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Abstract
Purpose: 90Y selective internal radiation therapy (SIRT) has become a safe and
effective treatment option for liver cancer. However, segmentation of target and
organ-at-risks is labor-intensive and time-consuming in 90Y SIRT planning. In
this study, we developed a convolutional neural network (CNN)-based method
for automated lungs, liver, and tumor segmentation on 99mTc-MAA SPECT/CT
images for 90Y SIRT planning.
Methods: 99mTc-MAA SPECT/CT images and corresponding clinical segmen-
tations were retrospectively collected from 56 patients who underwent 90Y SIRT.
The collected data were used to train three CNN-based segmentation algo-
rithms for lungs, liver, and tumor segmentation. Segmentation performance was
evaluated using the Dice similarity coefficient (DSC),surface DSC,and average
symmetric surface distance (ASSD). Dosimetric parameters (volume, counts,
and lung shunt fraction) were measured from the segmentation results and were
compared with clinical reference segmentations.
Results: The evaluation results show that the method can accurately segment
lungs, liver, and tumor with median [interquartile range] DSCs of 0.98 [0.97–
0.98],0.91 [0.83–0.93],and 0.85 [0.71–0.88]; surface DSCs of 0.99 [0.97–0.99],
0.86 [0.77–0.93], and 0.85 [0.62–0.93], and ASSDs of 0.91 [0.69–1.5], 4.8 [2.6-
8.4], and 4.7 [3.5–9.2] mm, respectively. Dosimetric parameters from the three
segmentation networks show relationship with those from the reference seg-
mentations.The overall segmentation took about 1 min per patient on an NVIDIA
RTX-2080Ti GPU.
Conclusion: This work presents CNN-based algorithms to segment lungs, liver,
and tumor from 99mTc-MAA SPECT/CT images. The results demonstrated the
potential of the proposed CNN-based segmentation method for assisting 90Y
SIRT planning while drastically reducing operator time.
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1 INTRODUCTION

According to the GLOBOCAN 2018 data, liver cancer
is the sixth most commonly diagnosed cancer and the
fourth most common cause of cancer-related death
worldwide; hepatocellular carcinoma (HCC) accounts
for more than 80% of primary liver cancers.1 Median sur-
vival of untreated liver cancers range from less than one
month to ten months.2 Surgical resection is the first treat-
ment option for solitary HCCs in patients with preserved
liver function. However, the large majority of patients
present in locally advanced or metastatic stages or are
poor surgical candidates for resection.3

In the past decade, radioembolization (RE), also
known as selective internal radiation therapy (SIRT),
with yttrium-90 (90Y) microspheres has been estab-
lished as a safe and effective treatment option in the
management of patients with primary and metastatic
liver cancer.4 Several studies have shown that, in local-
ized disease, outcomes for 90Y SIRT were similar to
or better than those for other locoregional therapies
such as transarterial chemoembolization or ablation.5,6

In 90Y SIRT, millions of microspheres containing 90Y are
delivered into tumor-feeding hepatic arteries during a
femoral arterial catheterization. The goal is to deliver
a tumoricidal absorbed dose via 90Y microspheres to
the tumor(s) while sparing the normal liver parenchyma.
Before committing treatment, the absorbed dose to
tumor(s) and normal liver parenchyma must be esti-
mated to ensure delivery of an appropriate quantity of
90Y microspheres. In 90Y SIRT planning using the parti-
tion model,7 macro-aggregated albumin (MAA) particles
labeled with technetium-99 m (99mTc) are injected, and
planar scintigraphy and single-photon emission com-
puted tomography with X-ray computed tomography
(SPECT/CT) are performed.8 These images are used to
quantify a possible liver-to-lung shunt, determine extra-
hepatic uptake, and predict the intrahepatic distribu-
tion of the 90Y microspheres, enabling pre-therapeutic
dosimetry.7

Accurate segmentation of target and organs-at-
risk (OARs) is critical for precise predictive dosimetry
because it directly affects the estimation of absorbed
dose. This is especially important when planning 90Y
SIRT, where the estimated absorbed dose is used to
calculate the 90Y activity to achieve the best efficacy
and lowest toxicity profile.9 In current clinical prac-
tice, segmentation of lung, liver, and liver tumor vol-
umes for 90Y SIRT planning is generally performed
manually with little machine assistance. This process
is a labor-intensive and time-consuming task, requir-
ing many hours of physician attention for a single sub-
ject. Therefore, an automated segmentation algorithm
for segmenting the lungs, liver, and liver tumors from
99mTc-MAA SPECT/CT images is highly desirable for
90Y SIRT planning.

In the past, numerous semi-automatic and automatic
segmentation methods for lung and liver segmentation
of CT images have been developed. For instance, seg-
mentation methods based on region-growing,10,11 active
shape models,12,13 supervised voxel classification,14

and recently neural network15 have been used for
lung segmentation. For liver segmentation, segmenta-
tion methods using region-growing,16 graph cut,17 geo-
metric deformable models,18 and neural networks19

have been proposed. Despite these efforts, lungs and
liver segmentation remain challenging tasks, especially
using the non-contrast and low-dose CT images typi-
cally acquired as part of 99mTc-MAA SPECT/CT.

In recent years, deep learning methods, in particular
convolutional neural networks (CNN), have emerged as
a powerful tool for image analysis, achieving state-of -
art performance in numerous computer vision problems
including image classification,20 object detection,21 and
semantic segmentation.22 In medical image segmenta-
tion, the application of CNNs has ranged from anatom-
ical structure segmentation to pathological lesion seg-
mentation, particularly for computed tomography (CT)
images and magnetic resonance images (MRI).23–25

Although numerous segmentation algorithms have been
developed, there has been little work on SPECT seg-
mentation in general and CNNs for SPECT in particu-
lar. This is also true of the non-contract, low-dose CT
images that are acquired as part of SPECT/CT acquisi-
tions for attenuation compensation.

This study aimed to develop an automated image
segmentation method that can be used for 90Y
SIRT planning using pretreatment simulation based
on 99mTc-MAA SPECT/CT images. For this purpose,
we developed and evaluated three CNN-based seg-
mentation algorithms for lung and liver segmenta-
tion using non-contrast, low-dose CT images and for
liver tumor segmentation using 99mTc-MAA SPECT
images.

2 MATERIALS AND METHODS

We used three CNN-based segmentation algorithms to
segment the lungs, liver, and tumor liver independently.
The lung (LungNet) and liver (LiverNet) segmentation
networks were trained to segment lungs and whole
liver, respectively, from low-dose CT images acquired
in the 99mTc-MAA study. The tumor segmentation net-
work (TumorNet) was trained to segment liver tumors
from 99mTc-MAA SPECT images. The details of the
dataset used in this study are explained in Section 2.1.
The three networks shared the same network architec-
ture designed to perform segmentation of 99mTc-MAA
SPECT/CT images. The details of network architecture
and its implementation are explained in Sections 2.2.
and 2.3., respectively.
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2.1 Dataset

2.1.1 Image acquisition

We retrospectively collected data from 56 HCC patients
who underwent evaluation for 90Y SIRT at Siriraj Hospi-
tal during 2016 and 2019. Each dataset includes 99mTc-
MAA SPECT images, CT images, and corresponding
manual lung, liver, and liver tumor segmentation per-
formed by nuclear medicine physicians. Institutional
review board approval was obtained, and no informed
consent was required for this retrospective analysis.

For each patient, a SPECT/CT scan was performed
about 1 h after injection of 4–5 mCi of 99mTc-MAA
using either a GE Discovery 670 or 670 pro system (GE
Healthcare, USA) with a low-energy high-resolution col-
limator. SPECT acquisitions were performed in 2 FOVs
to encompass the lungs and liver.The acquisition energy
windows were set at 140± 20% keV and 120± 10% keV
for window-based scatter correction. Sixty projections
in a 128 × 128 matrix size were acquired over a 360◦

angular range with a 20-s acquisition duration at each
view. SPECT images were reconstructed on a Xeleris
workstation (GE Healthcare,USA) using 5 iterations and
10 subsets of OSEM with CT-based attenuation correc-
tion, window-based scatter correction, and collimator-
detector response modeling.The CT scan was acquired
in low-dose mode (80 reference mAs, 120 kVp) during
free breathing with a 3.75 mm slice thickness. Recon-
structed SPECT and CT images were resampled to
have the exact dimensions of 256 × 256 × 256 voxels
with an isotropic voxel size of 2.20 mm.

2.1.2 Reference segmentation

Segmentations performed by nuclear medicine physi-
cians served as the reference for comparison in this
work. The segmentations were performed using the
Dosimetry Toolkit on the Xeleris workstation. These ref-
erence segmentations include volume of interest (VOI)
definitions for the lungs, liver,and liver tumor.For the lung
segmentation,physicians used CT images and intensity-
based semi-automatic tools provided in the software to
define initial lung VOIs. Manual modification was usu-
ally performed to remove the trachea,primary bronchus,
and lung base near hepatic dome from the lung VOI.For
liver segmentation, the entire liver was generally seg-
mented based on the non-contrast, low-dose CT from
the MAA study. Regions of interest (ROIs) were manu-
ally drawn on CT slices and stacked to create liver VOIs.
Tumor VOIs were initially created on SPECT images
using region-growing and thresholding methods; man-
ual modification was then performed to account for the
potential overlooked or over-covered tumor volumes that
appeared on the fused SPECT/CT, hepatic angiogra-
phy, and contrast-enhanced CT. The final segmentation

results were regarded as the reference segmentation for
the subsequent training and evaluation processes.

2.2 Network architecture

We achieved tumor, liver,and lung segmentation by using
separate networks for (1) lung segmentation, (2) liver
segmentation, and (3) tumor segmentation. All three
networks shared the same network architecture (see
Figure 1). Each network was comprised of an encoding
path to extract features from input data and a decod-
ing path to return to the original resolution. Between the
encoding and decoding paths, skip connections were
used to forward early-extracted features from encoding
directly to the decoding path.The network was designed
to receive a small 3D patch as input and produce a small
3D patch as segmentation output. The output patches
need to be reassembled into the segmentation result of
the original (full-size) image.

Typically, fully convolutional network (FCN) architec-
tures (e.g., 3D U-Net,26 V-Net,23 DenseVNet25) use
full images (or volumes) as inputs and then use pool-
ing/unpooling (or strided convolution/deconvolution in
V-Net and DenseVNet) layers to limit the number of
parameters and resulting memory requirement. These
layers can lead to the loss of spatial information from
repeated downsampling operations. Instead, the pro-
posed network uses sub-volumes (3D patches) as
inputs. This strategy reduces the memory requirements
of the network, thereby removing the need for a pooling
layer. More importantly, sampling volumes into small 3D
patches substantially increases the number of training
examples without the need for data augmentation. Sim-
ilar to DenseNet and DenseVNet structures, the encod-
ing path contains dense connectivity to support gradient
propagation and feature reuse. However, the proposed
network does not use pooling layers or strided convo-
lution for downsampling. The decoding path upsampled
the feature map using only deconvolution layers (also
known as transposed convolution) instead of bilinear
upsampling in DenseVnet.

In the encoding path, there are 16 convolutional lay-
ers, where each layer was defined as a composite func-
tion consisting of 3D convolution, batch normalization
(BN),27 and a Parametric Rectified Linear Unit (PReLU)
activation function.28 The convolution was responsible
for producing a feature map by the convolution of the
input with the encoder kernel. The kernel contained
the weights (also known as learnable parameters) to be
learned during the network training. The kernel weights
represent the structure or feature that the kernel will
detect. The number of kernels in the convolutional layer
defines the number of output feature maps. Batch nor-
malization was used to normalize the convolution’s fea-
ture map to the standard Gaussian distribution. Batch
normalization helps in speed up training by allowing use
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F IGURE 1 The schematic representation of the proposed convolutional neural network architecture

of high learning rates without overfitting.27 The PReLU
activation function was used to increase non-linearity in
the output that has been computed using linear opera-
tions during the convolution.28

The encoding path can be divided into four stages.
Each stage contains four convolutional layers:one in the
convolutional unit and three in the dense block.The con-
volutional unit allows the network to increase the recep-
tive field of the feature maps being used as input for sub-
sequent layers. The output of the l-layer convolutional
unit (Cl) can be expressed as:

Cl = Hl (Cl−1) , (1)

where Cl−1 is the output of the previous layer or the
input volume in the first layer,and Hl is a composite func-
tion consisting of convolution, PReLU activation func-
tion, and batch normalization, as previously described.
We designed each convolutional unit to perform con-
volution using a volumetric kernel of 3 × 3 × 3 vox-
els with stride one and no padding applied to the input;
stride refers to the amount of movement between con-
secutive applications of the kernel to the input volume.
Each convolutional unit had an output size of two voxels
smaller and a number of kernels two times larger than
the previous stage. The architecture was designed not
to include pooling operations to avoid the loss of spatial
resolution of the feature map. However, due to memory
constraints, we allowed the convolutional unit to gently
reduce the feature map’s size as the number of feature
maps increased during passage through network. The
numbers and sizes of kernels for each layer are shown
in Table 1.

At each stage, following the convolutional unit, we
used a dense block to extract further information. Moti-
vated by Gibson et al.25 and Huang et al.,29 each dense

block contained three convolutional layers; the input of
each layer was the concatenated output of all preceding
layers within the same block. The concatenated feature
map helps increase variation in the input of subse-
quent layers by allowing the feature map learned by
different layers to be accessed by subsequent layers.
This encourages feature reuse throughout the dense
block and leads to a more compact network that is eas-
ier to train and highly parameter efficient.29 The out-
put of the l-th layer within a dense block (Dl) can be
expressed as:

Dl = Hl ([D0, D1,… , Dl−1]) , (2)

where [D0, D1,… , Dl−1] refer to the concatenation of the
feature maps produced in the preceding layers 0, 1, …,
l − 1,and Hl is a composite function:convolution,PReLU,
and batch normalization. The convolution operation in a
dense block was performed using a volumetric kernel
of size 3 × 3 × 3 voxels with stride one. However, in
contrast to the convolutional unit,where padding was not
applied to the input. Instead, each side of the input was
zero-padded by one voxel to keep the size of the output
feature map the same as its input.Each dense block had
a number of kernels two times larger than the previous
stage (see Table 1.).

Between the encoding path and the decoding
path, we added a fully-connected convolutional layer
(Fully_Conv) that performed convolution using 256 ker-
nels of size 1 × 1 × 1 voxel. This allowed the reduc-
ing number of feature maps to 256 and retained spa-
tial information about the decoding path’s input, thus
reducing memory requirements. As we observed in
experiments, adding the fully-connected convolutional
layer also improved accuracy and reduced convergence
time.
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TABLE 1 Detailed parameters of the proposed networks

Layer Kernel size
Sub-unit(#layers ×

#kernels) Zero-padding
Input(size × #feature
map)

Output(size ×

#feature map)

Conv_1 33 1 × 16 – 243
× 1 223

× 16

Dense_1 33 3 × 16 Yes 223
× 16 223

× 64

Conv_2 33 1 × 32 – 223
× 64 203

× 32

Dense_2 33 3 × 32 Yes 203
× 32 203

× 128

Conv_3 33 1 × 64 – 203
× 128 183

× 64

Dense_3 33 3 × 64 Yes 183
× 64 183

× 256

Conv_4 33 1 × 128 – 183
× 256 163

× 128

Dense_4 33 3 × 128 Yes 163
× 128 163

× 512

Fully_Conv 13 1 × 256 – 163
× 512 163

× 256

DeConv_1 33 1 × 128 – 163
× 384 183

× 128

DeConv_2 33 1 × 64 – 183
× 192 203

× 64

DeConv_3 33 1 × 64 – 203
× 96 223

× 64

Classification 13 1 × 2 – 223
× 80 223

× 2

While several pairs of convolutional units and dense
blocks were used to increase feature richness for robust
segmentation, the spatial resolution of the feature maps
was simultaneously reduced. The loss of spatial res-
olution is typically not beneficial for image segmen-
tation tasks, where the spatial position of features is
critical for boundary delineation.30 Therefore, it is nec-
essary to restore the spatial resolution of the feature
maps.

The decoding path is responsible for upsampling the
low-resolution feature map(s) produced by the encoding
path. In the proposed network, we used a series of 3D
deconvolution operations to slightly increase the feature
map’s size up to the segmentation resolution. Unlike a
fixed layer (e.g., bilinear or trilinear upsampling), kernel
parameters in deconvolution can be learned while train-
ing the network. We observed that, with an equal num-
ber of learnable parameters, the network that used 3D
deconvolution as an upsampling operator provided bet-
ter training accuracy and computational efficiency than
a network that used the trilinear upsampling combined
with typical 3D convolution.

The decoding path contained three deconvolutional
units (DeConv_1 to DeConv_3),which were a composite
function consisting of 3D deconvolution, a PReLU acti-
vation function, and batch normalization. The deconvo-
lution used a volumetric kernel of size 3 × 3 × 3 vox-
els with stride one and no padding to produce an output
feature map of size two voxels larger than the previous
stage.

We added skip connections to forward the early-
extracted feature maps from the encoding path directly
to the decoding path on the same scale.Skip connection
is represented in Figure 1 by the horizontal connection
between convolutional unit and deconvolutional units.
The skip connections allowed the network to combine

shallow, fine, appearance information and deep, coarse,
semantic information.22

At the end of the network, a fully-connected convolu-
tional layer using 2 kernels of size 1 × 1 × 1 voxels was
used to encode semantic information and produce 2 fea-
ture maps. Softmax function31 was then applied voxel-
wise and return probabilities of each class (foreground,
background) for each voxel with the target class (fore-
ground) having the highest probability.

2.3 Network training

We divided 56 images into training, validation, and test
set containing 30, 6, and 20 images, respectively. We
used all the training data without any data augmen-
tation. All the networks were trained and validated on
the training and validation set, respectively. The final
model was chosen based on validation accuracy, and
then the test set was used to measure the performance.
Three networks for lung segmentation (LungNet), liver
segmentation (LiverNet), and tumor segmentation
(TumorNet) were trained independently. The goal of
network training is to find the optimal learnable parame-
ters (e.g., kernel weights, bias, PReLU parameters) that
minimize the segmentation error determined by a loss
function. In this work, we used weighted cross-entropy
as loss function to solve the class imbalance problem
inherent in the dataset.32 The learnable parameters
were updated using the Adam optimizer33 with default
parameter values (β1 = 0.9, β2 = 0.999, ε = 10−8)
and initial learning rate of 0.001. During training, the
network was evaluated using a holdout validation set
after every 2 epochs. If the performance (as measured
by the Dice similarity coefficient) on the validation set
did not improve for 10 epochs, then the training process
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was stopped. The network with the highest validation
performance of all the tested epochs was selected and
used for testing (using the test set).

To reduce memory requirements, we trained the
networks with small 3D patches instead of the entire
SPECT or CT volumes. The 3D patches were sam-
pled using a sliding window with overlap between
neighboring patches. During training, the overlap was
five voxels to increase number of patches available for
training. Since the network has an output size of 1 voxel
smaller than the input size in each direction, the overlap
was 1 voxel during prediction to ensure that the output
patch could be assembled into a continuous full-size
image without overlap. Extracted patches can be cate-
gorized into foreground patches (at least one percent
of the total voxels are foreground) and background
patches. For every epoch, we randomly extracted 80%
of foreground patches and 20% of background patches.
The randomly extracted patches were used to train the
network in a batch of size 20. This process of randomly
sampling patches was repeated for each training epoch.
During hyperparameter tuning, different patch size (203,
243,and 283) and the total number of patches per epoch
(3,760 and 7,500) were used to train the proposed net-
work, and the validation accuracy was monitored. We
observed that increasing patch size from 243 to 283

yielded a minimal improvement in validation accuracy
while convergence time increased. The network trained
with 3,760 and 7,500 samples (patches) per epoch
provided similar validation accuracy, but 7,500 samples
required shorter convergence training time. Hence, we
used the patch size of 243 and 7,500 training samples
to train the proposed networks and their variants in the
rest of the study.

We implemented the networks in the Python program-
ming language using the PyTorch library based on the
implementation published by Dolze et al.34 Training and
testing were performed on a computer equipped with 32
GB of memory, an Intel® Core™ i7-8700K CPU, and an
Nvidia GeForce RTX 2080Ti GPU with 11 GB of video
memory. Once training was completed, each network
required less than 1 min to segment an input image of
size 256 × 256 × 256 voxels.

2.4 Evaluation and experiment

2.4.1 Network evaluation

After training, performance of each network was tested
on the test set. Segmentation performance for each
network was assessed relative to the reference seg-
mentation using the Dice similarity coefficient (DSC),35

surface Dice similarity coefficient (Surface DSC) with a
tolerance parameter of three voxel widths,36 and aver-
age symmetric surface distance (ASSD).37 This study
also compared the volume, counts, and lung shunt frac-

tion (LSF) calculated from the network segmentation
results with those from reference segmentation. The
LSF represents the degree of blood shunting between
the liver and lungs, which is essential for calculating the
prescribed activity of 90Y microsphere. The LSF can be
calculated from 99mTc-MAA SPECT images as the total
counts in lung divided by total count in lung plus liver.

2.4.2 Segmentation algorithm comparison

We compared segmentation performance using the pro-
posed network to that from the V-Net architecture,which
has been widely used for 3D image segmentation. We
trained V-Net on the same dataset used for the pro-
posed network.Three V-Net networks were trained inde-
pendently for lung, liver, and liver tumor segmentation.
Due to memory constraints, the size of the image was
reduced to 128 × 128 × 128. Random rotation (± 10
degrees) and translation (5-10 voxels in each direction)
were applied for data augmentation. For each epoch,
240 augmented training images (from 30 original train-
ing images) were processed with a batch size of 2. The
training stop criteria were the same as for the proposed
network. In post-processing, the segmentations were
resampled to the original size. Performances of trained
V-Net networks were evaluated on the test set, and the
performances were compared with the proposed net-
works.

We further compared the proposed segmentation net-
works with other methods commonly used in medical
image segmentation. For lung segmentation, we per-
formed additional lung segmentation on the low-dose
CT images using the seeded region-growing method
(SRG).38 For tumor segmentation,we perform additional
tumor segmentation on 99mTc-MAA SPECT images
using a thresholding-based method. A fixed-threshold
value of 7% of the maximum voxel value was calculated
from the training set and then applied to the test set.The
SRG and thresholding-based segmentation results for
20 images were assessed relative to the reference seg-
mentations. The Wilcoxon signed-rank test was used to
evaluate the difference in the segmentation accuracy, in
terms of DSC,surface DSC,and ASSD,among different
segmentation algorithms.

2.4.3 Architecture analysis

To quantify the contribution of each element of the pro-
posed architecture, we conducted a series of experi-
ments, where we altered elements underlying the archi-
tecture: multi-scale structure, dense connectivity, skip
connection, and deconvolution for upsampling. Evaluat-
ing the network structure is challenging because net-
work properties (i.e.,number of channels,number of lay-
ers) interact with each other, and it is thus not feasible
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to manipulate them independently while keeping all the
others constant. Instead, we evaluated these properties
together by comparing our four-stage network (four pairs
of the convolutional unit and the dense block) to two
alternatives with three and two pairs of the convolutional
unit and the dense block (ThreeStage and TwoStage)

To evaluate the dense connectivity, we compare the
proposed network to two networks without dense con-
nection:NoDenseL,a network replacing the dense block
with a standard convolutional unit with the same number
of channels as the proposed network,but a smaller num-
ber of trainable parameters (due to connectivity); and
NoDenseH, a network with standard convolutional unit
having more channels to match the parameter count of
the proposed network.

To evaluate the skip connection, intermediate fully
convolution, and deconvolution, we compared our net-
work to four alternative networks: NoSkip, a network
without skip connections; NoFC, a network without a
fully-connected convolutional layer between the encod-
ing and decoding paths; TriUp, a network replac-
ing the deconvolutional unit in the decoding path
with trilinear upsampling; and TriUp+Conv, a net-
work replacing the deconvolutional unit with trilin-
ear upsampling and a standard convolutional unit
to match the parameter count of the proposed
network.

2.4.4 Visual evaluation

Two nuclear medicine physicians (with seven and three
years of 90Y SIRT planning clinical experience) visually
compared the VOIs of lung, liver, and tumor obtained
from the proposed networks against the reference seg-
mentation. The physicians were presented with corre-
sponding VOIs from the two methods superimposed
on SPECT, CT, and fused SPECT/CT images. The
physicians were not revealed which method was used
to generate the VOIs, and the VOIs were randomly
ordered from one case to the next. The physicians were
allowed to adjust slice and image orientation, as well
as contrast and brightness of SPECT and CT images.
For each pair of VOIs, the physicians selected their
preferred VOIs among the two methods or selected
both methods if the difference between methods was
negligible.

3 RESULTS

3.1 Network evaluation

Figure 2 shows the segmentation results of the three
segmentation networks from one subject in the test
set. The medians of the segmentation metrics for each
region evaluated on the test set (20 subjects) are

reported in Table 2. We further evaluated segmenta-
tion performance by comparing the differences in the
volume, count, and LSF between the proposed and ref-
erence segmentation results over the 20 datasets. The
median [interquartile range] of volume differences were
2.8% [2-4], 3.1% [-1-14], and 27% [10-78] for lung, liver,
and tumor, respectively. The median [IQR] of count dif-
ferences were 7.6% [2-15], 0.6% [-1-2], and 10% [4-
27] for lung, liver, and tumor, respectively. We can see
that the volumes and the counts determined by the
three segmentation networks tended to be systemat-
ically higher than the volumes and the counts deter-
mined by the reference segmentation. For LSF com-
parison, the median [IQR] of relative difference (%)
between the LSF quantified by the proposed method
and the reference segmentation was 8% [1-16]. A low
percentage difference between the estimated volumes,
counts, and LSFs calculated from the two segmenta-
tion methods indicates the accuracy. It suggests that
the liver and lung segmentation could be used clini-
cally. Unfortunately, a high percentage difference and
wide interquartile range indicate less precision in vol-
ume and count measured by the tumor segmentation
network.

The segmentation results were visually reviewed, and
we found the lowest accuracy for liver segmentation
in patients where the CT images had uncommon fea-
tures such as ascites, embolization coils, lipiodol depo-
sition, or streak artifacts (Figure 3). Among the three tis-
sues studied, tumor segmentation was the most chal-
lenging. The poorest tumor segmentations were found
in patients with small tumors, low tumor-to-normal liver
uptake (T/N) ratio, infiltrative/multiple tumors with het-
erogeneous uptake, residual tumor after transarterial
chemoembolization (TACE) or radiofrequency ablation
(RFA), or extra-hepatic activity adjacent to liver (Fig-
ure 4).

3.2 Segmentation algorithm
comparison

For algorithm comparison, the medians of the segmen-
tation metrics for each region were evaluated on the
test set (20 samples) and are reported in Table 2. For
lung segmentation, the LungNet achieved better perfor-
mance metrics (higher DSC, higher surface DSC, and
lower ASSD) than V-Net and SRG methods. All perfor-
mance metric differences were statistically significant.
For liver segmentation, the LiverNet achieved better per-
formance metric values than the V-Net network trained
on the same training data. DSC and surface DSC
between the LiverNet and the V-Net algorithms were
statistically significant, but the ASSD difference was
not statistically significant (p = 0.2305). For tumor seg-
mentation, the TumorNet achieved better performance
metric values than the V-Net, with all comparisons
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F IGURE 2 Example results from the (a) lung, (b) liver, and (c) liver tumor segmentation. The reference segmentations are shown on the
second row of each sub-figure; the solid lines represent the results from the proposed segmentation algorithms, and shaded gray are voxels
belonging to the reference segmentation. Columns 1 to 4 present four different slices of each label. Column 5 shows three-dimensional surface
renderings of each label generated by the reference segmentation and the proposed segmentation algorithm

TABLE 2 Median [interquartile range] segmentation metrics for comparison of segmentation algorithm

Region Algorithm DSC Surface DSC ASSD (mm)

Lung Proposed 0.98 [0.97-0.98] 0.99 [0.97-0.99] 0.9 [0.7-1.5]

V-Net 0.87 [0.85-0.91]* 0.81[0.76-0.87]* 7.5 [5.2-9.8]*

SRG 0.96 [0.80-0.97]* 0.94 [0.78-0.97]* 1.6 [1.2-9.5]*

Liver Proposed 0.91 [0.83-0.93] 0.86 [0.77-0.93] 4.8 [2.6-8.4]

V-Net 0.84 [0.81-0.85]* 0.71 [0.66-0.74]* 6.5 [5.8-7.2]

Tumor Proposed 0.85 [0.71-0.88] 0.85 [0.62-0.93] 4.7 [3.5-9.2]

V-Net 0.77 [0.61-0.84]* 0.56 [0.37-0.80]* 7.7 [5.3-10]*

Thresholding 0.77 [0.65-0.87] 0.74 [0.68-0.91] 6.5 [3.4-9.3]

Abbreviations: DSC, dice similarity coefficient; ASSD, average symmetric surface distance; SRG, seeded region growing.
*Statistically significant differences in median of the metric compared to the proposed algorithm with a p-value < 0.05.
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F IGURE 3 Examples of the cases where the liver segmentation by the network was less successful. The reference segmentations are
shown on the second row of each sub-figure; the solid lines represent the results from the proposed segmentation algorithms, and shaded gray
are voxels belonging to the reference segmentation. The arrows indicate the sites of segmentation errors due to uncommon features in the CT
images, including (a) ascites, (b) lipiodol deposition, and (c) a streak artifact likely due to count starvation

F IGURE 4 Examples of the cases where the tumor segmentation by the network was less successful, for example, (a) infiltrative/multiple
tumors with heterogeneous uptake, and (b, c) tumors with extra-hepatic activity. The reference segmentations are shown on the bottom row of
each sub-figure; the solid lines represent the results from the proposed segmentation algorithms, and shaded gray are voxels belonging to the
reference segmentation

statistically significant. Although the TumorNet yielded
better performance metric values than the optimized
thresholding method in all metrics, the differences were
not statistically significant.

3.3 Architecture analysis

The median values for each of the segmentation
evaluation metrics for each region are reported in
Table 3 for evaluation of architecture features. Eliminat-
ing the dense connectivity (NoDenseL and NoDenseH)

yielded a statistically significant reduction in accu-
racy for liver segmentation. The accuracy difference
between the proposed network and NoDenseH sug-
gests that this improvement is not due to the num-
ber of trainable parameters, but rather the dense
connectivity. The accuracy difference when eliminat-
ing skip connections and fully-connected convolutional
layer (between the encoding and decoding paths) were
not statistically significant for any metrics, except for
liver segmentation where removing the skip connec-
tion yielded a statistically significant decrease in surface
DSC.
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TABLE 3 Median [interquartile range] segmentation metrics for evaluation of architecture features

Network structure Trainableparameter DSC Surface DSC ASSD (mm)

Lung

ThreeStage 1.7 M 0.98 [0.97-0.98] 0.99 [0.98-0.99] 0.80[0.65-1.3]

TwoStage 0.5 M 0.98 [0.97-0.98] 0.99 [0.98-0.99] 0.78 [0.60-1.2]

NoDenseL 3.5 M 0.98 [0.97-0.98] 0.99 [0.98-0.99] 0.78 [0.68-1.4]

NoDenseH 6.5 M 0.98 [0.97-0.98] 0.99 [0.98-0.99] 0.66 [0.59-1.3]

NoFC 7.4 M 0.98 [0.97-0.98] 0.99 [0.97-0.99] 0.87 [0.67-1.4]

NoSkip 6.0 M 0.98 [0.97-0.98] 0.99 [0.98-0.99] 0.87 [0.67-1.4]

TriUp 4.8 M 0.97 [0.95-0.98]* 0.97 [0.90-0.99]* 1.40 [0.93-5.2]*

TriUp+Conv 6.6 M 0.98 [0.97-0.98] 0.99 [0.98-0.99] 0.78 [0.66-1.1]

Proposed 6.6 M 0.98 [0.97-0.98] 0.99 [0.97-0.99] 0.91 [0.69-1.5]

Liver

ThreeStage 1.7 M 0.90 [0.83-0.92]* 0.83 [0.77-0.89] 5.6 [3.4-8.0]

TwoStage 0.5 M 0.83 [0.80-0.89]* 0.71 [0.65-0.81]* 7.9 [5.6-11]*

NoDenseL 3.5 M 0.86 [0.81-0.89]* 0.75 [0.69-0.79]* 8.5 [6.4-11]*

NoDenseH 6.5 M 0.89 [0.82-0.92]* 0.79 [0.73-0.86]* 7.2 [4.9-8.7]*

NoFC 7.4 M 0.90 [0.87-0.92] 0.87 [0.79-0.92] 4.0 [2.9-5.7]

NoSkip 6.0 M 0.89 [0.84-0.92] 0.80 [0.79-0.89]* 5.9 [4.0-7.8]

TriUp 4.8 M 0.86 [0.81-0.90]* 0.78 [0.72-0.85]* 6.5 [5.4-10]*

TriUp+Conv 6.6 M 0.88 [0.84-0.91]* 0.80 [0.77-0.87]* 6.2 [4.0-7.8]*

Proposed 6.6 M 0.91 [0.83-0.93] 0.86 [0.77-0.93] 4.8 [2.6-8.3]

Tumor

ThreeStage 1.7 M 0.84 [0.71-0.89] 0.84 [0.71-0.93] 4.6 [3.5-7.3]

TwoStage 0.5 M 0.83 [0.96-0.88] 0.81 [0.60-0.91] 4.5 [3.7-9.3]

NoDenseL 3.5 M 0.86 [0.72-0.88] 0.84 [0.60-0.93] 4.6 [3.2-8.1]

NoDenseH 6.5 M 0.84 [0.69-0.87] 0.85 [0.64-0.91] 4.6 [3.8-8.1]

NoFC 7.4 M 0.83 [0.68-0.86] 0.81 [0.59-0.91] 4.7 [3.7-9.8]

NoSkip 6.0 M 0.82 [0.72-0.89] 0.85 [0.66-0.94] 4.9 [3.0-7.0]

TriUp 4.8 M 0.82 [0.67-0.87] 0.72 [0.56-0.89] 6.4 [3.8-8.9]

TriUp+Conv 6.6 M 0.84 [0.69-0.89] 0.82 [0.62-0.91] 4.6 [3.8-9.9]

Proposed 6.6 M 0.85 [0.71-0.88] 0.85 [0.62-0.93] 4.7 [3.5-9.2]

Abbreviations: DSC, dice similarity coefficient; ASSD, average symmetric surface distance.
*Statistically significant differences in median of the metric for the method compared to the results from the proposed algorithm with a p-value < 0.05.

Altering the multi-scale structure by reducing oper-
ating stage (ThreeStage and TwoStage) yielded a
reduction in accuracy for liver segmentation. However,
differences for the lung and tumor were not significant.
Replacing a deconvolutional unit in the decoding path
with trilinear upsampling (TriUp) yielded a statistically
significant reduction in accuracy for lung and liver
segmentation. Replacing a deconvolutional unit with
trilinear upsampling followed by a convolutional unit
(TriUp+Conv) also yielded a statistically significant
reduction in accuracy for liver segmentation.

3.4 Visual evaluation

The selection frequency for each of segmentation meth-
ods is shown for each region in Figure 5. In the case of

liver segmentation, both physicians prefer the reference
over the proposed network. This was explained later
by the physicians that, apart from uncommon features
described in Figure 3, the proposed network usually fails
to segment small areas in the left lobe when visually
compared with the reference. On the other hand, the
two physicians have different preferences in lung and
tumor segmentation. Physician 1 prefers the reference
for lung segmentation while physician 2 thinks that the
difference between the two methods was negligible in
more than 50% of the selection. Physician 1 prefers the
reference as it excluded lung region near diaphragms.
In practice, this region is removed to avoid overestima-
tion of LSF due to 99mTc-MAA activity from liver dome.
For tumor segmentation, physician 1 prefers the refer-
ence over the proposed network, whereas physician 2
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F IGURE 5 The frequency of preference for each of the segmentation methods for each region by two physicians. For each region, each
physician visually compared and selected their preferred VOIs. “Reference” indicates the manually drawn VOI, whereas “Proposed” indicates the
VOI defined by the proposed network, and “Both” means that the difference between the methods was negligible

prefers the proposed network over the reference. As
per physician’s comments, lack of clinical information
(e.g., contrast-enhanced CT, angiography, or treatment
approach) affected their judgements to some extent,
particularly in patients with infiltrative/multiple tumors
with heterogeneous uptake,or scattering post-treatment
residual tumors.

4 DISCUSSION

In this work, we proposed 3D CNN-based segmenta-
tion algorithms to segment lungs, liver, and tumor from
CT and SPECT images. A comparison of the pro-
posed network with a V-Net based network demon-
strated improved accuracy for all regions. It essential to
note that, in this study, both networks were trained on a
limited number of training samples. The proposed net-
work used image patches, which is a strategy for using
a smaller training set. Thus, one potential explanation
for the better performance of the proposed network is
that it was better able to handle the smaller training set.
This, in fact, highlights one benefit of patch-based strat-
egy used in the proposed network. In the architectural
analysis, we found that the multi-scale structure, dense
connectivity, and deconvolution layers were all critical
contributors to the segmentation accuracy of this net-
work, especially for a more complex structure like liver.
The difference in segmentation accuracy without the
fully-connected convolutional layer was not statistically
significant in all regions. This suggests that it could be
removed entirely from the proposed network with min-
imal change in segmentation performance. The minor
performance degradation without the skip connection
suggests that higher resolution information (from the
encoding path) may not be necessary (in the decoding
path) to achieve the observed accuracy, possibly due to

the use of the relatively small loss in the spatial res-
olution of the feature maps (243 to 163) as they pass
through the network.

For lung segmentation, the results show a high degree
of similarity between the proposed method and the
semi-automatic segmentation performed by physicians
used in clinical routine. Compared to the V-Net based
network and the SRG method, the CNN method demon-
strated improved segmentation performance in all eval-
uation metrics. We also compared the lung segmenta-
tion results obtained here with results reported in the
literature for threshold-based region-growing segmen-
tation methods. The DSC (mean = 0.97) in this work
was comparable with the DSCs reported by Lassen et al.
(mean = 0.973),10 Rikxoort et al. (mean = 0.962),11 and
Weinheimer et al. (mean = 0.964).39 It is important to
note that lung segmentation in this work was performed
on non-contrast, low-dose CT images obtained as part
of the MAA SPECT-CT study.In contrast,other lung seg-
mentation algorithms were applied to diagnostic chest
CT images from the LOLA11 challenge. Compared with
another CNN-based segmentation algorithm, Xu et al.15

reported that they used SegNet30 architecture to seg-
ment lungs from CT image and achieved an average
DSC of 0.968, similar to the proposed method (0.97).

A comparison between the results from the pro-
posed liver segmentation and liver segmentation algo-
rithms reviewed by Moghbel et al.40 also shows that
the DSC (mean = 0.89) from this work is compara-
ble with those from previously published segmentation
algorithms (range [0.89, 0.97]). Again, the results here
were obtained using non-contrast, low-dose CT images,
while other results were obtained using diagnostic non-
contrast or contrast-enhanced CT images. As in this
study, Rangraz et al.41 achieved an average DSC of
0.92 on liver segmentation for 90Y SIRT planning using
a joint region-growing method using information from
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three co-registered images (CT images from 99mTc-MAA
study, CT images from 18F-FDG PET study, and the
18F-FDG PET). Although their method achieved higher
DSC than the proposed method, it depends on the accu-
racy of co-registration and requires three input images
instead of the single low-dose CT used in this work. For
CNN-based liver segmentation, Nanda et al.19 recently
reported an average DSC of 0.9557 on liver segmen-
tation using SegNet, which is higher than the value of
0.89 from this study. The lower DSC in this study can
be attributed to the use of non-contrast, low-dose CT
compared to the diagnostic quality, contrast-enhanced
abdominal CT used in their study.

These results show that the proposed lung and
liver segmentation algorithms were comparable with
reference segmentations by physicians and previously
published segmentation algorithms.10,11,39–41 The rela-
tively low difference between the segmentation results
from the proposed CNNs and reference segmentations,
in terms of volume, counts, and lung shunt fraction,
also show the clinical potential for assisting 90Y SIRT
planning.

Despite being inferior to the lung and liver segmen-
tation algorithms, a comparison between the liver tumor
segmentation results and other liver tumor segmen-
tation algorithms shows that the DSC (mean = 0.79)
was comparable with the DSCs reported in previ-
ously published segmentation algorithms (range [0.74,
0.83]).40 The percentage difference in VOI volume
(mean = 11.88%) is also comparable with the results
reported in other work (range [4.02%, 30.65%]).40

Nanda et al.19 reported using CNN-based algorithms
to segment liver tumors on contrast-enhanced CT
and achieved an average DSC of 0.6976, which is
lower than 0.79 in this study. It should be noted that
the proposed liver tumor segmentation network was
performed on 99mTc-MAA SPECT images, while other
segmentations were performed on either diagnostic CT
or contrast-enhanced CT images. The proposed tumor
segmentation network also achieved slightly better seg-
mentation performance than the thresholding-based
method, which used the pre-calculated threshold value
based on preliminary information from the reference
segmentation.

Although the liver tumor segmentation network
offered comparable accuracy in terms of DSC, the high
percentage difference in volume and sizeable interquar-
tile range in volume difference suggests that there is
probably large degree of variability in tumor volume esti-
mated with the proposed network.It should be noted that
the proposed liver tumor segmentation was performed
on SPECT images without additional information (e.g.,
medical history, angiography, contrast-enhanced CT, or
MR images) required for segmenting liver tumor in cur-
rent clinical practice. Nevertheless, the proposed net-
work might be beneficial in the patient with a high T/N
ratio and no post-treatment residual tumor. In general,

it could provide better initial tumor segmentation than
the currently-used threshold, thus reducing the time and
effort needed to refine the tumor segmentation manually.

The proposed method takes approximately 1 min
to segment the lung, liver, and tumor for a sin-
gle 99mTc-MAA SPECT/CT dataset with an image
size of 256 × 256 × 256. Since the three seg-
mentation networks are independent of each other,
they could be applied to other clinical studies that
require lung or liver segmentation from low-dose CT
images.

5 CONCLUSIONS

We developed and evaluated three CNN-based algo-
rithms for automated segmentation of lungs, whole liver,
and liver tumor for 90Y SIRT planning. The CNNs for
lung, liver, and liver tumor segmentation shared the
same architecture, and were trained on 99mTc-MAA
SPECT/CT datasets. The results showed that the three
segmentation networks provided promising segmenta-
tion results compared to reference segmentations from
expert human observers and performed similarly or bet-
ter compared to currently used methods and published
results of other methods despite operating on non-
contrast, low-dose CT images.The proposed algorithms
have the potential to support automated segmentation
in 90Y SIRT treatment planning.
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