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Abstract

Background: Upwards of 1200 miRNA loci have hitherto been annotated in the human genome. The specific features
defining a miRNA precursor and deciding its recognition and subsequent processing are not yet exhaustively described and
miRNA loci can thus not be computationally identified with sufficient confidence.

Results: We rendered pre-miRNA and non-pre-miRNA hairpins as strings of integrated sequence-structure information, and
used the software Teiresias to identify sequence-structure motifs (ss-motifs) of variable length in these data sets. Using only
ss-motifs as features in a Support Vector Machine (SVM) algorithm for pre-miRNA identification achieved 99.2% specificity
and 97.6% sensitivity on a human test data set, which is comparable to previously published algorithms employing
combinations of sequence-structure and additional features. Further analysis of the ss-motif information contents revealed
strongly significant deviations from those of the respective training sets, revealing important potential clues as to how the
sequence and structural information of RNA hairpins are utilized by the miRNA processing apparatus.

Conclusion: Integrated sequence-structure motifs of variable length apparently capture nearly all information required to
distinguish miRNA precursors from other stem-loop structures.
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Introduction

More than 1200 miRNAs have been identified in humans [1].

The characteristics defining a miRNA locus are not yet known in

all detail, and computational methods for identification and

annotation of new miRNAs still need improvement. Machine

learning algorithms represent a set of regularly and widely used

methods for classification of various types of information, and a

number of research groups have used machine learning to predict

new miRNA loci [2–13]. It is evident from comparison of these

methods that the features used for pre-miRNA detection can

heavily influence the performance of a method (see also Table 1 in

Jiang et al. [13]). However, the use of empirically derived miRNA

characteristics in computational analysis is not straightforward,

and features commonly employed for computational miRNA

detection or identification lead to substantial differences in

performance.

miRNAs are processed from longer precursor transcripts (pri-

and pre-miRNAs), and it is the processing apparatus which

ultimately decides whether an RNA hairpin structure shall

Table 1. Comparison between Mirident and previously
published software/algorithms.

ACC(%) SP(%) SE(%) AUC(%) Ref

Mirident 98.39 99.19 97.58 99

3SVM1 83.87 89.52 78.23 n.a. [2]

Mir-albra(Th2 = 0) 80.242 1 60.48 n.a. [18]

Mir-albra(Th2 = 21) 89.5 95.97 83.65

Mir-albra(Th2 = 22) 81.45 69.35 93.55

PmirP 89.1 95.97 82.26 n.a. [12]

1Original training data.
2‘‘Th’’ indicates ‘‘Threshold’’.
All the models were tested on the same data set of 124 pre-miRNAs and 124
non-pre-miRNA hairpins.
doi:10.1371/journal.pone.0032797.t001
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constitute a miRNA locus or not. Recent analyses show that the

pri-miRNA structure is recognized in a co-operative manner by

the Microprocessor component DGCR8 [14]. DGCR8 binds the

pri-miRNA stem-loop structure as a trimer, resulting in a large

interacting surface which probably allows for numerous and

variable points of interaction. Simultaneous employment of

sequence and structure information has been shown to yield

higher predictability of miRNA loci than expected from their

additive influence effects [15]. Inclusion of local contiguous

structure-sequence information for distinguishing pre-miRNA loci

from other potential hairpin structures was first reported by Xue

et al. [2], and various combinations of sequence and secondary

structure features have also been applied by other studies [3,5].

Recently, Zhao et al. [12] used a support vector machine (SVM)

with short sequence-structure features (in combination with

additional information) to discriminate actual pre-miRNAs from

other potential hairpin structures, achieving 94.9% sensitivity and

98.4% specificity on a human test set.

Combinations of sequence-structure information have been

shown to lead to progress in pre-miRNA prediction [2,12,13,16],

however previously published methods have only applied

sequence-structure features of fixed size. The present study

integrated sequence and secondary structure characteristics into

a single information string of variable length, and may thus better

capture the real features of pre-miRNAs and other RNA hairpins.

We utilized this idea to carry out exhaustive searches for all

possible sequence-structure motifs (ss-motifs) on potential RNA

hairpin structures. Applied within a loosely defined sequence-

structure space (e.g., predicted stem-loop structures) a machine

learning algorithm should be able to predict precursor miRNAs

based on the identified sequence-structure motifs. To test this

hypothesis we developed an SVM algorithm (Mirident), which,

when employing the 1300 most informative ss-motifs, was able to

predict miRNA loci in the human genome with higher specificity

and sensitivity than any other previously published computational

tool.

Results and Discussion

The sequence-structure motif
The functionality of an RNA molecule is predominantly

determined by its primary nucleotides sequence and the intra-

molecular interactions (hydrogen-bonding) deciding its secondary

or 3-dimensional structure. These two modes of molecular

information have conventionally been represented by a string of

letters (e.g., UUCCCAAAGUUGAGAA) denoting the chemical

composition of a 16 nucleotides long RNA molecule, and a string

of brackets and dots (e.g., ‘‘(((.((….)).)))’’) denoting the intra-

molecular interactions forming the basis for its secondary

structure. In a molecular and functional context the combination

of both aspects are probably of high importance. To be able to

identify molecular features which combine sequence and structural

information, we therefore integrated both sequence and secondary

structure into a common information string (ss-string). Replacing

the structure symbols ‘‘(’’, ‘‘.’’ and ‘‘)’’ by ‘‘L’’, ‘‘D’’ and ‘‘R’’,

respectively, and adding these as subscripts to each respective

nucleotide notation, the chemical composition and the intra-

molecular structural of the above RNA molecule can be

represented by a single information string, i.e., ULULCLCDCLA-

LADADGDUDURGRADGRARAR (‘‘NS’’ denoting ‘‘any nucleotide,

any intra-molecular interaction’’). From these ss-strings we

extracted frequently occurring motifs (ss-motifs) of varying length

(see Materials and Methods) which were subsequently used to

distinguish pre-miRNAs from other stem-loop structures.

Motif extraction and evaluation
To test the efficacy of the ss-motifs in distinguishing miRNA

precursors from RNA stem-loop structures not encoding miRNAs,

we developed an SVM-based classifier for prediction of pre-

miRNAs (Mirident, Figure 1). The software Teiresias [17] was

used to search for ss-motifs in 608 verified pre-miRNA hairpins

(positives), and 608 non-pre-miRNA hairpins extracted from

coding regions of the genome (negatives). From the 608 positive

and 608 negative hairpins, 27496 and 5954 ss-motifs were

extracted, respectively, of which remained a total of 29734 ss-

motifs when redundancies were removed. Computing the

frequency of each motif created a 2973461216 feature matrix

which was used to construct a classifier. As the high number of ss-

motifs very likely contained redundant information, we used a

linear SVM algorithm to estimate a weight for each ss-motif (see

Materials and Methods), according to its contribution to

distinguishing positives from negatives. The ss-motifs were

subsequently ranked in descending order according to their

weights (Table S1).

Mirident efficiently identifies miRNA precursors
By successively selecting the N ss-motifs with the highest weights

(N = 100, 200, 300,….., 29734) for training of the linear classifier,

and subsequently employing it to predict pre-miRNA hairpins (see

Materials and Methods), we obtained a measure of the prediction

accuracy for each increment in the number of ss-motifs (Figure 2A

and Table S2). From Figure 2A it can be seen that the prediction

accuracy increases with increasing number of ss-motifs until

approximately 1300 ss-motifs have been included, at which the

prediction accuracy reaches its maximum value (98.39%),

corresponding to specificity and sensitivity values of 99.20% and

97.58%, respectively. Further inclusion of ss-motifs led to a decline

in prediction accuracy. As the above results were obtained with a

linear kernel SVM, we repeated the procedure using a Gaussian

kernel SVM in order to further validate the result. As can be seen

from Figure 2A, the results obtained with the Gaussian kernel

SVM deviated little from those obtained with the linear kernel

SVM.

The results obtained with Mirident is comparable to those of

previously published computational methods for pre-miRNA

prediction, e.g. miR-abela [18] and the 3SVM classifier [2] (see

Table 1). A more detailed comparison was made between

Mirident and the PMirP method [12], for which very high

sensitivity (98.4%) and specificity (94.9%) was reported when

applied on human pre-miRNA and hairpin data. PMirP [12] is

based on sequence-structure triplets, but also includes minimum

free energy (MFE) and overall base-pairing data. When applied to

the human test set used in the present study, PMirP achieved a

sensitivity of 82.26% and a specificity of 95.97%, which falls

somewhat behind the performance obtained with Mirident.

Figure 2B delineates the ROC curve for Mirident, giving an Area

Under the Curve (AUC) value of 0.99, which further emphasize

the potential of ss-motifs of pre-miRNA prediction.

The results obtained with Mirident suggest that ss-motifs

efficiently capture the essential characteristics of miRNA precur-

sors. The difference between Mirident and previously published

methods employing integrated sequence-structure information

[2,12] may reside in the more flexible manner in which Mirident

harvests this information by extracting sequence-structure motifs

of undefined length, and the larger number of informative features

this methodology achieves. The observations reported below that

integrated nucleotide and structural information is not confined to

the nearest nucleotide (Figure 3A) further suggests that longer ss-

motifs may have an edge over sequence-structure triplets. Taken

ss-Motifs Suffice to Identify Pre-miRNAs
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Figure 1. The Mirident pipeline.
doi:10.1371/journal.pone.0032797.g001
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together, the results obtained in the tests above would suggest that

a substantial amount of the information needed to distinguish

miRNA precursors from non-pre-miRNA hairpins can be

contained in a set of ss-motif.

An additional question concerns how the sequence-structure

information is distributed within miRNA families. While mature

miRNA sequences are generally very similar within miRNA

families, the sequences of miRNA precursors vary considerably.

To investigate this, we compared the number of ss-motifs common

to all members of a miRNA family to that of the same number

randomly selected miRNA precursors (the random selections

being repeated 1000 times). As shown in Figure 4, miRNA family

members had significantly (p,0.001) more ss-motifs in common

than had randomly selected miRNA precursors, which may bias

the Mirident performance if members of the same miRNA family

occur in both test and training set. On the other hand, only 29 of

the pre-miRNAs in the test set (altogether 124 pre-miRNAs) had a

family member in the training set, and even if these 29 pre-

miRNAs were excluded, the detection rate for the rest of the set

was 94.7% (90/95). We nonetheless repeated the entire Mirident

procedure after filtering for precursors with sequence identity

above 80% or 70%, and reached prediction accuracy values of

97.4% and 96.9% (Table S3), respectively (see Supporting

Information S1 for details). Thus, while not being able to entirely

exclude a ‘‘family’’ effect on the prediction performance, we do

not think this influence can be strong.

Mirident identifies novel and non-human pre-miRNAs
Although the 1300 ss-motifs employed by Mirident are derived

from human hairpin structures, these motifs may be representative

of miRNA precursors of most organisms. We therefore applied

Mirident to the 5034 single loop non-human pre-miRNA

sequences in the miRBase version 11.0 [1], of which the algorithm

was able to distinguish 93.8% (Table 2). Between the miRBase

versions 11.0 and 17.0, 9372 single-loop pre-miRNA hairpins

were entered into the database, of which 88% were identified

(Table 2). When applied to specifically to all mouse and rat pre-

miRNAs in miRBase version 17, Mirident identified 88.2% and

93.0% of these, respectively. Similarly, when applied to the pre-

miRNAs of four different viruses, Mirident identified from 92.3%

to 100% of these (Table 2).

The ss-motif information content differ from that of the
respective training sets

The distribution of notations in the 1300 ss-motifs might give

clues to the nature of informational content in the miRNA

precursor. The average ss-motif was 6.3 nucleotides long (Table

S1), and the 1300 ss-motifs contained 6431 specific notations (‘‘N’’

and ‘‘S’’ excluded), with a substantial bias towards structural

information (72.9% of all notations) (Table S4). More motifs were

extracted from the positive (pre-miRNA; 941 ss-motifs) than from

the negative (553 ss-motifs) training set (Table S1). With respect to

nucleotide content, the number of U notations in the pre-miRNA

Figure 2. Mirident performance. A. Effect of increasing number of ss-motifs on miRNA prediction accurracy. Note: The X-axis is discontinuous
above 1500 motifs (dashed line). B. The ROC curve of Mirident (red line) trained with 1300 ss-motifs. The Area Under Curve (AUC) is 0.99. Results for
other methods are shown for comparison.
doi:10.1371/journal.pone.0032797.g002

ss-Motifs Suffice to Identify Pre-miRNAs
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ss-motifs was greatly enriched (p,102100) above the correspond-

ing training set, whereas the number of C and A notations are

greatly reduced (p,3610212). In the CDS hairpin ss-motifs, G

notations are significantly enriched (p = 1.48610212) and U

notations significantly (p = 3.5761025) depleted relative to the

CDS training set (Figure S1 and Table S4).

To further analyze the information content of the ss-motifs, we

compared the statistics of the ss-motifs to randomly selected

sequences (RSSs) from the respective training sets (see Supporting

Information S1). The structural notations (i.e., ‘‘L’’, ‘‘R’’ and ‘‘D’’)

of the pre-miRNA ss-motifs were significantly enriched for both

left (‘‘L’’) and right (‘‘R’’; p = 3.5161026 and p = 7.81610211,

respectively) notations relative to the pre-miRNA training set,

whereas the CDS hairpin ss-motifs were significantly enriched in

specific ‘‘D’’ notations (p = 2.7361027) relative to the negative

training set (Figure 3B and Table S4). Thus, the differences

Figure 3. Sequence-structure motif characteristics. Light hues (pink, light green) indicates the positive and negative randomly selected
sequences (RSS). Darker hues (red, green) indicates the actual ss-motifs derived from the positive (pre-miRNA) and negative (CDS hairpin) training
sets. A. Combinations of nucleotide and structural information in the ss-motifs. The figure shows occurrence of structural information relative to
positions with specific nucleotide information. ‘‘Comb’’ denotes occurrences of specific nucleotide and structural information combined at the same
position (e.g., ‘‘AL’’, ‘‘CD’’, etc). ‘‘Up neighb’’ and ‘‘Dw neighb’’ denote occurrences of specific nucleotide notation combined with specific structural
notations at the nearest upstream or downstream neighbouring position (e.g., ‘‘NLAS’’ etc, and ‘‘ASNL’’ etc), respectively. B. Distribution of ‘‘L’’, ‘‘R’’ and
‘‘D’’ denotes ‘‘left’’, ‘‘right’’ and absence of (notation of) intramolecular interactions, respectively.
doi:10.1371/journal.pone.0032797.g003

Figure 4. Increased ss-motif similiarity within miRNA families. The panels show the average number of common ss-motif among members of
each miRNA family (arrow), compared to a distribution of average pre-miRNAs (repeated 1000 times). A. The miRNA gene family mir-515 (26
members; 172 common ss-motifs). B. The miRNA gene family mir-154 (17 members; 118 common ss-motifs). C. The miRNA gene family let-7 (8
members; 428 common ss-motifs).
doi:10.1371/journal.pone.0032797.g004

ss-Motifs Suffice to Identify Pre-miRNAs
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between the training sets were accentuated in the two ss-motifs

sets. Tentatively, the data suggest that the presence of specific

intra-molecular interactions (i.e., L and R) may have a defining

value for both miRNA and non-miRNA precursors. Contrarily,

while information on absence of intra-molecular interactions at

specific nucleotide position (or combinations of positions) has little

positive value for defining a miRNA precursor as such, this type of

information may have a strong defining value with respect to non-

miRNA precursors.

Given that the input information in the sequence-structure

strings is composed of integrated nucleotide and intra-molecular

information (e.g., ‘‘AL’’, ‘‘CD’’, etc), it might be expected that the

output information (in the ss-motifs) would take the same form.

However, significantly fewer positions in both the pre-miRNA and

CDS hairpin ss-motifs contained combined nucleotide and

structural notations (e.g., AL) than in randomly selected sequences

from their respective training set sets (p = 4.20610252 and

p = 2.11610223, respectively; Figure 3A). Also, structural nota-

tions for neighboring nucleotides were significantly less frequent

than expected (see Figure S2), suggesting that informative

nucleotide and structural notations that frequently are located

more than one nucleotide residue apart, which would imply that

the miRNA processing apparatus utilizes combinations of well-

spaced sequence and structural information in the recognition or

rejection of specific hairpin. This may also go some way to explain

the relatively lower efficacy of sequence-structure triplets [2,12] in

predicting miRNA hairpins. (Further details on the ss-motif

information content are found in Supporting Information S1).

ss-motif position and distribution
In order to see whether the individual ss-motifs occur at specific

positions, along the pre-miRNA stem-loop structure we plotted the

positions of the ss-motifs along the pre-miRNA sequence (see

Supporting Information S1 for details). Overall, very few ss-motifs

were located at any specific position (Figure 5A), and the same (or

very similar) ss-motifs commonly occurs at several positions along

the stem part of the hairpins (Figure 5C&D; further analysis of

motif correlations is found in Supporting Information S1). The

relatively few ss-motifs that occupied very specific locations were

often located in the loop of non-pre-miRNA hairpins (Figure 5B).

Further analysis also suggested that ss-motifs with a G residue but

few or none structural notations were frequent among ss-motifs

from the non-pre-miRNA set; thus, the sequence-structure

information in the loop may be more important for rejection of

non-miRNA hairpins by the miRNA processing apparatus than

for recognition of actual miRNA precursors. This observation is in

agreement with experimental data showing that the loop is not

absolutely required for processing of a pri-miRNA (e.g., has-miR-

16) by the Drosha-DGCR8 complex in vitro [19]. Thus, the

presence of a loop may not be an absolute requirement for

the recognition and/or processing for most miRNA precursors,

the loop may still contain information that is inhibitory to its

recognition or processing. On the other hand, it has been shown

that human miRNA loops contain conserved binding sites for

various proteins that either promotes or inhibits miRNA precursor

processing [20–24], but the fraction of miRNAs with conserved

loop sequences (around 14% [20]) may have been too small to

make a strong mark on the overall ss-motif composition.

If the processing of miRNA precursors into mature miRNAs by

the Microprocessor and Dicer complexes are considered as

enzymatic reactions in which cooperative interactions between

substrate and enzyme leads to an orientation and arrangement of

both molecules which elicit the enzymatic reaction [25], it is

tempting to see the ss-motifs as a nearly complete catalogue of the

pri-/pre-miRNA surface features that enable their recognition and

processing. It is a reasonable assumption that the specific

interactions between the precursor miRNA and the enzyme

protein surface will occur on a number of compatible ‘‘micro-

domains’’ of the surfaces of the respective molecules. The

interacting micro-domains on the precursor miRNA will be

specified by a combination of spatial and electro-chemical

properties, which in turn are determined mainly by the primary

sequence and its intra-molecular interactions of the molecule. In

comparison to the enzyme kinetics of small molecules, where most

interactions between substrate and enzyme must occur in or in the

immediate vicinity of the active site, both the precursor miRNA

and the processing complexes are relatively large molecules with

extended molecular surfaces, enabling a large number of possible

interacting micro-domains. On the other hand, although a large

number of potential interactions may exist, a limited number of

cooperative interactions may in any specific case be sufficient to

achieve the required coordination of substrate and enzyme that

elicits the enzymatic reaction. The large number of informative

and non-correlated ss-motifs identified in this study suggests that a

hypothetical miRNA precursor may interact with the processing

enzymes in a large number of different ways, the only necessary

and sufficient criterion being that the sum of the interactions must

achieve an orientation and arrangement of substrate and enzyme

which elicits the enzymatic reaction. An actual miRNA precursor

may, on the other hand, only realize a few of these numerous

potential combinations of interactions in order to produce a

mature miRNA, and an exhaustive catalogue of criteria defining a

miRNA precursor may therefore be difficult to obtain by empirical

methods.

Table 2. Mirident prediction accuracy on non-human and novel pre-miRNA data sets.

Species Number of pre-miRNAs Accuracy (%)

All non-human pre-miRNAs in mirBase V11.0 5034 93.8

Recent pre-miRNAs (all species; miRBase v.12–17) 9372 88.0

Mouse (Mus musculus),miRBase v17 720 88.2

Rat (Rattus norvegicus), miRBase v17 408 93.0

EBV 25 100

HCMV 11 100

MGHV68 15 93.0

KSHV 13 92.3

doi:10.1371/journal.pone.0032797.t002

ss-Motifs Suffice to Identify Pre-miRNAs
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Materials and Methods

Data
Human pre-miRNA sequences. miRNA precursor

sequences from the miRNA database miRBase version 11.0 [26]

were filtered for multi-loop structures and redundancies (i.e.,

sequence identity .90%; see Supporting Information S1 for

details) to yield a final set of 608 human miRNA precursor

sequences. Although these sequences will in a number of cases

contain some flanking sequence beyond the actual pre-miRNA

sequence, we will for simplicity refer to this sequence set as the

‘‘pre-miRNA set’’.

Human non-pre-miRNA stem-loop structures. Predicted

stem-loop structures from coding domains (CDSs) of human genes

(UCSC [27,28]) were used to generate a set of non-pre-miRNA

sequences according to five specific criteria (see Supporting

Information S1 for details). These sequences have never been

reported to generate mature miRNAs.

Training sets. Training sets of 484 pre-miRNA sequences

(positive training set) or 484 non-pre-miRNA sequences (negative

training set) were obtained by random selection among the 608

sequences in the pre-miRNA and non-pre-miRNA sequence sets,

respectively.

Test sets. Four types of test sets were used. The first type included

124 pre-miRNA and 124 non-pre-miRNA sequences from the

above human pre-miRNA and non-pre-miRNA sets after removal

of the sequences used for the training sets. The second type

Figure 5. ss-motif positions. A. ss-motif NLULNSCS is frequently found at the 59end of the pre-miRNA sequence. B. ss-motif NDNDNDNSNSNSUSGS is
concentrated at position 50 in the loop. C&D. Multiple position of similar ss-motifs along the pre-miRNA left strand of has-miR-1302-4 (C) and has-
miR-548i-1 (D). It should be noted that the figure shows ss-motif positions in extended pre-miRNA sequences (see Materials and Methods).
doi:10.1371/journal.pone.0032797.g005

ss-Motifs Suffice to Identify Pre-miRNAs
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included 5034 single loop hairpin structure of non-human

pre-miRNA sequences from miRBase (version 11.0) [26]. The

third type included 9372 pre-miRNA sequences predicted to form

single loop hairpin structures that were entered into the miRBase

from version 12.0 to version 17.0. The fourth type is rat, mouse

and four viruses (Epstein Barr Virus, Human cytomegalovirus,

Mouse gammaherpesvirus 68, Kaposi sarcoma-associated herpes-

virus) down-loaded from miRBase (version 17.0).

ss-motif extraction
The software Teiresias [17] was used to separately search for

frequently occurring sequence-structure motifs (ss-motifs) of

variable length in the two sets of 608 pre-miRNA and 608 non-

pre-miRNA sequences, respectively. The options used were

‘‘Exact discovery’’, ‘‘Seq Version’’ and ‘‘Accept all characters’’.

The parameters used were L = 4, W = 12, and K = 457,which

briefly implies that any motif of length W = 12 positions contains

at least L = 4 defined nucleotide or structural notations and occurs

in at least K = 457 different sequences, will be retained. For

instance, if the motif USNSNSNSNLALNLUSNSNSNL9 is found in

a pre-miRNA ss-string, this can be subdivided into the two

separate motifs USNSNSNSNLAL and ALNLUSNSNSNL, each of

length W = 12, and both containing at least L = 4 defined

nucleotide or structural notations.

Assigning weights to the ss-motifs
We used an SVM with linear kernels to assign a weight w to

each ss-motif. The method generally followed that of Brank et al.

[29] for normal-based feature selection. Briefly, assuming n

support vectors and a total of k ss-motifs, the matrix of the

‘‘model file’’ is given as:

a1 1 : x11 2 : x12 � � � k : x1k

a2 1 : x21 2 : x22 � � � k : x2k

a3 1 : x31 2 : x32 � � � k : x3k

� � � � � � � � � � � � � � � � � � � � � � � �
an 1 : xn1 2 : xn2 � � � k : xnk

The weight wj is then calculated as:

W~(w1,w2, � � � ,wk)

~(D
Xi~n

i~1
aixi1D,D

Xi~n

i~1
aixi2D, � � � D

Xi~n

i~1
aixik D),

Using wj to denote the weight of the jth (j~1,2, � � � ,k) ss-motif, the

motifs were sorted according to descending weight (wj ).

SVM for training and prediction
A Support Vector Machine (SVM) procedure was adopted to

classify pre-miRNAs versus non-pre-miRNA hairpins using the

968 sequences in the training sets as input. After sorting the motifs

by ‘‘w’’ (the weight of the ss-motifs) obtained with the linear kernel

SVM model, we sequentially introduced batches of 100 ss-motifs

from the top of the sorting list until an optimal performance

(ACC = 98.39%) was reached at 1300 ss-motifs, where after the

accuracy decrease with increasing number of ss-motifs. The

predicted accuracy rate of the Gaussian kernel SVM classifiers was

almost identical to that obtained with the linear kernel SVM

models (see Supporting Information S1 for details).

Statistical evaluation of the ss-motif information content
In order to estimate to what extent the information content of

the ss-motifs deviated from that randomly generated sequences, we

randomly selected a set of regions (RSSs) from the pre-miRNA

(positive) and CDS hairpin (negative) training sets with length

distributions and nucleotide and structural notations correspond-

ing to those in the actual ss-motifs generated from each respective

training set. This procedure was repeated 10,000 times to estimate

the probability (p-value) of the observed various characteristics in

the actual ss-motif sets (see Supporting Information S1 for details).

Evaluation of ss-motif similarity within miRNA families
In order to estimate the extent of ss-motif similarity within

miRNA families, we analyzed three miRNA families recorded the

number of ss-motifs common to all members of the family (see

Table S5). This number was compared to the number of ss-motifs

common to the same number of randomly selected pre-miRNAs, a

procedure repeated 1000 times to estimate the statistical

significance (p-value) of observing the number of common ss-

motifs recorded for each family.

In a further effort to test for the effects of within-family

similarity, we removed all (but one) of pre-miRNAs with sequence

identity higher than 80%/70%, and repeated the entire procedure

as given above, with the following modifications: The pre-miRNA

set was reduced to 577/557 sequences, and a corresponding

negative set was collected. The training and test sets were reduced

to 462/442 and 115/112 sequences, respectively, and the

Tereisias K parameter was changed to K = 433/413. Altogether

28941/23507 non-redundant ss-motifs were obtained, ranked, and

introduced to a linear kernel SVM model in increments of 100,

starting at N = 600 and ending at N = 1400.

The positions of the ss-motifs
To estimate the positional distribution of each ss-motif, the pre-

miRNA sequences were centered on the 59 end (mir_start) of the

mature miRNA (or miRNA*, whichever apply in each case), and

the pre-miRNA length were normalized as given in equation (1)

and Figure S3 (‘‘mir_end’’ indicating the 39 end of the miRNA*

(or miRNA)).

The normalized position (x19) of an ss-motif was calculated as

follows,

x1
’~(x1{mir start)|(l=li) ð1Þ

xi indicating the actual position of the 59end nucleotide of the ss-

motif, li indicating the (mir_start – mir_end) difference for the pre-

miRNA in question, and l indicating the average (mir_start –

mir_end) difference for all 608 pre-miRNA sequences.

Software availability
The python program for the method is available for

downloading at http://www.regulatoryrna.org/pub/mirident/

index.html.

Supporting Information

Supporting Information S1 Supplementary methods and

results.

(DOC)

Figure S1 Specific combinations of nucleotide and
structural information. A. Frequency of co-occurring nucle-

otide and structural notations. B. Three significantly enriched
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‘‘neighbouring’’ nucleotide-structure notations among the pre-

miRNA ss-motifs.

(TIF)

Figure S2 Normalisation of ss-motif positions in a pre-
miRNA sequence. x1–x4 indicate ss-motif positions. Red

sections indicate the positions of the mature miRNA/miRNA*

sequences.

(TIF)

Figure S3 Distribution of nucleotide notations. Light

hues (pink, light green) indicates the positive and negative

randomly selected sequences (RSS). Darker hues (red, green)

indicates the actual ss-motifs derived from the positive (pre-

miRNA) and negative (CDS hairpin) training sets.

(TIF)

Table S1 List of all ss-motifs.

(XLS)

Table S2 SVM pre-miRNA prediction with increasing number

(N) of features.

(DOC)

Table S3 SVM pre-miRNA prediction after adjusting for

sequence similarity. The table shows prediction accuracy (ACC)

after filtering out pre-miRNAs with sequences identity .70% or

80%, respectively. N denotes the number of feature (i.e., ss-motifs)

included in the SVM.

(DOC)

Table S4 Statistical evaluation of the ss-motif information

content.

(XLS)

Table S5 Three miRNA families used for ss-motif similarity

analysis.

(DOC)
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