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Abstract

Androgenetic alopecia is the most common form of hair loss in males. It is a multifactorial

condition involving genetic predisposition and hormonal changes. The role of microflora dur-

ing hair loss remains to be understood. We therefore analyzed the microbiome of hair folli-

cles from hair loss patients and the healthy. Hair follicles were extracted from occipital and

vertex region of hair loss patients and healthy volunteers and further dissected into middle

and lower compartments. The microbiome was then characterized by 16S rRNA sequenc-

ing. Distinct microbial population were found in the middle and lower compartment of hair fol-

licles. Middle hair compartment was predominated by Burkholderia spp. and less diverse;

while higher bacterial diversity was observed in the lower hair portion. Occipital and vertex

hair follicles did not show significant differences. In hair loss patients, miniaturized vertex

hair houses elevated Propionibacterium acnes in the middle and lower compartments while

non-miniaturized hair of other regions were comparable to the healthy. Increased abun-

dance of P. acnes in miniaturized hair follicles could be associated to elevated immune

response gene expression in the hair follicle.

Introduction

Androgenetic alopecia (AGA) features progressive miniaturization of scalp hair, forming a dis-

tinct patterned baldness in males [1]. It is the most common form of hair loss in men and is

caused by genetic predisposition with elevated androgen activity. Blood-circulating testoster-

one is metabolized into a more potent form, dihydrotestosterone which acts on the dermal

papilla of the hair, inhibiting the duration of hair growth. Hair miniaturization is often accom-

panied with destruction of the erector muscle and sebaceous gland hyperplasia [2], resulting in

an oily surface and often scalp inflammation in form of seborrheic dermatitis [3]. Concomi-

tantly, presence of lymphocyte infiltration, activated T cells in the balding scalp and
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degranulation of follicular mast cells suggests micro-inflammation or immune response as a

cause or consequence of the hair miniaturization process [4, 5]. Micro-inflammation has been

speculated to be caused by UV radiation, microbial presence, IL-6 and androgen signaling

activity [6].

Human skin and hair play host to a vast diversity of microorganisms and the establishment

of an equilibrium is crucial for health and disease state of skin and hair. Microbiome on

human skin surface has been extensively studied as reviewed previously [7, 8]; while less work

has covered those in the dermis and hair follicle [9, 10]. By culturing bacterial colonies, it was

found that hair follicles house 25% of cutaneous microbial population [11]. Sequencing studies

revealed existence of microorganisms down to within the dermis, while hair follicles and

eccrine glands house distinct compartmentalized microbial communities. Therefore there is

much potential in studying the hair microbiome including the hair structures.

The skin microbiome comprises of commensal microbes and opportunistic pathogens,

constantly interacting with the host, eliciting and evading host immune responses. Involve-

ment of microbial activity in skin and hair disorders have been shown in a few instances.

Staphylococcus aureus is commonly found in skin lesions [12], and its over-representation has

been implicated in atopic dermatitis, chronic diabetic wounds and psoriasis [13–15]. Fungal

invasion in the hair follicle bulge results in irreversible hair loss and scarring for example in

Tinea Capitis. Presence of yeasts, such as Malassezia species is associated with increased hair

shedding [16], dandruff formation [17] and as well one of the causes for aggravation of atopic

dermatitis (as reviewed in [18]). Prevalence of Propionibacterium acnes is associated with the

pathogenesis of acnes vulgaris [19], and has been reported in cases of hair casts and alopecia

[20]. The role of microorganisms in AGA remains unknown. We report the first study charac-

terizing microbiome in the middle and lower hair compartment in healthy and AGA patients

to understand the possible link with AGA progression.

Results

Follicular biopsy structures from patient and controls

Using 16S shotgun sequencing, we determined the microbiome in the middle and lower por-

tions of occipital and vertex hair follicles from 20 patients and 10 controls. Healthy hair sam-

ples were harvested from occipital and vertex regions of healthy volunteers and in non-balding

occipital area of patients by 1mm punches (Fig 1A). Samples taken from patients’ balding ver-

tex regions displayed signs of “miniaturization”, with an altered morphology of a shortened

and thinned hair shaft measuring less than 3cm in length (Fig 1B and S1 Fig) [21]. Therefore

hair follicles shorter than 3.2cm were classified as miniaturized in this study. Dissection of a

follicular unit was performed to obtain microbiome from the lower, middle and upper follicu-

lar portions. In non-miniaturized samples, the lower portion contains the hair bulb and small

amounts of surrounding subcutaneous and dermal tissues; while miniaturized samples yielded

greater biomass including surrounding tissues of blood vessels, nerve endings and sweat

glands due to the biopsy sampling method. The middle portion biopsies contained the hair

bulge, adipose tissues and connective tissues of the dermis (Fig 1C–1F).

Microbiome profile from sampling population

Skin microbiome can vary significantly in different body sites within an individual and across

individuals [10, 22]. Using Bray-Curtis dissimilarity analysis, we found relatively low level of

dissimilarity in the microbial profile inter and intra-individually, implicating low variation

within our patient and control groups, and across hair follicles in the occipital and vertex

regions (Fig 2A). Using Shannon’s and Simpson’s indices, alpha diversity was significantly
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greater in samples from the lower portion than samples from the middle portion (p< 0.005;

Fig 2B). Analyses for phylogenetic distances with unweighted Unifrac revealed unique and

separate clusters between follicular samples from the lower and middle portions, suggesting

distinct microbial populations in the two (Fig 2C).

To observe for microbiota differences in patient and control hair, we performed PCoA on

the middle and lower portion samples respectively. In samples from the middle portion, a

majority of non-miniaturized samples formed a tight, distinct cluster from miniaturized sam-

ples (Fig 2D), indicating a consistent and uniformed colonization in the middle follicular por-

tion regardless of its vertex or occipital origin. Samples from the lower portion display a higher

degree of variation between patients and healthy controls, while miniaturized samples consis-

tently clustered independently from non-miniaturized samples (Fig 2E), indicating differences

between their respective microbial communities (Fig 2D and 2E). Consistently, classifying

samples according to their origin showed close clustering of control occipital, vertex with

Fig 1. Morphology and histology of FUE used in sequencing study. (A) Representative image of sampling sites of

occipital (o) and vertex (v) regions in patients (p) and controls (c). (B) Miniaturized and non-miniaturized hair

follicles in AGA patients. Dotted lines represent dissection site of follicular units into upper (U), middle (M) and lower

(L) portions. Scale: 0.5 cm. Representative histological image of (C-D) middle portion and (E-F) lower portion of non-

miniaturized and miniaturized samples. A: adipose tissue, BV: blood vessel, C: connective tissue, E: eccrine gland, N:

nerve, S: Hair shaft, Scale: 100μm.

https://doi.org/10.1371/journal.pone.0216330.g001
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Fig 2. Microbiome profiles of FUE lower and middle portions from AGA patients and healthy controls. (A) Bray-Curtis distances

depicting inter and intra-sample dissimilarity of samples from the occipital and vertex regions. (B) Species richness in samples from the

lower and middle portions as depicted by Shannon and Simpson’s alpha diversity indices (Mann-Whitney U test, p< 0.005). (C-E).
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patient occipital samples while a number of patient vertex samples as outliers (S2A Fig). How-

ever, classification by patient age and AGA severity yielded no distinct clustering pattern (S2B

and S2C Fig).

Members of the microbial community in middle, lower and miniaturized samples were

similar. However, relative abundances of each member, and their respective colonization gen-

era, differed between each group and individual (Fig 3, S1 Table). Middle portion of non-mini-

aturized patients and controls were predominantly colonized by Burkholderia spp. (68.1–

87.9%) (Fig 3A, Table 1A) Within the Burkholderia genera, B. contaminans (GenBank ID:

CP013390.1) and B. cepacia (GenBank ID: AB211225.1) were the main species identified,

along with B. cenocepacia, B. kururiensis and they were mutually exclusive in each hair follicle,

and we did not find obvious correlation with AGA severity, region or hair follicle compart-

ment for the distribution of different species (S2 Table). A more diverse microbiome resides in

the lower portion with predominant genera Brevibacterium (34.5–41.0%), Methylobacterium
komagatae (20.7–25.5%), Sphingomonas (3.5–6.6%) (Fig 3B, Table 1B).

The distinct balding pattern in AGA is formed by progressive follicular miniaturization and

subsequent balding on the vertex, while hair follicles on the occipital region remains typical. To

investigate the association of microbiota with phenotype, PERMANOVA pairwise comparisons

were performed between the occipital and vertex regions on patients and controls (Table 2).

Overall, relative abundances of various genera in patient vertex (PV) were significantly different

from control occipital (CO) and control vertex (CV) samples in middle and lower portions (P-

value< 0.05) (Table 2A). We repeated PERMANOVA with the miniaturized samples removed,

which resulted in no significant difference in the comparisons (Table 2B), suggesting that the

change in microbiota is mainly associated with hair miniaturization. Comparison between the

microbiota in miniaturized and non-miniaturized patient vertex samples showed that, in the

middle portion, P. acnes abundance was increased with decreased Burkholderia spp. abundance;

while M. komagatae, Sphingomonadaceae and Brevibacterium were decreased in the lower por-

tion (Table 3A and 3B, Figs 3 and 4). In addition, PO lower portion was significantly different

from CO; we found that P. acnes abundance increased with significance while Brevibacterium
abundance decreased (Table 3C, Figs 3 and 4).

It has been reported that P. acnes and residential microflora of the hair and skin can elicit

innate immune responses through toll like receptor 2 (TLR2) and up-regulation of anti-micro-

bial peptides including β-defensin (DEFB1) [23, 24]. Through RNA sequencing of lower por-

tion subset samples, several genes in antigen presentation and Th-1, Th-2 inflammatory

pathways were found to be elevated in miniaturized hair follicles [25, 26]. Hence, we analyzed

transcriptomic expression for genes involved in microbial response, the expression level of

genes involved in responses to microbes such as Toll Like Receptor-2 (TLR2), DEFB1, Inter-

feron regulatory factor 1 (IRF1), monocyte marker CD14, and Langerhans cell marker CD1a/

CD207 were increased in miniaturized compared to non-miniaturized hair follicles [27–29]

(Fig 5). These changes suggest that elevated immune responses and immune cell infiltration

corresponded with increased P. acnes abundance.

Discussion

Microbial community on the skin surface has been well characterized while less is understood

about the hair follicle micro-environment. In literature, microbiota from plucked hair samples

Unweighted UniFrac Principal Coordinate Analyses (PCoA) of all samples, (C) color-coded by lower and middle portion of sample; (D)

samples from the middle portion, color-coded by miniaturization status; (E) and samples from the lower portion, color-coded by

miniaturization status.

https://doi.org/10.1371/journal.pone.0216330.g002
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Fig 3. Taxonomic relative abundance across samples. Stacked barplot depicting mean relative abundances in patient

and control samples obtained from (A) the middle portion and (B) lower portion of non-miniaturized samples. (C)

Relative abundance of lower and middle portions from miniaturized patient vertex samples. Relative abundances are

presented in the respective taxonomic ranks–g: Genera; f: Family; o: Order; k: Kingdom.

https://doi.org/10.1371/journal.pone.0216330.g003
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or entire hair follicles from skin sections has been analyzed [9, 10]. These studies provide an

insight regarding the follicular microbiota profile in an Asian male cohort in Singapore

(n = 30). Concordant with the literature, a diverse microbial community and formation of bac-

terial biofilms can be detected in the dermis and dermal sections of the hair follicle [10, 30].

Bacterial abundance in the middle portion may be due to the close proximity to the skin sur-

face with rich microflora. Higher bacterial diversity in the lower portion is unexpected but

may play a more important role in hair pathogenesis due to the dense vascular network around

the hair papilla and therefore more potential interactions with the host immune system. It may

implicate a complex interaction with the host immune response. Interestingly, unlike previous

reports, we did not observe significant inter-individual variation of microbiota in our study

[10, 31]. We also report a slightly different bacterial population from other studies, such differ-

ences may originate from the method of sample collection; for the hair follicle is extracted

under sterile conditions with a biopsy punch of the hair follicle with adjacent tissue (blood ves-

sels, nerve fibers, connective tissue and sebaceous glands) while others utilized laser-capture

microscopy or plucked hair.

Multiple steps from sample collection to result analysis are integral in studies of the skin

microbiome [32]. During sample collection, patient scalps have undergone disinfection prior

to follicular unit extraction, thereby removing potential contamination by bacteria on the skin

surface. Additionally, the choice of primer may influence sequencing results. The difference in

the representation of Propionibacterium and Staphylococcus with primers targeting the

Table 1. Representative bacterial genera abundance in middle and lower sample portions from patients and controls.

A

Middle portion CO CV PO PV

g:Burkholderia 82.49% 87.89% 79.26% 68.08%

s:Propionibacterium_acnes 4.59% 2.80% 11.29% 18.89%

g:Brevibacterium 3.70% 3.56% 2.35% 2.44%

f:Burkholderiaceae 1.43% 0.98% 1.60% 1.65%

k:Bacteria 1.37% 0.82% 0.62% 0.34%

g:Corynebacterium 1.32% 0.35% 0.88% 0.17%

g:Pseudomonas 0.95% 0.36% 0.03% 0.31%

o:Burkholderiales 0.76% 0.08% 0.34% 0.79%

g:Brachybacterium 0.43% 0.34% 0.26% 0.24%

g:Dietzia 0.33% 0.32% 0.20% 0.25%

B

Middle portion CO CV PO PV

g:Burkholderia 82.49% 87.89% 79.26% 68.08%

s:Propionibacterium_acnes 4.59% 2.80% 11.29% 18.89%

g:Brevibacterium 3.70% 3.56% 2.35% 2.44%

f:Burkholderiaceae 1.43% 0.98% 1.60% 1.65%

k:Bacteria 1.37% 0.82% 0.62% 0.34%

g:Corynebacterium 1.32% 0.35% 0.88% 0.17%

g:Pseudomonas 0.95% 0.36% 0.03% 0.31%

o:Burkholderiales 0.76% 0.08% 0.34% 0.79%

g:Brachybacterium 0.43% 0.34% 0.26% 0.24%

g:Dietzia 0.33% 0.32% 0.20% 0.25%

Relative abundance of highly prevalent genera in (A) middle and (B) lower portions from Control Occipital (CO), Control Vertex (CV), Patient Occipital (PO) and

Patient Vertex (PV) regions. Values are presented as mean across samples. Taxonomic order is represented as f: family, g: genre and s: species.

https://doi.org/10.1371/journal.pone.0216330.t001
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hypervariable V1-V3 region and the V3-V4 region has been reported [33]. Other studies have

suggested that the V3-V4 region can accurately represent the skin microbiome [34, 35]. We

employed primers amplifying the V3-V6 regions on the 16S rRNA to improve taxonomic reso-

lution with longer amplicons and expect biases toward specific genera to be minimal [36]. The

impact of reagent contamination on microbiome analysis has been noted to distort the distri-

butions and frequencies of identified bacterial species [33, 37]. To address this issue, we

included template free controls in the sequencing analysis. It yielded read counts less than the

cutoff for subsequent analysis, thus ensuring the quality of study outcomes.

Concordant with studies using scalp and plucked hair samples, members from the Burkhol-

deria genera were found to be highly abundant in follicular samples from the middle portion

[9, 10]. Burkholderia cepacia and Burkholderia contaminans have been isolated from patients

with cystic fibrosis and pneumonia, however, it was not known to be associated with skin-

related disorders [38, 39]. Dominant species on the skin surface such as Propionibacterium,

Corynebacterium and Staphylococcus occurred in this study at a low frequency, which may

reflect a preference for inhabiting the skin surface over deeper layers within the skin. The skin

microbiome has demonstrated topographic variability by skin physiology of sampling sites

including moisture, temperature and pH; while remaining relatively stable over time [31, 40–

42]. The occipital and vertex scalp may present different skin micro-environment to the

Table 2. Pairwise comparisons for PERMANOVA between samples across different compartments, regions and AGA occurrence.

A Miniaturized included F.Model R2 p.value

middle patient vertex vs patient occipital 1.654 0.051 0.191

patient vertex vs control vertex 4.752 0.165 0.016�

patient vertex vs control occipital 3.183 0.117 0.046�

patient occipital vs control occipital 0.995 0.038 0.379

patient occipital vs control vertex 1.897 0.071 0.123

control occipital vs control vertex 1.212 0.063 0.262

lower patient vertex vs patient occipital 1.749 0.074 0.126

patient vertex vs control vertex 2.844 0.151 0.033�

patient vertex vs control occipital 2.660 0.143 0.043�

patient occipital vs control occipital 2.367 0.129 0.045�

patient occipital vs control vertex 2.114 0.117 0.058

control occipital vs control vertex 0.825 0.076 0.563

B Miniaturized removed F.Model R2 p.value

middle patient vertex vs patient occipital 0.818 0.032 0.512

patient vertex vs control occipital 0.699 0.035 0.668

patient vertex vs control vertex 1.513 0.074 0.147

patient occipital vs control occipital 2.162 0.083 0.112

patient occipital vs control vertex 0.863 0.035 0.443

control occipital vs control vertex 1.212 0.063 0.258

lower patient vertex vs patient occipital 1.014 0.063 0.409

patient vertex vs control occipital 1.660 0.156 0.116

patient vertex vs control vertex 1.250 0.122 0.296

patient occipital vs control occipital 2.367 0.129 0.06

patient occipital vs control vertex 2.114 0.117 0.039�

control occipital vs control vertex 0.825 0.076 0.568

Pairwise comparisons between (A) Middle and lower portion of all CO, CV, PO and PV samples. (B) Middle and lower portion PV samples versus other samples with

miniaturized samples removed. P-value < 0.05 is significant.

https://doi.org/10.1371/journal.pone.0216330.t002
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microbiome as they originate from different embryonic developmental plates and are exposed

to varying degrees of solar irradiation. AGA patients typically feature a patterned baldness

whereby lower hair density, hair thinning and yellow dots depicting enlarged sebaceous glands

in response to androgen are evident in the vertex scalp area [43, 44]. Despite the changes, the

microbiome in AGA patients did not differ significantly between different sites on the scalp;

nor was it significantly unique according to individual age and AGA severity. Rather, distinct

microbial profiles from miniaturized hair samples were observed in this study. The data sug-

gests that changes specific to hair miniaturization can cause disruptions to the microbiome. In

addition, the lower portions of non-miniaturized samples contain clean hair bulbs while mini-

aturized samples would include surrounding tissues including sweat glands and blood vessels

which may house significantly different microbial populations. However, increased abundance

of P. acnes could be observed in the middle portion of miniaturized and non-miniaturized

samples where they shared similar histology with sebaceous glands and adipose tissues. Fur-

ther study has to be performed to investigate specific changes in miniaturized hair associated

with P. acnes abundance.

It has long been speculated that P. acnes is involved in AGA pathogenesis [6, 45, 46]. In our

study we report for the first time such striking increase in abundance in miniaturized hair. P.

acnes is a common opportunistic pathogen found on the skin surface, and is prevalent in the

hair follicle and the associated pilosebaceous unit [47, 48]. P. acnes predominance is also iden-

tified in non-lesional scalp of patients with seborrheic dermatitis [49]; providing further sup-

port for the development in sebaceous gland hyperplasia in AGA may attract the proliferation

of P. acnes; for lipids and fatty acids are its main nutrient sources [50]. Alternatively, as in the

Table 3. Representative comparisons for bacteria abundance between middle portion hair samples.

A

mini vs non-mini (mid) mini non-mini mini (stdev) non-mini (stdev) t-test

s:Propionibacterium_acnes 43.30% 7.79% 14.99% 16.75% 0.001�

g:Propionibacterium 0.47% 0.08% 0.29% 0.17% 0.004�

g:Burkholderia 49.26% 76.64% 13.48% 19.51% 0.014�

f:Propionibacteriaceae 0.92% 0.29% 0.56% 0.51% 0.042�

B

mini vs non-mini (low) mini non-mini mini (stdev) non-mini (stdev) t-test

s:Bifidobacterium_breve 0.00% 0.02% 0.00% 0.01% 0.015�

s:Methylobacterium_komagatae 18.67% 23.59% 1.22% 1.03% 0.015�

s:Propionibacterium_acnes 18.08% 3.74% 4.22% 0.70% 0.018�

f:Sphingomonadaceae 5.77% 10.09% 1.41% 1.51% 0.067

g:Brevibacterium 31.79% 38.30% 3.39% 0.99% 0.148

C

CO vs PO (low) CO PO CO (stdev) PO (stdev) t-test

s:Propionibacterium_acnes 2.96% 6.38% 3.40% 1.84% 0.013�

g:Cellulomonas 0.03% 0.00% 0.04% 0.01% 0.014�

g:Brevibacterium 41.01% 37.18% 3.21% 3.11% 0.027�

f:Rhizobiaceae 0.03% 0.00% 0.05% 0.01% 0.032�

o:Sphingomonadales 0.49% 0.10% 0.58% 0.11% 0.036�

f:Brevibacteriaceae 0.34% 0.87% 0.08% 0.60% 0.049�

Taxonomic order represented as f: family, g: genre and s: species. Bacteria abundance comparisons between miniaturized and non-miniaturized in (A) middle portion

and (B) lower portion. (C) Comparisons between lower portion PO and CO. Data presented as mean and standard deviation across samples, P-value < 0.05 is

significant.

https://doi.org/10.1371/journal.pone.0216330.t003
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Fig 4. Representative bacterial abundance in hair samples. (A) P. acnes and (B) Burkholderia spp. abundance in hair samples from different regions of

origin and miniaturization. (C) Brevibacterium and (D) Methylobacterium abundance in hair samples from different regions of origin.

https://doi.org/10.1371/journal.pone.0216330.g004
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case of acnes vulgaris, another testosterone metabolism-related disease, altered sebum compo-

sition with an increase in peroxidized squalene has been suggested to result in P. acnes prolifer-

ation [51–53], and such changes may occur in AGA. P. acnes induces inflammatory responses

and is known as one of the causative factors for acnes vulgaris. Virulence in the hair follicle is

demonstrated to cause hair casts and hair loss as a consequence [20]. Additionally, it is inter-

esting to note the increase in P. acnes abundance in occipital samples, suggesting the possibility

that increased sebum on scalp environment may result in changes in the microbiome over the

scalp. Additionally, phylogenetic analysis revealed that P. acnes comprises of four distinct line-

ages; each displaying differences in inducing inflammatory responses and virulence determi-

nants [54, 55]. Further characterization to the strain level will be essential to decipher its role

in AGA pathogenesis.

Evidence of micro-inflammation such as perifollicular inflammatory infiltration, prosta-

glandin and cytokine elevation have been observed in hair follicles of AGA patients and is sug-

gested to cause hair miniaturization [6, 56, 57]. A combination of environmental factors

including UV radiation, allergen exposure and porphyrin production have been considered to

elicit inflammation [46, 58], whereby inflammatory factors are believed to hinder hair growth.

Our data on the presence of P. acnes adds to the contributing factors for micro-inflammation

in hair loss. Recent studies investigating microbiome-host immune interactions suggest that

the microbiome induces inflammatory cytokine production in host gut and moderates T lym-

phocyte function in mouse skin [59, 60]. The presence of Langerhans cells also indicate induc-

tion of the innate immune response as they are majorly involved in antigen presentation.

These evidence indicate that the microbiome may play a more important and complex role

Fig 5. Expression of immune response genes across miniaturized and non-miniaturized hair follicles. Bar graphs depicting read counts of TLR2, IRF1,

DEFB1, CD1A and CD14 in patient matched miniaturized and non-miniaturized vertex samples, data is presented as mean ± SEM. �P-value< 0.05.

https://doi.org/10.1371/journal.pone.0216330.g005
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than previously imagined. Interestingly, reports of effective AGA treatments by anti-microbial

solutions and Ketoconazole [61, 62] has been suggestive of the involvement of microorganisms

in AGA besides its anti-androgen properties. In addition to the genetic causes of AGA, P.

acnes may act as an environmental factor for AGA pathogenesis and presents a novel candi-

date in treating AGA. Future studies on the impact of changes in other bacterial species and

the imbalance are equally important in deciphering the pathogenesis of AGA. Since hair folli-

cles can be compartmentalized into the bulge, matrix and dermal papilla, it will be essential to

visualize the distribution of hair follicle microbiome with higher clarity to the compartments.

Further information will aid understanding the association between microbiome and hair

conditions.

Conclusion

We reported distinct microbial population in the middle and lower portion of the hair follicle.

Burkholderia genera predominates the middle portion while higher microbial diversity was

observed in the lower portion. In AGA patients, miniaturized patient vertex hair houses ele-

vated P. acnes while hair from other regions were comparable. This is the first study character-

izing the microbiome in AGA and provides new insight into the condition.

Methods

Sample collection, DNA extraction and sequencing

Twenty AGA patients and 10 healthy volunteers were recruited in the study previously

described [25]. Ethics approval and consent to participate were obtained through the National

Healthcare Group Review Board (NHG-DSRB “2012/00488 Transcriptome and genome anal-

ysis of human scalp biopsies of androgenetic alopecia before and after topical laser treatment”).

All methods were carried out in accordance with the approved protocol. After thorough local

disinfection with 70% isopropanol, follicular unit extractions were performed in the vertex

and occipital areas with a punch of 1.1mm diameter. The extracted follicular units were

imaged using a dissection microscope (Zeiss) with mounted digital camera and then divided

into 3 parts (hair papilla, middle piece with sebaceous gland and upper piece with ostium and

epidermis) and immediately snap frozen in liquid nitrogen.

To assess any alterations of the microbiome population in the hair follicle, DNA was

extracted from the lower (hair bulb) and middle (with sebaceous glands) piece of the follicular

unit. Follicular unit sample were subjected to bead beating (MP Biomedicals) and gDNA

extraction using AllPrep RNA/DNA extraction kit following the manufacturer’s instructions

(Qiagen). 16S rRNA PCR was performed on samples and duplicate template-free controls

using primers spanning V3-V6 regions with PCR conditions described previously [36, 63].

DNA sequencing libraries were constructed with QIAseq FX DNA library kit (96) (Qiagen).

DNA libraries were paired-end sequenced on the Illumina HiSeq Rapid (2x76bp). Following

demultiplexing (using Illumina bcl2fastq 2.17.1.14 software) and removal of reads that failed

Illumina’s purity filters (PF = 0), reads were converted to FASTQ. 16S rRNA sequencing of the

samples yielded an average of 452,193 read counts, while 4 samples and template-free control

libraries which yielded less than 50,000 read counts were subsequently discarded. Trimming of

reads was done by removing trailing bases with quality score� 2; read pairs with reads shorter

than 60bp were also removed.

16S rRNA amplicon sequence reconstruction. To reconstruct 16S amplicon sequences,

we utilized the processing methods described in Ong et al [18). Trimmed reads were input

into EMIRGE (GIT version 98787b5). EMIRGE performs template-guided “assembly” based

on a modified SILVA SSU (version 102) database, and utilises an expectation-maximization
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algorithm for iteration, alignment, and classification of reads to candidate 16S sequences [64].

Iterative mapping of paired-end reads also prevents chimeric sequences from mapping. This

reconstruction methodology has been compared against RTAX and modQIIME, and was able

to robustly produce highly concordant estimates of taxonomic OTU abundance [18].

We applied EMIRGE to the top (in terms of average quality) 500,000 reads in each sample;

we had previously found this number to be robust enough to accurately reflect the 16S compo-

sition in each sample [18]. Sequences with relative abundance below 0.1% were removed.

Finally, the reconstructed amplicon sequences were searched using BLAST against the Green-

genes 16S rRNA database [65] BLAST hits were sorted in consecutive order, smallest E-value,

highest bit score, highest percent identity, and longest alignment length; only the top hit after

this sorting was used for classification. Percentage identities for phylum, family, and genus lev-

els were 75%, 86.5%, and 94.5% respectively.

Abundance determination of microbial community. Abundance estimates were

assigned to reconstructed sequences using EMIRGE, for generation of abundance profile of

OTUs for each sample. A data matrix containing relative abundances, with each sample as a

row and each genus as a column, was used to generate the relative abundance barplots and

alpha diversity boxplots using the R software, version 3.4.0. The Principal Coordinate Analyses

(PCoA) with Bray–Curtis distance was applied using the “vegan” package in R.

Sample processing and histology

Dissected follicular units were fixed in 4% paraformaldehyde. Samples were dehydrated and

embedded in paraffin for sectioning at 5μm thick. Hematoxylin and eosin staining was per-

formed on hair sections and imaged by Zeiss AxioImager (Zeiss).
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