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Abstract: Extracranial carotid artery atherosclerotic disease is a major contributor to ischemic stroke. 
Carotid atherosclerotic disease can present with a spectrum of findings ranging from mild carotid intima-
media thickness to high-risk vulnerable carotid plaque features and carotid stenosis. Before leading to 
clinically overt stroke or transient ischemic attack, there may be other markers of downstream ischemia 
secondary to carotid atherosclerotic disease. In this review article, we will review some of the imaging 
findings that may be seen downstream to carotid artery disease on various imaging modalities, including 
hemodynamic and perfusional abnormalities which may be seen on CT, MR, or using other advanced 
imaging techniques, white matter hyperintensities on brain imaging, silent or covert brain infarctions, 
cerebral microbleeds, and regional and generalized cerebral volume loss. Many of these imaging findings are 
seen routinely on brain magnetic resonance imaging in patients without overt clinical symptoms. Despite 
frequently being asymptomatic, many of these imaging findings are also strongly associated with increased 
risk of future stroke, cognitive impairment, and even mortality. We will review the existing evidence 
underpinning the associations between these frequently encountered imaging findings and carotid artery 
atherosclerotic disease. Future validation of these imaging findings could lead to them being powerful 
biomarkers of cerebrovascular health.
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Introduction

Carotid artery atherosclerosis is an established risk factor 
for cerebrovascular disease and stroke (1,2). In addition 
to directly causing ischemic stroke, there are many 
additional deleterious downstream effects of carotid artery 
atherosclerosis that may be more covert but, nonetheless, 
are major contributors to patient morbidity and mortality. 
While these “silent” markers of carotid artery disease 
may not produce overt or easily identifiable clinical 
consequences, such as a large ischemic stroke, many 
are apparent on routine neurological imaging, often in 
asymptomatic patients. These findings can be seen on a 

variety of imaging examinations ranging from routine head 
CT or brain MR to advanced imaging techniques, including 
CT or MR perfusion or nuclear medicine techniques. 
Although some of these findings may be seen in otherwise 
asymptomatic patients, their presence may indicate 
cerebrovascular compromise, increased risk for future or 
recurrent stroke, or increased risk for vascular cognitive 
impairment (3-8). The downstream impact of extracranial 
carotid disease may be secondary to a wide variety of carotid 
disease phenotypes, ranging from mild increases in carotid 
intima media thickness to stenotic carotid plaques with 
high-risk features (9-13). While the degree of stenosis and 
features of the carotid plaque itself are critical factors to 
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consider when making treatment decisions in patients with 
carotid artery disease, other imaging findings downstream 
from the carotid artery disease may also indicate additional 
“silent” effects of carotid artery disease (14-16). We 
will review brain imaging findings on both routine and 
advanced imaging that are associated with carotid artery 
atherosclerosis. 

Mechanisms

Extracranial atherosclerotic disease accounts for 15–20% 
of all ischemic strokes (17). There are two main pathways 
for which strokes and transient ischemic attacks occur in 
patients with carotid artery disease (18). First, a stenosing 
plaque can limit downstream cerebral blood flow, resulting 
in hemodynamic alterations, hypoperfusion and potentially 
hypoxia and infarction. It is for this reason high-grade 
carotid stenosis is a well-established risk factor for 
stroke and why carotid endarterectomies are generally 
recommended for symptomatic patients with high-grade 
stenosis (19). In addition, the degree of carotid stenosis has 
long been included as the major determinant of treatment 
decisions for patients with carotid artery disease, at least in 
part, because it has served as the dominant inclusion criteria 
in multiple clinical trials (16,20). 

Alternatively, the carotid plaque itself may lead to 
an artery-to-artery thromboembolic event, resulting in 

infarction. High-risk plaque features including intraplaque 
hemorrhage, lipid rich necrotic core, plaque ulceration and 
other surface irregularities can lead to emboli extending 
from the plaque surface to distal cerebral arteries or 
arterioles (15,21). The microembolic phenomena resulting 
from high risk plaque features has become an important 
consideration in evaluating patients at high-risk for stroke. 
These high-risk plaque features can be characterized with 
both routine and advanced imaging techniques. 

It is likely that a significant proportion of ischemic 
strokes secondary to carotid disease arise from a synergy 
between hemodynamic and embolic risk factors, since 
impaired perfusion from flow limitations from a stenosing 
plaque may make an embolic event that may have been 
transient, into a cerebral infarction (18). These mechanisms 
which individually and together account for a large number 
of ischemic strokes also contribute to structural and 
microstructural changes to the brain which are evident on 
imaging but may be difficult to detect clinically (Table 1). 

Markers of hemodynamic and perfusional 
abnormalities

One of the most direct methods by which carotid artery 
disease may cause downstream effects is through the 
hypoperfusion secondary to stenotic or turbulent flow from 
flow-limiting plaque (18). Many hemodynamic risk factors 

Table 1 Summary of imaging biomarkers of carotid atherosclerosis

Imaging biomarker Definition Imaging technique Associated risk

Cerebrovascular reserve 
(CVR)

Ability of vessels to vasodilate 
in the setting of reduced 
cerebral perfusion pressure

CT or MR perfusion, ASL, PET, 
SPECT, Transcranial Doppler#

Impaired CVR is associated with 
increased risk of future stroke, even in 
asymptomatic patients

White matter 
hyperintensities (WMH)

T2/FLAIR hyperintensities in the 
periventricular and subcortical 
white matter

Measured both quantitatively and 
qualitatively, most commonly on 
MR but can be seen on CT

WMH associated with increased risk of 
stroke, cognitive decline, dementia, and 
death

Silent brain infarctions Infarctions identified on MR 
without overt clinical symptoms

Seen on MR as either lacunar 
cavitary infarctions with CSF signal 
on all pulse sequences or cortical 
infarctions

Associated with increased risk of stroke, 
dementia, and cognitive impairment

Cerebral microbleeds Small hemosiderin deposits 
from microvascular leakage

T2*-weighted gradient echo or 
susceptibility images on MR

Associated with increased risk of 
ischemic infarctions, intracerebral 
hemorrhage, cognitive impairment, and 
dementia

Brain volume Total or hippocampal brain 
volume

Measured on volumetric MR 
sequences

Associated with cognitive decline, 
dementia, and cerebrovascular disease

#, this can use vasodilatory stimulus such as acetazolamide.
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are associated with stroke in carotid artery disease including 
impairment of cerebrovascular reserve and increased 
oxygen extraction fraction (7,8). Imaging measurements 
of hemodynamic alterations downstream from carotid 
artery disease have been studied as a potential biomarker 
for increased risk of cerebrovascular disease, even in 
asymptomatic patients (22,23). Severe, flow-limiting carotid 
stenosis results in a reduction in cerebral perfusion pressure. 
In response to a reduced perfusion pressure, cerebral blood 
flow may be maintained by (I) vasodilation of the cerebral 
vasculature and/or (II) increase in oxygen extraction (24). 
When faced with constant reductions in perfusion pressure, 
vessel autoregulation will lead to maximal dilatation to 
maintain cerebral blood flow so with any further reduction 
in cerebral blood flow, there is an increased risk for stroke. 

Cerebrovascular reserve is a measure of the ability of 
vessels to vasodilate when faced with reduced cerebral 
perfusion pressure (25). There are two main methods for 
measuring cerebrovascular reserve (7). First, imaging may 
attempt to directly measure cerebral blood flow to the brain 
with flow-sensitive imaging techniques including positron 
emission tomography, other nuclear medicine techniques, 
CT or MR perfusion both before and after a vasodilatory 
stimulus (26,27). This approach directly measures CBF at a 
tissue level. Alternatively, transcranial Doppler can measure 
flow velocities distal to an area of stenosis or occlusion 
both before and after a vasodilatory stimulus (23,28,29). 
Vasodilatory stimuli may be increasing CO2 levels with 
breath-holding or inhalation of CO2 gases (30) or with 
pharmacologic methods, such as acetazolamide (22,31). 

CT perfusion (CTP) is a well-studied and straightforward 
method for assessing cerebrovascular reserve. Studies have 
shown that asymptomatic patients with carotid artery 
stenosis who have abnormal cerebrovascular reserve 
on CTP are more likely to develop ipsilateral ischemic  
events  (32) .  In addit ion,  studies  have found that 
hemodynamic changes on CTP can be reversed with carotid 
artery stenting in both symptomatic and asymptomatic 
patients (Figure 1) (33-35). Though CTP is widely available, 
the risks associated with radiation exposure and the need 
for iodinated contrast limit its ability to be widely used 
as a screening examination. There are also a number of 
MR based examinations which can be used to evaluate 
cerebrovascular hemodynamics and perfusion in the setting 
of carotid artery stenosis. MR perfusion can be measured 
with dynamic susceptibility contrast perfusion imaging 
which uses a T2*-weighted echo planar sequence after the 
administration of intravenous contrast to measure various 

perfusion parameters. Findings are variable, but many 
believe that high-grade stenosis may result in elevated 
MTT (36). Another popular method for measuring MR 
perfusion is arterial spin labeling (ASL) which can measure 
perfusion non-invasively, without intravenous contrast by 
using magnetically-labeled water protons in flowing blood 
as a tracer. ASL can characterize CBF in patients with 
ICA occlusion (37) and identify deficits in cerebrovascular 
reserve in patients with ICA stenosis (38) and occlusion (39). 

A comprehensive systematic review and meta-analysis of 
13 studies using transcranial Doppler or nuclear medicine 
techniques to study cerebrovascular reserve with almost 
1,000 patients found that there was a significant positive 
relationship between impaired cerebrovascular reserve 
and development of future stroke [odds ratio (OR) 3.86; 
95% confidence interval (CI), 1.99–7.48] (7). Importantly, 
this statistically significant relationship persisted with 
asymptomatic patients, meaning that even completely 
asymptomatic patients with carotid artery disease who 
demonstrated impairment in their cerebrovascular reserve 
were at a higher risk of developing a future stroke. 

Positron emission tomography (PET) based measures 
of cerebral hemodyn amics including measuring oxygen 
extraction fraction (OEF) using 15O can also be used to 
measure hemodynamic alterations in the setting of carotid 
artery stenosis. In the setting of severe carotid stenosis 
and a reduction in cerebral blood flow, there may be a 
compensatory increase in oxygen extraction (so called 
“misery perfusion”). This is thought to occur mostly in end-
stages of hemodynamic failure so is usually more pronounced 
in already symptomatic patients. Indeed, in patients with high-
grade carotid artery stenosis (≥70%), a systematic review and 
meta-analysis found a significant positive relationship between 
abnormal oxygen extraction and future ipsilateral stroke  
(OR 6.04; 95% CI, 2.58–14.12) (8). A study of asymptomatic 
patients did not find a significant association between 
increased OEF and future stroke (40). While measuring 
OEF may not be the most effective method for assessing 
asymptomatic patients with carotid artery stenosis, it can 
be a tool to identify those who are experiencing end-stage 
hemodynamic alterations and may be at higher risk for 
future cerebrovascular ischemia. It also further highlights 
the downstream hemodynamic alterations experienced 
in patients with steno-occlusive carotid artery disease. 
Although using O15 methods can be difficult to implement 
in clinical practice, significant efforts are underway to 
develop MRI-based techniques to measure the cerebral 
metabolic rate of oxygen (CMRO2) and OEF as imaging 
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stroke risk markers (41-43).
Some of the methods for measuring cerebrovascular 

reserve or oxygen extraction fraction require advanced 
imaging techniques or the use of vasodilatory stimuli that 
are not always routinely performed. Despite this, many 
studies have demonstrated that carotid artery stenosis 
results in downstream hemodynamic alterations, even in 
asymptomatic patients, and these hemodynamic alterations 
may increase the risk for future or recurrent stroke. 

White matter hyperintensities (WMH)

Leukoaraiosis, or WMH, are frequently encountered 
“incidentally” on routine brain MR imaging with a 
prevalence ranging from 11–21% to 94% depending on 
age (44,45). These brain lesions are most commonly seen 
as T2 and T2/FLAIR (fluid attenuating inversion recovery) 

hyperintensities in the periventricular and subcortical 
white matter. WMH can be measured both quantitatively 
with various mapping tools and qualitatively using visual 
rating scales on routine brain MR imaging. Initially 
thought to be mostly incidental, the presence of white 
matter hyperintensities has been shown to increase risk of 
stroke, cognitive decline, dementia, and death (3,4,6). The 
increased risk of stroke, dementia, and cognitive decline 
is present in the general population, not just high-risk 
populations. Multiple mechanistic explanations for the 
association of WMH and cognitive decline and dementia 
exist, including the possibility that WMH are a reflection of 
the association of vascular risk factors or exist concomitantly 
with ischemic damage leading to dementia. Both increasing 
age and hypertension are associated with the presence of 
WMH, but carotid artery atherosclerosis may also play a 
role in the development of WMH. 

A B

C D
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CBF

MTT

MTT

Figure 1 An 87-year-old male with near complete occlusion of his right internal carotid artery (not shown) with evidence of decreased 
cerebral blood flow (CBF) and increased mean transit time (MTT) throughout the right cerebral hemisphere on pre-operative CT Perfusion 
(A,B) indicating decreased perfusion. After carotid artery stenting, both the CBF and MTT are more symmetric with the contralateral 
hemisphere (C,D).
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The exact association between carotid atherosclerosis 
and WMH is uncertain with multiple studies demonstrating 
mixed results. There are a number of studies that 
demonstrate an association of white matter hyperintensities 
in the setting of carotid atherosclerosis, even independent 
of age and hypertension (46,47). Some studies show 
an association with carotid atherosclerosis and deeper, 
periventricular WMH, but not with subcortical WMH (48).  
Increased thickness of carotid intima-media thickness, 
a surrogate marker for atherosclerosis measured on 
ultrasound, has also been shown to be associated with 
increased WMH in multiple asymptomatic cohorts (13). 
There may be stronger associations with WMH and 
increased CIMT, than with carotid stenosis. There are 
inconsistent and mixed results demonstrating hemispheric 
differences in WMH directly downstream from carotid 
artery stenosis which makes a direct causative association 
difficult to establish (49). 

There  i s  ev idence  o f  inc rea sed  wh i te  mat te r 
hyperintensities ipsilateral to “unstable” or high-risk carotid 
plaque (50,51). The association of increased white matter 
hyperintensities downstream to unstable carotid plaque 
were observed regardless of degree of carotid stenosis. 
These findings may indicate that the thromboembolic plaque 
activity contributes more heavily to the presence of white 
matter hyperintensities, rather than hypoperfusion effects. 
This may be supported by other studies which have shown that 
the degree of WMH are not associated with CBF in patients 
with severe carotid stenosis, indicating that WMH may not be 
seen as a direct result of hypoperfusion (52).

Carotid artery stiffness is an important marker of arterial 
health and is generally measured on carotid US. Many 
studies have demonstrated an association between carotid 
artery stiffness and increased burden of WMH. The presence 
of carotid artery stiffness on ultrasound has been shown 
to accurately predict WMH 20 years later (53). Additional 
studies have shown that larger carotid artery diameters or 
other findings of extracranial carotid artery remodeling are 
also associated with the burden of WMH (54). 

There is evidence that there is damage to neuronal 
integrity downstream to carotid artery disease, even before 
white matter hyperintensities are evident. In asymptomatic 
patients, there is evidence of microstructural damage and 
decreased neuronal integrity downstream from carotid 
artery disease (55). This is evident on sensitive diffusion 
tensor imaging studies which demonstrate lower fractional 
anisotropy and higher mean diffusivity values ipsilateral 
to carotid artery atherosclerosis. These changes in 

fractional anisotropy and mean diffusivity are indicative of 
microstructural neuronal damage and have been shown to 
be associated with cognitive dysfunction and can even be 
detected in normal-appearing white matter (56), suggesting 
that neuronal injury may occur before any visible findings 
on standard MR imaging. Additional studies have shown 
that larger plaque calcification volume is also associated 
with worse microstructural integrity measured on diffusion 
tensor imaging (57). 

WMH are frequently noted on routine brain MR 
imaging and are strongly associated with increased 
risk of stroke, cognitive decline, and even death. The 
development of WMH is likely multifactorial with both 
age and hypertension being established risk factors. There 
is some evidence, however, that carotid artery disease may 
also play a role in the development of WMH, given that 
carotid artery atherosclerosis as measured by CIMT and 
carotid plaque features and are associated with increased 
WMH. This association seems to be unrelated to the 
degree of carotid stenosis, suggesting a negligible role for 
hypoperfusion in the development of WMH.

Silent brain infarctions

Distinct from WMH, silent brain infarctions (SBIs) are 
also visualized “incidentally” on routine brain MR imaging. 
They are defined as infarctions identified with MR imaging 
which did not present as clinically overt symptoms or signs 
and were not previously diagnosed as a transient ischemic 
attack or stroke. While these infarctions, by definition, 
did not have clinically obvious stroke-like symptoms, 
they may still be associated with more subtle deficits, 
both physically and cognitively. For this reason, many are 
steering away from the calling them “silent” as they can 
result in functional or cognitive changes, with the term 
“covert” brain infarcts now increasingly being used (58). 
Similar to WMH, SBIs are commonly detected on routine 
MR imaging and are seen in about 20% of healthy elderly 
people and up to 50% of patients with more risk factors (59).  
SBIs are important to recognize and report on because 
they more than double the risk of subsequent stroke and 
dementia (6,60,61), increase perioperative and long-term 
stroke risk and mortality in patients undergoing carotid 
endarterectomy (62), and are strongly associated with 
cognitive impairment (5,63,64). 

Unfortunately, there is no universal definition of imaging 
criteria for SBI. There are two main categories for covert 
brain infarctions: (I) lacunar cavitary infarctions, which 



Baradaran and Gupta. Brain imaging biomarkers in carotid artery disease

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(19):1277 | http://dx.doi.org/10.21037/atm-20-1939

Page 6 of 13

are most strongly associated with hypertensive small vessel 
disease and (II) cortical infarctions which may have the 
same pathophysiology as overt infarctions (Figure 2). While 
there is some variability in the definition of the SBIs, the 
lacunar subtype of SBIs is most common and are generally 
defined as a focus in the deep gray or white matter which 
follows CSF signal on all pulse sequences with a gliotic T2-
FLAIR hyperintense rim (65,66). These can be confused 
with dilated Virchow-Robin spaces which are similarly of 
CSF signal intensity on all pulse sequences, but do not 
have a T2-FLAIR hyperintense rim. The cortical subtype 
of SBIs can occur in any non-eloquent regions of the 
cerebral cortex. Furthermore, SBIs can also be seen in the 
cerebellum and brainstem. 

There are a number of studies demonstrating the strong 
association between carotid artery atherosclerosis and the 
presence of SBIs, in both symptomatic and asymptomatic 

cohorts (47,61,67-71). A study of asymptomatic patients 
with carotid artery atherosclerosis found a higher prevalence 
of SBIs downstream from ICA disease compared to the 
contralateral side (72). There was a significant difference in 
cortical SBIs between hemispheres. The lacunar subtype, 
however, did not show a significant difference between 
sides. Other preliminary data similarly demonstrated those 
with asymptomatic carotid stenosis had a greater proportion 
of cortical SBIs (73). Additionally, there is evidence of an 
association of SBIs with high-risk plaque features, likely 
secondary to increased likelihood of emboli (61,74,75). 
Similar to WMH, increasing carotid lumen diameter and 
increased carotid stiffness is also found to be associated with 
increasing prevalence of lacunar infarcts (70).

SBIs likely arise from a variety of potentially independent 
mechanisms. One major potential cause of SBIs is small 
vessel vasculopathy, which is supported by the fact that 

A B

C D

Figure 2 Silent brain infarctions. (A,B) A 78-year-old asymptomatic male with left carotid artery stenosis (not pictured) and 
encephalomalacia and gliosis in the left parietal lobe (white arrow) consistent with cortical infarction; (C,D) a 63-year-old asymptomatic 
female with chronic lacunar infarction in the left thalamus.
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most SBIs occur in deep gray and white matter where there 
are smaller vessels and that SBIs are closely associated 
with leukoaraiosis. There is also evidence that SBIs can be 
caused by embolic phenomenon and hypoperfusion, both 
of which can be seen in the setting of carotid artery disease 
(76-79). Since the association between carotid artery disease 
and stroke is very well-established, the association between 
carotid artery disease and certain types of SBIs would also 
necessarily be strong, given that many of these infarctions 
have a similar pathophysiology.

Cerebral microbleeds (CMBs)

CMBs are another frequently encountered incidental 
finding on routine brain imaging. They are small 
hypointense foci on T2*-weighted gradient echo and 
susceptibility images on MR. On histopathology, these foci 
represent small hemosiderin deposits from microvascular 
leakage. Similar to other previously discussed incidental 
findings on MR, CMBs are associated with increased 
risk of ischemic infarctions, intracerebral hemorrhage, 
cognitive impairment, and dementia (80-84). CMBs are 
generally asymptomatic and indicate the presence of 
hemorrhage-prone cerebral small vessel disease. They are 
most commonly seen in older individuals with an increasing 
prevalence as patients age, from around 6.5% at age 45 
to 50 to 35.7% at age 80 (85). They most commonly are 
thought to be secondary to hypertension and cerebral 

amyloid angiopathy. CMBs in the deep or infratentorial 
regions are generally associated with hypertensive 
angiopathy while lobar and more peripheral CMBs are 
more closely associated with underlying cerebral amyloid 
angiopathy (Figure 3). Although hypertension, advancing 
age, and amyloid angiopathy are well-established risk factors 
for CMBs, other processes may also be associated with the 
development of CMBs, including carotid atherosclerosis. 

Many studies have identified a link between carotid 
atherosclerosis and the presence of CMBs. In almost all 
studies, carotid atherosclerosis was more strongly associated 
with deep and infratentorial CMBs, as opposed to lobar 
CMBs which are more commonly associated with cerebral 
amyloid angiopathy. There have been several studies 
indicating an association between carotid atherosclerosis, 
indicated by carotid intima-media thickness and the 
presence of deep CMBs (86,87). The presence of carotid 
stenosis ≥25% is associated with the presence of both overall 
CMBs and at deep and mixed locations (12). Additional 
studies have shown an association between the presence of 
carotid artery plaque and CMBs. For example, calcification 
in the ICA was found to be an independent risk factor for 
deep CMBs (88). In addition, some studies have shown that 
there is an association between higher-risk fatty carotid 
plaques and CMBs (89,90). Furthermore, multiple studies 
have shown that increased carotid artery stiffness, which 
is also associated with hypertension, may contribute to the 
development of CMBs, especially in the deep location (91).  

Figure 3 Cerebral microbleeds. (A) A 74-year-old male with multiple foci of susceptibility hypointensity predominantly in the bilateral 
thalami; (B) a 69-year-old male with multiple foci of susceptibility hyperintensity in a peripheral, lobar pattern, more commonly associated 
with cerebral amyloid angiopathy.
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These studies suggest CMBs are likely multifactorial and 
can be present in asymptomatic patients with carotid artery 
disease.

Brain volume

Decreased cerebral volume and atrophy is also frequently 
visualized on routine MR imaging (Figure 4). This 
finding is nonspecific and is associated with normal 
aging (92), dementia including Alzheimer’s disease (93), 
cerebrovascular disease including stroke (94), cardiovascular 
disease including myocardial infarction (95), and other 
neurodegenerative disorders (96). The presence of brain 
atrophy is strongly associated with cognitive impairment (97).  
Carotid atherosclerosis has also been associated with 
decreased cerebral volume and brain atrophy, with 
support from multiple cross-sectional studies. The 
mechanism underpinning the association between carotid 
atherosclerosis and decreased cerebral volumes has not 
been definitely established, though arterial stiffness from 
carotid atherosclerosis is thought to lead to relative cerebral 
hypoperfusion and then brain atrophy (98,99). Many 
studies have shown that both increased CIMT and carotid 
stenosis are associated with decreased relative total brain 
and cortical gray matter volume (13,100,101). Increased 
CIMT is also associated with increased progression of 
total brain and gray matter volume (102). Furthermore, 
severe or bilateral carotid stenosis has also been shown to 
be related to progression of global, cortical, and subcortical 

atrophy (100). Additional studies suggest the degree of 
carotid plaque burden may also be associated with cerebral 
atrophy (103). Furthermore, higher risk carotid plaque 
characteristics, including ulceration or surface irregularity 
or heterogeneous echotexture on ultrasound, were also 
associated with brain atrophy, even after adjustment 
for age and other cerebrovascular risk factors (67). In 
addition, larger volume of overall plaque calcification is also 
associated with decreased brain volume (57).

In addition to overall decreased brain volume and 
decreased cortical gray matter volume, some studies have 
also shown an association of carotid atherosclerosis to 
decreased hippocampal volumes (104). Lower hippocampal 
volumes are also independently associated with cognitive 
impairment and dementia. 

Conclusions

In addition to the ischemic stroke, carotid artery 
disease is associated with many downstream markers of 
cerebrovascular ischemia that can be evaluated on both 
routine and advanced imaging. Most of these imaging 
findings are not clinically obvious and can be considered 
“silent”, though there is increasing evidence of their long-
term negative impact on patient health outcomes. These 
imaging findings may be powerful tools in risk stratifying 
patients with carotid artery atherosclerosis. Using MR or 
CT perfusion or other nuclear medicine studies to evaluate 
cerebrovascular reserve or oxygen extraction fraction may 

Figure 4 Cerebral volume loss. (A) A 73-year-old female with predominant hippocampal volume loss (arrows); (B) a 77-year-old female with 
diffuse cerebral volume loss. 
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be a helpful tool to identify those who may be more likely 
to benefit from carotid endarterectomy. The presence 
of other findings on brain MR, including white matter 
hyperintensities, silent brain infarctions, and cerebral 
microbleeds, may influence medical management of risk 
factors for stroke. Future research efforts are warranted 
to standardize definitions and validate the use of these 
neuroimaging findings as potentially powerful biomarkers 
of brain health in patients with carotid disease.
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