 

MCH Mean corpuscular 
hemoglobin 

It corresponds to the average hemoglobin weight in a population of erythrocytes 25.4–34.6 pg/ 
cell 

25.4–34.6 pg/ 
cell 

0.98 [11,35] 

MCHC MCH concentration Mean of the internal hemoglobin concentration in a population of erythrocytes 31–36% Hb/ 
cell 

31–36% Hb/ 
cell 

0.98 [11,35] 

WBC Leukocytes White Blood Cells that help the body fight infections and other diseases. 4500–11000 /
mm3  

4500–11000 /
mm3  

0.98 [11,12, 
34,35] 

BAY Basophils Type of white blood cell (leukocyte) with coarse, bluish-black granules of 
uniform size within the cytoplasm 

0.0–0.1 × 109/

L  
0.0–0.1 × 109/

L  
0.98 [13,36] 

EOS Eosinophils Normal type of white blood cell that has coarse granules within its cytoplasm 0.1–0.5 × 109/

L  
0.1–0.5 × 109/

L  
0.98 [11,36, 

37] 

LDH Lactate 
dehydrogenase 

Enzyme of the anaerobic metabolic pathway, that catalyzes the conversion of 
lactate to pyruvate, important in energy production 

140–280 U/L 140–280 U/L 0.98 [23,38] 

MCV Mean corpuscular 
volume 

Average volume of an erythrocyte population 80–100 μm3  80–100 μm3  0.98 [35] 

RWD Red blood cell 
distribution width 

A measurement of the range in the volume and size of red blood cells <15% <15% 0.98 [39] 

MONO Monocytes A type of immune cell that has a single nucleus and fights off bacteria, viruses 
and fungi 

0.3–0.8 × 109/

L  
0.3–0.8 × 109/

L  
1.15 [39] 

MPV Mean platelet volume Average size of platelets 7.2–11.7 fL 7.2–11.7 fL 1.48 [40] 
NEU Neutrophils A type of immune cell that is one of the first cell types to travel to the site of an 

infection and help by ingesting microorganisms and releasing enzymes that kill 
them 

1.8–7.7 × 109/

L  
1.8–7.7 × 109/

L  
15.62 [10,16, 

20,34,39] 

CRP C-reactive protein Plasma protein produced by the liver and induced by various inflammatory 
mediators such as interleukin-6 

<10 mg/L <10 mg/L 16.77 [6,8,10, 
20,21,34] 

CREAT Creatinine A chemical waste molecule generated from muscle metabolism. 44–97 μmol/L 53–106 μmol/L 30.26 [11,13, 
13,41] 

UREA Urea A nitrogen-containing substance normally cleared from the blood by the kidney 
into the urine. 

2.5–7.1 mmol/ 
L 

2.5–7.1 mmol/ 
L 

34.70 [11,20] 

K+ Potassium A metallic element that is important in body functions such as regulation of 
blood pressure 

3.5–5.5 mEq/L 3.5–5.5 mEq/L 38.98 [42] 

Na Sodium A mineral needed by the body to keep body fluids in balance 135–145 
mmol/L 

135–145 
mmol/L 

39.14 [34] 

AST Aspartate 
transaminase 

An enzyme found in the liver, heart, and other tissues. A high level of AST 
released into the blood may be a sign of liver or heart damage, cancer, or other 
diseases 

0–35 U/L 0–35 U/L 62.82 [6,20,34] 

ALT Alanine transaminase An enzyme that is normally present in liver and heart cells and it is released into 
blood when the liver or heart is damaged 

<41.0 U/L <31.0 U/L 62.99 [6,20]  
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Table 2 
Papers that applied ML models for prediction of COVID-19, datasets and models used (the best model reported is the bold one), features analyzed, interpretability (Inter.), metric results in each paper. The methods are BN: 
Bayesian Networks, CRT: Classification and Regression Tree, DNN: Deep Neural Networks, DT: Decision Trees, ET: Extremely Randomized Trees, GBT: Gradient Boosting Trees, KNN: k-Nearest Neighbors, LR: Logistic 
Regression, MLP: Multilayer Perceptron, MLR: Multivariate Logistic Regression, NB: Naive Bayes, NN: Neural Networks, RF: Randon Forest, SVM: Support Vector Machine, TWRF: Three-Way RF, XGBoost: Extreme 
Gradient Boosting Machine.  

Ref Description Dataset Methods Features Inter. Metric results 

[9] Predict the risk of positive cases using as predictors only 
results from emergency care admission exams 

235 patients from Hospital Israelita Albert Einstein 
in São Paulo, Brazil. 

NN, RF, GBTrees, 
LR, SVM 

15 blood parameters No AUC 0.85, SE 0.68, SP 0.85, PPV 0.74, NPV 
0.77 

[4] ML-based diagnosis model and a COVID-19 diagnosis aid 
application 

620 patients from West China Hospital MLR Age, gender and more 35 
indicators 

No AUC 0.87, PPV 0.86, NPV 0.85 

[8] ML models using hematochemical values from routine 
blood exams 

279 patients from San Rafaele Hospital in Milan, 
Italy 

DT, ET, KNN, LR, 
NB, RF, SVM, TWRF 

Several DT For RF: ACC 0.82, AUC 0.84, SE 0.92, SP 
0.65, PPV 0.83. For TWRF: ACC 0.86, SE 
0.95, SP 0.75, PPV 0.86 

[11] Smart Blood Analytics (SBA) predictive model on patients 
with various bacterial and viral infections, and COVID-19 
patients 

5333 patients from Department of Infectious 
Diseases, University Medical Center Ljubljana, 
Slovenia. 

RF, DNN, XGBoost 35 blood parameters No AUC 0.97, SE 0.82, SP 0.98 

[13] RF model and an online assistant tool. 253 samples from 169 suspected patients collected 
from multiple sources. 

RF 49 clinical available 
blood test data. 

No ACC 0.96, AUC 0.96, SE 0.95, SP 0.97, MCC 
0.96, Related AUC 1.00 

[14] Heg.IA: An intelligent system to support the diagnosis of 
Covid-19 based on blood tests 

5644 patients provided by Hospital Israelita Albert 
Einstein (São Paulo, Brazil). 559 had positive 
diagnosis. 

MLP, SVM, RT, RF, 
BN and NB 

24 blood tests No ACC 0.95, PR 0.94, SE 0.97, SP 0.94, Kappa 
index 0.90 

[21] Predict the mortality risk and explain the model. 2779 validated or suspected COVID-19 patients 
from Tongji Hospital in Wuhan, China. 

XGBoost Several Single 
Tree XGB 

F1 0.93, PR 0.95, SE 0.92 

[16] Detect the COVID-19 severely ill patients from those with 
only mild symptoms. 

137 clinically confirmed cases from the Tongji 
Hospital Affiliated to Huazhong University of 
Science and Technology. 

LR, SVM, RF, KNN, 
AdaBoost 

100 features (8 clinical, 
76 blood, and 16 urine) 

No ACC 0.79, SE 0.76, SP 0.70 

[22] Predict mortality risk 70 survivors from SMS Medical College, Jaipur 
(Rajasthan, India). 

LR Several No ACC 0.70, AUC 0.95, SE 0.90, SP 0.89 

[34] Identify patients at risk for deterioration during their 
hospital stay 

6995 patients were evaluated at Sheba Medical 
Center, China 

RF, NN, CRT Several No ACC 0.79, AUC 0.79, SE 0.68, SP 0.81. All of 
them with Apache II 

[18, 
19] 

Prediction of the diagnosis based on blood count results 
and age 

1157 patients made available by the repository 
COVID-19 Data Sharing/BR 

XGBoost Several No ACC 0.80, F1 0.70, AUC 0.81, SE 0.76, PPV 
0.65, NPV 0.88  
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• Instance explanation: aims to explain predictions of the black-box 
model for individual instances. It provides local scope for 
interpretability.  

• Model explanation: it is usually the result of aggregating instance 
explanations over many training or testing instances. This approach 
provides global level interpretability, generalizing local explana-
tions. The aggregation of many instances enables the identification of 
the impact of features in the classification and knowledge extraction 
from the ML model. 

The interpreter applied in this work is known as Decision Tree-based 
Explainer (DTX). DTX can be defined as a model-agnostic, post hoc, 
perturbation-based, feature selector explainer. This approach generates 
a readable tree structure that provides classification rules, which reflect 
the local behaviour of the complex ML model around the instance to be 
explained. The explainer can understand the black-box model according 
to: 

∑|η|

i=0
g(fdtx(xi) − fbbm(xi)) ∀ xi ∈ η (1)  

where fdtx(xi) is the DT prediction, fbbm(xi) is the black-box model pre-
diction, η is a noise set created around the instance to be explained, |η| is 
the number of samples around the instance to be explained, g(.) mea-
sures the distance between the black-box prediction and DTX prediction, 
for instance, in classification problems we can use accuracy. 

The set η is created with artificial samples generated around the 
instance that we want to explain. This set is used to fit the explainer and 
to measure the accuracy of the explainer concerning the black-box 
model. Equation (1) implies local fidelity of the explainer to the pre-
dictions provided by the black-box model. The correctness of the pre-
diction is orthogonal to the correctness of the explanation, but enforcing 
local fidelity to better models (in terms of higher accuracy) might enable 
better explanations. 

Fig. 1 illustrates how the DTX presents an understandable visual 
output. The left side shows the noise set η around the sample (x) that is 
going to be explained. It also shows the decision boundaries defined by 
the explainer. The right side shows the tree structure generated by DTX 
for a local explanation. Also, DTX works as a feature selector, since the 
features presented in the tree are the most important for the method 
around the neighbourhood of x. 

In the example in Fig. 1, the explanation provided for why sample x is 
classified as class 1 (positive class), is given by the path in the tree that 
lead to this outcome: x2 ≥ 0.074 and x1 ≤ − 0.04. 

4. Criteria graph for pattern identification in explanations 

From the previous section, one can see that the decision tree 
explainer returns a rule of the type: 

if criterion1 and … and criterionn then class=X (2)  

where a criterion is defined as attribute⋄value and ⋄ is one of ≤, ≥, < or >
operators. 

This kind of rule is easy to understand and provides valuable infor-
mation to the health worker. Nevertheless, each patient will have its 
own local explanation and it might be useful to understand relationships 
between criteria over the whole population. 

To provide this information, in this work, we also propose a global 
interpretability method named Criteria Graph, which works as follows: 

Given a set of rules, R = {R1,R2,…,Rm}, where each rule, Ri, is the 
explanation for the ith patient’s diagnosis, and m is the number of pa-
tients. First, for each attribute, we discretize the values of each criterion. 
Being the mean value of that attribute, μ, and the standard deviation, σ, 
if a value is in the interval [μ − 0.5σ, μ+0.5σ] it gets the label medium. If 
value < μ − 0.5σ it gets the label low and if value > μ + 0.5σ it gets the 
value high. 

After discretization, each criterion becomes a node in the graph. The 
size of the node is proportional to the number of patients for which that 
criterion was used in the diagnosis. If two criteria appear in the same 
rule, a link is created between them and the width of the link is pro-
portional to the number of patients for which the two criteria are used in 
the diagnosis. 

Fig. 2 shows the result of this procedure applied to the set below. 
Notice that the color of each node provides an extra visual cue related to 
the value of the criterion. Red for low, Blue for high and Yellow for 
medium.  

R =

⎡

⎣
(if a1 > low and a2 < medium then class = 1)
(if a1 > low and a3 < high then class = 1)
(if a1 > low and a2 < medium then class = 1)

⎤

⎦

The Criteria Graph is a model explanation obtained by aggregating 
instance explanations, as provided by DTX, over many instances, to 
identify patterns in explanations. 

5. Methods 

In this paper, we focus on COVID-19 binary classification using a 
public dataset detailed in subsection 5.1. The ML procedures for 
generating classifiers with evolving explanations consist, basically, of 
two main steps: (i) evaluation of different artificial learning models, and 
(ii) comparison among SHAP, LIME and DTX for local interpretation of 
the output and criteria graph for global interpretation. Fig. 3 provides an 
overview of the entire process. 

Fig. 1. In the left side, there is a noise set η generated by DTX around the 
instance to be explained, x. The decision boundary is based on the DTX output. 
In the right side there is a tree structure representing the rules responsible for 
explaining the black-box prediction. Fig. 2. Criteria graph.  
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5.1. Dataset 

The dataset contains anonymous data from patients seen at the 
Hospital Israelita Albert Einstein, São Paulo, Brazil, and who had sam-
ples collected to perform the SARS-CoV-2 by RT-PCR and additional 
laboratory tests during the visit. The dataset is publicly available in 
Ref. [43] for collaborative research and it is often updated. The raw 
version we used contained 5644 samples and 111 features, standard 
normalized (z-score), related to the medical tests, such as blood, urine 
and others. 

5.2. Pre-processing 

To select the most representative parameters in the dataset we first 
define a threshold of 95% for removing features with several missing 
values greater than it. Non-blood features were also discarded, such as 
urine tests and other contagious infectious diseases. These diseases 
include respiratory infections, such as influenza A and B; parainfluenza 
1, 2, 3 and 4; enterovirus infections and others. We remove these fea-
tures since the dependence of the diagnosis on a variety of other infec-
tious diseases for COVID-19 prediction is not a practical situation in the 

emergency context. Furthermore, a false negative result of one of these 
diseases would generate a spread of the error. 

However, the diagnostic results for the others infectious diseases 
could be used to train a multiple output classifier, which may assist the 
health professional in the process of diagnosing simultaneous diseases. 
But this is not the focus of this work. 

The set of final features were detailed in Table 1. After the cleaning 
process, we found a total of 608 observations, being 84 positive and 524 
negative COVID-19 confirmed cases through RT-PCR being, thus, an 
imbalanced data problem. The distribution for each class is approxi-
mately 1:6 ratio. Since many null values remained, it was necessary an 
imputation technique to deal with. The “Iterative Imputer” technique 
from Scikit-learn package [44] showed the best performance in experi-
mental tests compared with mean or median. 

5.3. Evaluation of predictive models 

In this paper, we use as a baseline the state-of-the-art of Logistic 
Regression [45], XGBoost [46] and Random Forest [47], since these 
algorithms have shown good results in problems with imbalanced data, 
as in Refs. [8,11,13,21]. We also tested the SVM and MLP methods. 

Fig. 3. Diagram of the proposed method of generating ensemble classifiers with local explainability.  

Fig. 4. The nested cross validation method.  
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We train and evaluate these models through a nested cross-validation 
procedure [48]. As illustrated in Fig. 4, first, in each iteration, the 
dataset is stratified between two subsets: training + validation and test 
set. In the inner loop, training + validation are divided into k folds and 
the model being trained in k − 1 partitions. The other fold, which does 
not participate in the training, is used for model validation and for 
selecting the best set of hyperparameters through the Grid Search al-
gorithm. At the end of an iteration, the model is evaluated in the test set. 
In the outer loop, this process is repeated in other different training +
validation and test set folds, mutually exclusive. The nested 
cross-validation method, in this way, allows a more reliable evaluation 
of the model generalization. 

For the evaluation of the models, we chose the known f1–score [49] 
to measure the best set of hyperparameters. Since 524 patient observa-
tions had no detection of the SARS-CoV-2 (86% of the dataset), the 
evaluation of accuracy does not provide a representative measure. 
F1–score, in its turn, provides a measure of the discrimination capacity 
of the models. 

For the RF algorithm, we vary the number of estimators in the set of 
{10,20, 30, 45,50,55,⋯, 90,95,100} trees, while we change the 
maximum depth of the tree in the set of {2,4,8, 16,32,64}. For the 
XGBoost, the same set of hyperparameters was applied, adding a 
learning rate of {0.1,0.05,0.01}. For the SVM, we vary the cost hyper-
parameter in the set of {0.001,0.01,0.05,0.1, 0.5,1, 10} and linear and 
rbf kernels. In the MLP algorithm, we test hidden layers of size 
(64,32, 16), (32,32,16), (64,32,32) and (64,64,32,32), with constant 
or adaptive learning rate. We define the hyperparameter alpha in the set 
of {0.01,0.05,0.005, 0.001,0.0001}. 

We train each algorithm using the SVM–Synthetic Minority Over- 
sampling Technique (SVM–SMOTE) [50]. Through this technique, mi-
nority class data are synthetically over-sampled, presenting for the 
training subset the same proportion of instances for the positive and the 
negative class. Resampling by this technique is performed by creating a 
synthetic sample between the k neighbors closest to the instance, as 
shown in Fig. 5. For this task, we select a number of k = 5 neighbors. 

Through the nested cross-validation method, we generate five final 
models for each algorithm, which correspond to the number of external 
partitions. Thus, we choose the best of the five models generated for 
each method and retrain it in 10 iterations using the selected hyper-
parameters to measure their ability to generalize. For each iteration, we 
split the data in 80% for training and the rest for the test set. Considering 
the imbalanced data, we applied the SMOTE again, but only for the 
training data, for each of the interactions, synthetically super-sampling 
the minority class data. 

5.4. Ensemble 

To compose the ensemble, we combine the best nested cross- 
validation models of RF, LR, XGBoost, SVM, and MLP. The label was 

predicted based on the majority voting decision. For weighting the 
votes, the model that obtained the best performance received a weight 
equal 2 and the worst one a weight equal 0. 

After generating the ensemble, we evaluated the combined models in 
each test subset of the 10 iterations, using the following evaluation 
metrics: accuracy, f1–score, sensitivity and specificity. In the end, the 
average and standard deviation values are calculated for each of the 
metrics, obtaining the result that represents the model’s generalization. 

5.5. Explainability 

We propose a methodology to provide a local explanation of the 
black box model using a single decision tree. In this step, we performed 
the following experiments:  

1 Select a test instance for local explainability;  
2 Generate new samples around the instance (noise set η);  
3 Using the RF, classify the noise set and also the test instance;  
4 The classification results are assigned as labels for these new 

samples;  
5 With these labels and data, a DT is trained;  
6 Then, the DT is used to provide a local explanation of the black-box 

model by taking the path in the tree that leads to the classification. 

For global explanation, the local explanations obtained with DTX are 
aggregated over many instances to build the Criteria Graph (see section 
4). 

6. Results and discussion 

Table 3 shows the results for the classification of COVID-19 using the 
metrics accuracy, f1–score, sensitivity, specificity and area under the 
ROC curve (AUROC). We also summarize the classification results in the 
normalized confusion matrix per class (positive or negative) for each 
algorithm in Table 4. 

Fig. 6 shows the average of the ROC curve obtained for each one of 
the algorithms evaluated. This curve is computed by varying the deci-
sion threshold, obtaining true positive and false positive rates for each of 
them. The closer the area is to 1, the greater the discrimination capacity 
of the model in the diagnostic test. 

Using the f1–score for comparison, the best models obtained were 
the RF, with maximum tree depth equal to 8 and 45 estimators, and the 
heterogeneous ensemble. In both models we obtain an f1–score of 76%. 
Thus, prioritizing simplicity, we chose the RF model to apply our pro-
posed Criteria Graph for the global explanations and the DTX for the 
local explanations. For the RF model, in 9 of the 10 iterations, the area 
under the curve ROC was ≥ 0.83 and the final average was equal to 0.86. 

Fig. 7a shows the importance of the blood features for the model 
decision using the global SHAP values, which reflects the positive or 

Fig. 5. Example of synthetic sample generated by SMOTE.  
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negative contributions of each feature to the model output. A positive 
SHAP value represents a positive contribution to the target variable, 
while a negative SHAP value represents a negative contribution. These 
importances are classified in a descending way, suggesting that the main 
features that contributed to the target variable are the WBC, PLT and the 
EOS. 

In addition to this information, the coloring of the points on the chart 
is related to the normalized values of the blood parameters of the pa-
tient, such as the number of WBC. The closer to blue, the lower the value 
of the characteristic and the closer to pink, the higher its value. Thus, a 
low value of the number of WBC, as well as the number of PLT, seen in 
blue, tends to positively impact the positive COVID–19 output. To 
corroborate this result, Fig. 8 shows the kernel density estimate for each 
of these two variables, for visualizing the distribution of observations of 
SARS–CoV–2 exam result across the dataset. For WBC and PLT values 
there is a central tendency around normalized values lowest of these 
characteristics. This is consistent with the literature, that suggest that 
the platelet count may reflect the pathological changes of patients with 
COVID–19 [51]. This tendency is also observed for EOS and the 

eosinopenia, characterized low EOS levels, appear to be related to dis-
ease severity [52]. In the case of CRP, higher values of this marker tend 
to positively impact the positive COVID–19 output. 

Fig. 7b and c shows examples of local explanations for two different 
patients with COVID-19, using the Local Interpretable Model–agnostic 
Explanations (LIME). This algorithm works by generating new samples 
around the instance to be explained and obtaining the prediction of the 
local noise using the original model. Then, based on the proximity to the 
given instance, the sample is weighted and a linear regression is con-
structed using these new samples and the considered instance. Through 
this method, the learned linear model is valid on a local scale. 

The bars pointing to the right in Fig. 7b and c displays the features 
that have a positive correlation with the output, while the bars on the 
left show the features that have a negative correlation. Thus, for the two 
patients, low WBC values (with WBC ≤ -0.64) and low EOS values (with 
EOS ≤ -0.67) have a positive correlation with the positive COVID–19, 
according to LIME explanations. 

We also show the values of the first three most important blood 
parameters presented in Fig. 7a as a function of the corresponding SHAP 
value (Fig. 9), which represents the marginal effect that these features 
have on the predicted result of the model. Values of the normalized 
number of WBC, PLT and EOS above the highlighted lines, tend to 
contribute to increasing the probability of the positive class. 

6.1. Decision–tree based explainer and criteria graph 

Table 5 shows the rules for the decision tree-based explainer for 12 
positive COVID–19 patients which reflect the models behaviour. Since 
the explanations are local and built with high fidelity to the high ac-
curacy model, differently from Refs. [8,21] one does not have to 
compromise accuracy. Also, the decisions trees allow us to represent 
non-linear behaviour which is an advantage against LIME. 

It can be seen that the model uses different criteria to “diagnose” 
each patient. This indicates that the COVID-19 affects a number of pa-
rameters in the blood and that the variation of these parameters is in-
dividual dependent. 

Looking at the set of rules it is hard to identify patterns that can be 
important in the search for a more universal and robust diagnosis 
methodology. For these reasons, the criteria graph (Section 4) was built 
for the explanations described in Table 5 and can be visualized in 
Fig. 10. Different from LIME [26] and SHAP [27], the Criteria Graph not 
only shows the importance of the features (the area of the nodes which 
they represent) but also how the features are inter-connected. 

The five largest nodes in the criteria graph correspond to PLT, MPV, 
EOS, CRP, and AST. Meanwhile, the 5 most important attributes ac-
cording to their SHAP values (see Fig. 7a) were WBC, PLT, EOS, CRP and 
MONO. Notice that there is a lot of overlap between the two rankings. 
Although WBC does not figure in the top five attributes, it has two nodes 
in the graph. That means that the WBC was important for the inference 
but its threshold value was not very clear. Thus, it seems to make sense 
that as a whole the attribute loses strength. The graph also shows a 
strong relationship between the criteria PLT ≤ Medium, MPV > low and 
EOS ≤ low pointing to a route towards a more reliable diagnosis 
procedure. 

Table 3 
Results of the classification of COVID-19.  

Model/Score Accuracy F1–score Sensitivity Specificity AUROC 

LR 0.82±0.03  0.71±0.05  0.73±0.13  0.84±0.02  0.85±0.05  
RF 0.88±0.02  0.76±0.03  0.66±0.10  0.91±0.02  0.86±0.05  
XGBoost 0.87±0.02  0.73±0.03  0.60±0.10  0.91±0.02  0.85±0.04  
SVM 0.84±0.02  0.70±0.05  0.56±0.14  0.89±0.02  0.85±0.05  
MLP 0.85±0.02  0.68±0.06  0.42±0.13  0.92±0.02  0.81±0.04  
Ensemble 0.88±0.02  0.76±0.03  0.67±0.10  0.91±0.02  0.87±0.05   

Table 4 
Normalized confusion matrices for the ML methods tested. For each actual class, 
the sum of the corresponding row is 1.00  

(a) LR  
Predicted 
Negative Positive 

Actual Negative 0.84 0.16  
Positive 0.26 0.74 

(b) RF  
Predicted 
Negative Positive 

Actual Negative 0.91 0.09  
Positive 0.34 0.66 

(c) XGBoost  
Predicted 
Negative Positive 

Actual Negative 0.91 0.09  
Positive 0.40 0.60 

(d) SVM  
Predicted 
Negative Positive 

Actual Negative 0.89 0.11  
Positive 0.44 0.56 

(e) MLP  
Predicted 
Negative Positive 

Actual Negative 0.92 0.08  
Positive 0.58 0.42 

(f) Ensemble  
Predicted 
Negative Positive 

Actual Negative 0.90 0.10  
Positive 0.35 0.65  
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Increasing the number of patients used to produce the graph may 
increase the strength of the identified patterns. Nevertheless, the Criteria 
Graph provides information that other explanation methods lack and 
that this information may be extremely useful for the application expert. 
For instance, neither SHAP [27] nor LIME [26] present information 
about features interactions. 

In Fig. 7b and c it can be seen that LIME presents information about 
the thresholds used in the classification. However, as it happens with the 
DTX, the information is only local (individual dependent). The criteria 
graph addresses this drawback by aggregating the results of all the 
explanations. 

SHAP can inform the user about possible feature thresholds with the 
marginal effects plot as shown in Fig. 9. Such approach can be 
cumbersome if the number of features is high. In this context, the criteria 
graph is able to more clearly show the robustness of the thresholds by 
compressing the information about each feature in few nodes which are 
all displayed in a single plot. Thus, the amount artefacts presented to the 

user is reduced which tends to reduce the analysis time. 

6.2. Practical application 

As aforementioned stated, the RF and heterogeneous ensemble 
models achieved the best results. Looking for the simplest model (often 
called parsimony), we follow with the RF as the preferred one plus the 
Criteria Graph for global explanations and DTX for local ones. Utilizing a 
web application, the healthcare professional may be able to input the 
patient’s blood test results (similar, for instance, with that available in 
Ref. [13]). The system may be able, for instance, (i) to provide for the 
decision-maker both the results (infected or not), (ii) shows the rules to 
facilitate her/his valuable interpretation regarding local and global ex-
planations, (iii) to be pre-configured to streamline the medical work and 
provide faster and more reliable diagnostics and (iv) offer intelligent 
prescription, which can be filled automatically in the correct standards 
of the medical prescription. The implementation must be focused on 

Fig. 6. AUROC for each algorithm.  
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reusing the code, since once new strains of the virus are appearing, 
adaptations in the code/system may be required to make it useful in the 
future. 

There are many advantages of using electronic medical records, such 
as security and availability of patient information, standardization/ 
integration of data, and automation of procedures, to name a few. We 
know that SARS-CoV-2 is highly transmissible and rapid tests are 
already in place to diagnose the disease. Therefore, we emphasize that 
the proposed solution has the objective of supporting the decision 
making of clinicians, providing more information for helping them. 

Moreover, a considerable differential of the proposed methodology is 
the presentation of explanations of the model, making such information 
comprehensible to the health professional, being able to assist her/him 
in the final result of the diagnosis. 

7. Conclusion 

Recent research suggests that some parameters assessed in routine 
blood tests are indicative of COVID-19. It is well known that machine 
learning techniques excel in finding correlations in all sorts of data. 

Fig. 7. Explanations provided by SHAP and LIME  

Fig. 8. Kernel density estimation of WBC and PLT.  

Fig. 9. Marginal effect of blood features on the target variable.  
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Thus, it seems natural to try these techniques for the problem of COVID- 
19 screening through routine blood test data. However, there is signif-
icant barrier to the application of such methods in the real world due to 
their lack of transparency, meaning that human specialists may find it 
difficult to trust the ML decisions. 

In this context, in this work, we search for an accurate machine 
learning model for COVID-19 screening based on hematological data 
and propose two methods to improve the interpretability of the ML 
decisions, a Decision Tree Explainer and a Criteria Graph. The decision 
Tree Explainer is used to provide an individual explanation for each 
classified sample in terms of If … then rules. The Criteria Graph is used to 
aggregate the set of rules produced by the decision tree to provide a 
global picture of the criteria that guided the model decisions and show 

the interactions among these criteria. 
From the tested ML techniques, the best results were obtained with a 

RF which is an opaque model. It presented an accuracy of 0.88 ± 0.02, 
F1–score of 0.76 ± 0.03, Sensitivity of 0.66 ± 0.10, and Specificity 0.91 
± 0.02. The Decision Tree was then used to produce explanations for the 
classification of twelve confirmed COVID-19 cases and finally, the 
Criteria Graph was used to aggregate the explanations and portrait a 
global picture of the model results. The obtained Criteria Graph was in 
accordance with the well know techniques for interpretability SHAP and 
LIME indicating its adequacy and the adequacy of the Decision Tree 
Explainers. In addition, it could be seen that the Criteria Graph presents 
valuable information, such as the interaction among different criteria 
and the robustness of a criteria with respect to its threshold value, which 
is not provided by other techniques. 

Given the urgency of the pandemic and the need to generate im-
mediate results, much of the research has been published in repositories 
such as arXiv or medRxiv. Some methodologies discussed in the litera-
ture review are not clear enough to be reproducible or the model deci-
sion is not comprehensible. Lastly, we made comparisons between our 
proposed work and others from the literature that have not been peer- 
reviewed and published yet in the scientific literature. However, their 
data confirm our finding that ML models using routine blood parameters 
are useful in the diagnosis of COVID-19. 

7.1. Future work 

We employed hematological data from the Hospital Israelita Albert 
Einstein in São Paulo, Brazil, which is available as public data. However, 
this data is arguably not large and it is normalized (using z-normaliza-
tion). Since we do not have access to the values used to normalize the 
data, the original values of the features are not accessible. Applying the 
proposed methods with larger data is an important step in our future 
work. 

Still, the solution we offer brings good results, it is reproducible and 
the model explainable. Additionally, we intend to integrate it with other 
fronts, such as chest X-rays and CT scans. In this way, ML models may 
serve as a way to support the diagnosis of the disease, regardless of the 
stage of contagion, and can help in the validation of RT-PCR. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgement 

M.A. Alves, G.Z. de Castro and B.A.S. Oliveira declare that this work 
has been supported by the Brazilian agency CAPES (Coordination of 
Improvement of Higher Education Personnel). 

J.A. Ramírez, R. Silva and F.G. Guimarães declare that this work has 
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