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Abstract: This study assessed the feasibility of five separate machine learning (ML) classifiers for
predicting disease progression in patients with pre-dialysis chronic kidney disease (CKD). The study
enrolled 858 patients with CKD treated at a veteran’s hospital in Taiwan. After classification into
early and advanced stages, patient demographics and laboratory data were processed and used to
predict progression to renal failure and important features for optimal prediction were identified.
The random forest (RF) classifier with synthetic minority over-sampling technique (SMOTE) had
the best predictive performances among patients with early-stage CKD who progressed within 3
and 5 years and among patients with advanced-stage CKD who progressed within 1 and 3 years.
Important features identified for predicting progression from early- and advanced-stage CKD were
urine creatinine and serum creatinine levels, respectively. The RF classifier demonstrated the optimal
performance, with an area under the receiver operating characteristic curve values of 0.96 for predict-
ing progression within 5 years in patients with early-stage CKD and 0.97 for predicting progression
within 1 year in patients with advanced-stage CKD. The proposed method resulted in the optimal
prediction of CKD progression, especially within 1 year of advanced-stage CKD. These results will be
useful for predicting prognosis among patients with CKD.

Keywords: kidney disease; renal dialysis; random forest

1. Introduction

Chronic kidney disease (CKD) is a global health problem associated with a high risk
of adverse clinical events and high health care costs [1]. In addition, CKD progression can
induce the development of cardiovascular disease [2] and diabetes [3]. In the United States,
Medicare costs associated with CKD and end-stage renal disease (ESRD) were reported
to total more than $120 billion in 2017 [4]. The number of patients with ESRD is currently
projected to increase to between 971,000 and 1,259,000 by 2030, representing a 41.3–83.2%
increase in the prevalence from 687,093 patients with ESRD reported in 2015 [5]. In Taiwan,
the hospitalization rate for ESRD has gradually increased from 964.1 per 1000 person-years
in 2010 to 1037.9 per 1000 person-years in 2018 [6]. The total number of people on dialysis
increased by 28.9%, from 65,610 patients in 2010 to 84,615 patients in 2018 [7]. The ESRD
prevalence rate has gradually increased among older adults, especially among men 65 years
and older.

CKD is typically silent and extremely variable. Moreover, the development of several
chronic diseases have been associated with CKD progression, making clinical management
particularly challenging. Timely interventions for patients with CKD could improve
the quality of medical care and reduce morbidity, mortality, and healthcare costs [8,9].
Therefore, the development of a reliable model able to predict the risk of CKD progression
even during early stages is necessary. Traditional statistical methods, such as the Cox hazard
model, have been applied to the prediction of renal failure among patients with CKD in
prior studies [10,11]. However, machine learning (ML) is increasingly being adopted to
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assess patients with CKD and consider all possible interactions between various input
data [12–14]. A logistic regression (LR) classifier was able to predict the onset of renal
replacement therapy (RRT) within 12 months with an area under the receiver operating
characteristic curve (AUROC) value of 0.773 [15]. These results provided a screening
approach for predicting the risk of RRT within 12 months. In another study, Subas et al.
explored the abilities of several ML models for CKD diagnosis, including artificial neural
network, support vector machine (SVM), k-nearest neighbor, C4.5 decision tree and random
forest (RF) classifiers [16]. The RF model had the highest accuracy (100%), followed by the
C4.5 decision tree classifier (99%), when applied to a dataset obtained from the University
of California at Irvine ML Repository. Electronic health record (EHR) systems have drawn
extensive and consistent attention and predictive models for clinical disease progression can
be developed using features extracted from the EHR [17,18], allowing for the development
and validation of predictive models that combine available laboratory data with data
obtained from the EHR.

To provide a clinical database for medical assessments and improve healthcare quality,
the pre-ESRD patient care and education program was initiated by the National Health
Insurance (NHI) administration under the Ministry of Health and Welfare in Taiwan.
The program includes CKD patients classified as Stages 3B to 5. In addition, the NHI
reimbursement program has been shown to improve health care quality for patients with
early-stage CKD (Stages 1 to 3A) [19]. The management program is required to follow
specific clinical guidelines for each CKD stage. Patients with early-stage CKD are evaluated
for urine protein to creatinine ratio (UPCR), serum creatinine levels, low-density lipoprotein
cholesterol (LDL-C) levels and glycated hemoglobin (HbA1c) levels. Patients with pre-
ESRD CKD are assessed for hemoglobin, blood urea nitrogen (BUN), serum creatinine
levels, albumin levels, serum calcium levels, serum phosphate levels, fasting glucose levels,
HbA1c levels, LDL-C levels, uric acid levels, sodium levels, potassium levels, triglyceride
levels and UPCR.

In the present study, predictive models for progression from pre-dialysis CKD to
ESRD were established for patients with Stages 2 to 5 CKD using various ML algorithms,
including LR, RF, extreme gradient boosting (XGBoost), SVM and Gaussian naïve Bayes
(GNB). Important classification features were evaluated for their value as high-risk factors
to determine the optimal predictive features for use in each of the five models. Optimal
model development could promote early CKD diagnosis and improve CKD management,
preventing progression to kidney failure. These results could improve access to timely
treatments among patients with CKD.

2. Material and Methods
2.1. Patient Population

In the retrospective cohort study, a total of 858 patients enrolled in the NHI program
and diagnosed with early- (Stages 2 and 3A) or advanced-stage (Stages 3B, 4 and 5) CKD
were treated from November 2006 to December 2019 at a branch of the Taipei Veterans
General Hospital, including 516 with early-stage CKD and 342 with advanced-stage CKD.
Early-stage CKD was defined as Stage 2 if 60 < eGFR < 89.9 mL/min/1.73 m2 and as Stage
3 if 45 < eGFR < 59.9 mL/min/1.73 m2. Advanced-stage CKD was defined as Stage 3B if
30 < eGFR < 44.9 mL/min/1.73 m2, as Stage 4 if 15 < eGFR < 29.9 mL/min/1.73 m2 and as
Stage 5 if eGFR < 14.9 mL/min/1.73 m2. Based on the NHI program requirements, eGFR
was calculated using the simplified Modification of Diet in Renal Disease equation. The
outcome of this study was ESRD, defined as the diagnosis of renal failure, the initiation
of hemodialysis or peritoneal dialysis. None of our study subjects were treated by kidney
transplantation. Transfer to other hospitals, death and loss to follow-up were regarded as
observation endpoints without reaching ESRD. De-identified data associated with patients
diagnosed with Stages 2–5 CKD and enrolled in the two NHI CKD programs were retrieved
from the hospital information database. The study was reviewed and approved by the



Diagnostics 2022, 12, 2454 3 of 13

Institutional Review Board (IRB) of Taipei Veterans General Hospital (No. 2020-01-024BC).
Due to the use of de-identified data, the need for informed consent was waived by the IRB.

2.2. Study Design

In total, 858 patients with CKD were enrolled in this study, comprising 119 patients
with Stage 2, 397 with Stage 3A, 111 with Stage 3B, 143 with Stage 4 and 88 with Stage 5.
The numbers of early-stage CKD patients who progressed to ESRD within 3 and 5 years
were 44 (5 with stage 2 and 39 with stage 3A) and 50 (6 with stage 2 and 44 with stage
3A), respectively. The numbers of advanced CKD patients who progressed to ESRD within
1 and 3 years were 38 (10 with stage 4 and 28 with stage 5) and 59 (2 with stage 3b, 17
with stage 4 and 40 with stage 5), respectively. A flow chart of the patient selection and
categorization processes is shown in Figure 1.
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Figure 1. Flow chart for the selection of study subjects.

The dataset was divided into patients managed with and without ESRD. In addition
to the original dataset, the synthetic minority over-sampling technique (SMOTE) was also
applied. Randomized data subsets were used for cross-validation (K = 5). The LR, RF,
XGBoost, SVM and GNB classifiers were used to determine whether pre-dialysis CKD data
could be used to predict progression to ESRD. The Shapley additive explanations (SHAP)
value was used to select important characteristic factors for predicting CKD progression.
Model retraining was performed using the most important risk factors for CKD progression
to achieve optimal classification outcomes. The progression of CKD to kidney failure
among patients diagnosed with early-stage CKD was followed for up to 5 years and the
models were used to identify risk factors for CKD progression within 3 and 5 years. The
progression of CKD to kidney failure in patients diagnosed with advanced-stage CKD
was followed for up to 3 years and the models were used to identify risk factors for CKD
progression within 1 and 3 years. The flow chart of model training and performance
evaluation is shown in Figure 2.
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2.3. Variables

Each subject’s predictor variables and baseline characteristics were obtained initially
during the first clinic visit. The clinical characteristics of CKD were classified into four
categories. Demographic variables included age, sex, height and weight. Laboratory
data included serum and urine assessments, including eGFR, hemoglobin, hematocrit,
creatinine, BUN, sodium, potassium, calcium, phosphorus and UPCR. Comorbid conditions
included hypertension, diabetes and cardiovascular diseases. Risk-related biophysical and
biochemical data included blood pressure, lipid profile and HbA1c levels. Those variables
missing greater than 30% of values were excluded from the analysis. The missing values
for other variables were replaced with multiple imputation. The study created five datasets
using the multivariate imputation via chained equations module in the R package to
perform the data imputation. All baseline characteristics and laboratory variables were
obtained from the NHI pre-ESRD Patient Care and Education Program and the NHI
Reimbursement Plans that Improve Health Care Quality of Early-Stage CKD Program
implemented by the NHI.

2.4. Statistical Analysis

In this study, baseline demographic and laboratory data from the first clinic visit
at which CKD was diagnosed were used to train the models. Due to differences in the
collection of clinical characteristics, clinical data for Stages 2–3A CKD (early stage) were
processed separately from clinical data for Stages 3B–5 CKD (advanced stage). Clinical
indicators, including age, eGFR, serum creatinine, urine creatinine, LDL-C, HbA1c and
UPCR, were associated with a significant risk of ESRD among patients diagnosed with
Stages 2–5 CKD. In addition to these risk factors, the indicators associated with a significant
risk for ESRD among Stages 3A–5 CKD include uric acid, albumin, fasting plasma glucose
(FPG), triglyceride, cholesterol, hemoglobin, hematocrit, BUN, sodium, potassium, calcium
and phosphorus. The detailed demographic characteristics of the cohort are listed in Table 1.
Five available classification models were developed and the predictive performances of
each model for determining the progression risk of various stages of pre-dialysis CKD were
analyzed. The predictive performances of the five models were evaluated using an AUROC
analysis and the sensitivity, specificity, accuracy, precision, F1 score and negative predictive
value (NPV) were calculated. A cutoff value was identified based on the AUROC analysis
to provide optimal sensitivity and specificity. Important features were selected and applied
to determine the optimal model for predicting ESRD progression in patients with early-
and advanced-stage CKD.
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Table 1. Characteristics of CKD patients according to disease stage.

Cases
(Early-Stage CKD

Patients)
N = 516

Stage 2
N = 119

Stage 3A
N = 397

Cases
(Advanced-Stage

CKD patients)
N = 342

Stage 3B
N = 111

Stage 4
N = 143

Stage 5
N = 88

Age (years) 80.8 ± 11.5 79.8 ± 11.2 81.1 ± 11.5 79.4 ± 0.7 79.2 ± 1.1 80 ± 1.2 78.5 ± 1.4
Sex (%)

Male 359 (70%) 84 (71%) 275 (69%) 227 (66.4%) 73 (65.8%) 103 (72%) 51 (58%)
Female 157 (30%) 35 (29%) 122 (31%) 115 (33.6%) 38 (34.2%) 40 (28%) 37 (42%)

Cardiovascular diseases (%)
None 214 (41%) 58 (49%) 156 (39%) 318 (93%) 102 (91.9%) 132 (92.3%) 84 (95.5%)
Yes 302 (59%) 61 (51%) 241 (61%) 24 (7%) 9 (8.1%) 11 (7.7%) 4 (4.5%)

Diabetes (%)
None 242 (47%) 59 (50%) 183 (46%) 159 (46.5%) 59 (53.2%) 59 (41.3%) 41 (46.6%)
Yes 274 (53%) 60 (50%) 214 (54%) 183 (53.5%) 52 (46.8%) 84 (58.7%) 47 (53.4%)

Hypertension (%)
None 398 (77%) 89 (75%) 309 (78%) 82 (24%) 27 (24.3%) 37 (25.9%) 18 (20.5%)
Yes 118 (23%) 30 (25%) 88 (22%) 260 (76%) 84 (75.7%) 106 (74.1%) 70 (79.5%)

Hemodialysis (%)
None 466 (90%) 113 (95%) 353 (89%) 283 (82.7%) 109 (98.2%) 126 (88.1%) 48 (54.5%)
Yes 50 (10%) 6 (5%) 44 (11%) 59 (17.3%) 2 (1.8%) 17 (11.9%) 40 (45.5%)

BMI (kg/m2) 26.1 ± 12.6 26.9 ± 13.3 25.9 ± 12.3 24.6 ± 0.2 25.2 ± 0.4 24.8 ± 0.3 23.5 ± 0.5
Systolic blood pressure

(mmHg) 133.4 ± 18.2 132.5 ± 18.3 133.6 ± 18.2 139.1 ± 1.2 137.3 ± 0.7 139.8 ± 1.8 140.4 ± 2.3

Diastolic blood pressure
(mmHg) 72.6 ± 10.9 72.3 ± 11.5 72.6 ± 10.7 73.8 ± 0.9 73.6 ± 1.4 74.1 ± 1.2 73.5 ± 1.5

eGFR (mL/min/1.73 m2) 53.3 ± 11 68.4 ± 8.6 48.8 ± 6.9 24.3 ± 0.2 37.1 ± 0.4 23.1 ± 0.4 10.3 ± 0.4
Creatinine (mg/dL) 1.3 ± 0.3 1.0 ± 0.2 1.4 ± 0.3 3.3 ± 0.2 1.8 ± 0.1 2.6 ± 0.1 6.1 ± 0.4

Urine creatinine (mg/dL) 419.1 ± 717.4 309.9 ± 534.7 451.8 ± 760.7 1973.2 ± 168.9 987.2 ± 169.2 2067.7 ± 307.6 3063.4 ± 331.8
LDL-C (mg/dL) 101.8 ± 27.7 100.1 ± 26.5 102.3 ± 28 103.2 ± 1.8 102.6 ± 2.8 105.3 ± 3 100.3 ± 3.9

HbA1c (%) 6.6 ± 1.4 6.4 ± 1.2 6.6 ± 1.5 7.1 ± 0.3 7.03 ± 0.5 6.7 ± 0.1 7.7 ± 0.9
UPCR (mg/g) 5.3 ± 1.3 5.1 ± 1.5 5.4 ± 1.3 6.6 ± 0.1 5.9 ± 0.2 6.6 ± 0.2 7.4 ± 0.2

Uric Acid (mg/dL) 7.3 ± 0.11 6.8 ± 0.17 7.3 ± 0.16 7.8 ± 0.24
Albumin (g/dL) 3.6 ± 0.03 3.8 ± 0.04 3.6 ± 0.04 3.3 ± 0.06

FPG (mg/dL) 118.8 ± 2.5 102.6 ± 2.8 119.1 ± 4.4 116.6 ± 4.3
Triglyceride (mg/dL) 142.8 ± 4.8 149.7 ± 8.6 142.6 ± 0.7.1 134.4 ± 9.7
Cholesterol (mg/dL) 178.6 ± 2.5 177.1 ± 3.6 181.9 ± 3.9 175.3 ± 5,4

Hemoglobin (gm/dL) 11.1 ± 0.1 12.3 ± 0.2 11.2 ± 0.2 9.4 ± 0.2
Hematocrit (%) 33.8 ± 0.3 37.1 ± 0.6 34.1 ± 0.4 29.0 ± 0.5
BUN (mg/dL) 47.0 ± 1.4 29.9 ± 0.8 42.4 ± 1.3 76.1 ± 3.3

Sodium (Na) (mg/dL) 140.2 ± 0.2 140.6 ± 0.3 139.3 ± 0.3 140.1 ± 0.5
Potassium (K) (mg/dL) 4.6 ± 0.1 4.5 ± 0.1 4.7 ± 0.1 4.7 ± 0.1
Calcium (Ca) (mg/dL) 8.9 ± 0.1 9.3 ± 0.3 8.9 ± 0.05 8.5 ± 0.1

Phosphorus (P) (mg/dL) 4.1 ± 0.1 3.7 ± 0.1 4.0 ± 0.1 5.0 ± 0.2

BMI, body mass index; BUN, blood urea nitrogen; CKD, chronic kidney disease; eGFR, estimated glomerular
filtration rate; FPG, fasting plasma glucose; HbA1c, glycated hemoglobin; LDL-C, low-density lipoprotein
cholesterol; UPCR, urine protein and creatinine ratio.

3. Results

The characteristics of patients with early-stage CKD (Stages 2 to 3A) and advanced-
stage CKD (Stages 3B to 5) are shown in Table 1. The majority of patients were approx-
imately 80 years old and most were men. High proportions of patients with CKD had
comorbid diabetes and hypertension, particularly those with advanced-stage CKD. For
example, the proportions of patients with hypertension and Stages 3B, 4 and 5 CKD were
75.7%, 74.1% and 79.5%, respectively. The proportions of patients with Stages 4 and 5 CKD
undergoing ESRD were higher than those with Stages 2 and 3 CKD. Serum creatinine, urine
creatinine, UPCR and HbA1c levels increased from Stages 2 to 5, whereas eGFR levels
decreased as CKD progressed from early stages to advanced stages.

The predictive performances of the tested five models were evaluated using the
AUROC analysis and other discrimination indicators. Significant performance differences
were identified between the five models. The performances of each model to predict
the progression of early- and advanced-stage CKD to ESRD are shown in Tables 2 and 3,
respectively. For early-stage CKD, the AUROC value for the RF classifier using SMOTE was
0.97 for predicting progression to ESRD within 3 years. Both RF and XGBoost classifiers with
SMOTE resulted in AUROC values of 0.98 when predicting progression to ESRD within
5 years. For advanced-stage CKD, both RF and XGBoost classifiers with SMOTE resulted
in AUROC values of 0.99 for the prediction of progression to ESRD within 1 year. The
AUROC value of the RF classifier with SMOTE was 0.97 for the prediction of progression
to ESRD within 3 years. The accuracy, specificity and sensitivity of the RF classifier were
all greater than 90%. The AUROC plots of the RF classifier with SMOTE for predicting
the progression of both early- and advanced-stage CKD are shown in Figure 3. The best
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performances among all five models were obtained using the RF classifier, which is suitable
for predicting the progression of CKD to ESRD at all CKD stages.

Table 2. The performances of predictive models for the progression of early-stage CKD to ESRD.

Algorithm Year Dataset Sensitivity Specificity Accuracy Precision F1-Score NPV AUROC

LR

3
Original 0.92 0.72 0.74 0.23 0.37 0.99 0.83

SMOTE 0.79 0.87 0.83 0.85 0.82 0.80 0.90

5
Original 0.73 0.78 0.77 0.26 0.39 0.96 0.79

SMOTE 0.76 0.89 0.83 0.88 0.82 0.79 0.90

RF

3
Original 0.92 0.33 0.90 0.99 0.95 0.61 0.73

SMOTE 0.90 0.94 0.91 0.94 0.91 0.88 0.97

5
Original 0.96 0.30 0.81 0.81 0.88 0.73 0.79

SMOTE 0.93 0.92 0.93 0.92 0.93 0.94 0.98

XGBoost

3
Original 0.95 0.21 0.79 0.81 0.87 0.54 0.65

SMOTE 0.90 0.92 0.86 0.85 0.88 0.92 0.96

5
Original 0.96 0.29 0.80 0.81 0.88 0.73 0.72

SMOTE 0.91 0.91 0.91 0.91 0.91 0.91 0.98

SVM

3
Original 1.00 0.00 0.92 1.00 0.96 0.00 0.50

SMOTE 0.85 0.85 0.85 0.85 0.85 0.85 0.92

5
Original 0.90 0.00 0.90 1.00 0.95 0.00 0.50

SMOTE 0.90 0.90 0.90 0.90 0.90 0.91 0.93

GNB

3
Original 0.95 0.43 0.63 0.61 0.75 0.85 0.80

SMOTE 0.70 0.88 0.75 0.92 0.79 0.59 0.84

5
Original 0.94 0.39 0.88 0.92 0.93 0.47 0.75

SMOTE 0.76 0.79 0.78 0.80 0.78 0.74 0.84

AUROC, area under the receiver operating characteristic curve; CKD, chronic kidney disease; ESRD, end-stage
renal disease; GNB, Gaussian naïve Bayes; LR, linear regression; NPV, negative predictive value; RF, random
forest; SVM, support vector machine; SMOTE, synthetic minority over-sampling technique; XGBoost, extreme
gradient boosting.

To assess the contributions of various features to the prediction of ESRD progression,
the SHAP value method was applied. For the progression of early-stage CKD to ESRD
within 3 and 5 years, 13 features were analyzed by SHAP, as shown in Figure 4a,b. The
results showed that urine creatinine and eGFR levels are the most influential features. A
lower urine creatinine level is associated with a lower risk of progression to ESRD, whereas
a lower eGFR level is associated with a higher risk of progression to ESRD. In addition, for
the progression of advanced-stage CKD to ESRD within 1 and 3 years, 24 features were
analyzed by SHAP, as shown in Figure 4c,d. The results indicated that serum creatinine
level was the most important predictive feature in advanced-stage CKD. A lower serum
creatinine level is associated with a lower risk of progression to ESRD. The second-most
important features are hematocrit and urine creatinine, which have predictive value for
progression within 1 and 3 years, respectively. A negative correlation between progression
and hematocrit level was observed for progression within 1 year. Features associated with
the progression of advanced-stage CKD to ESRD within 1 year showed more pronounced
positive and negative associations with the risk of progression than the features associated
with progression in 3 or 5 years for either advanced- or early-stage CKD.
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Table 3. The performances of predictive models for the progression of advanced-stage CKD to ESRD.

Algorithm Year Dataset Sensitivity Specificity Accuracy Precision F1-Score NPV AUROC

LR
1

Original 0.90 0.69 0.72 0.26 0.41 0.98 0.84

SMOTE 0.98 0.81 0.90 0.84 0.90 0.97 0.92

3
Original 0.89 0.74 0.77 0.42 0.58 0.97 0.85

SMOTE 0.88 0.72 0.80 0.76 0.82 0.86 0.85

RF
1

Original 0.99 0.42 0.85 0.85 0.91 0.91 0.92

SMOTE 0.96 0.91 0.93 0.90 0.93 0.97 0.99

3
Original 0.98 0.41 0.76 0.72 0.83 0.94 0.87

SMOTE 0.90 0.93 0.91 0.93 0.91 0.89 0.97

XGBoost
1

Original 0.99 0.37 0.82 0.81 0.89 0.91 0.92

SMOTE 0.96 0.94 0.95 0.93 0.94 0.96 0.99

3
Original 0.94 0.41 0.77 0.76 0.84 0.78 0.82

SMOTE 0.92 0.87 0.89 0.86 0.89 0.93 0.95

SVM
1

Original 0.94 0.38 0.85 0.89 0.92 0.55 0.63

SMOTE 0.88 0.94 0.91 0.95 0.91 0.89 0.94

3
Original 0.94 0.52 0.83 0.86 0.90 0.72 0.79

SMOTE 0.96 0.84 0.89 0.81 0.88 0.96 0.92

GNB
1

Original 1.00 0.29 0.73 0.70 0.83 1.00 0.85

SMOTE 0.92 0.86 0.88 0.85 0.88 0.92 0.92

3
Original 0.97 0.41 0.75 0.73 0.83 0.89 0.85

SMOTE 0.85 0.74 0.78 0.68 0.76 0.88 0.83

AUROC, area under the receiver operating characteristic curve; CKD, chronic kidney disease; ESRD, end-stage
renal disease; GNB, Gaussian naïve Bayes; LR, linear regression; NPV, negative predictive value; RF, random
forest; SVM, support vector machine; SMOTE, synthetic minority over-sampling technique; XGBoost, extreme
gradient boosting.
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Figure 3. Plots showing the area under the receiver operating characteristic curve (AUROC) for the
ability of the random forest (RF) classifier trained using synthetic minority over-sampling technique
(SMOTE) to predict the progression of early-stage chronic kidney disease (CKD) to end-stage renal
disease (ESRD) within (a) 3 and (b) 5 years. Plots showing the AUROC for the ability of the RF
classifier trained using to predict the progression of advanced-stage CKD to ESRD within (c) 1 and
(d) 3 years.
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Figure 4. Positive and negative impacts of 13 features on the prediction of progression from early-
stage chronic kidney disease (CKD) to end-stage renal disease (ESRD) within (a) 3 and (b) 5 years.
Positive and negative impacts of 24 features on the prediction of progression from advanced-stage
CKD to ESRD within (c) 1 and (d) 3 years. Features are ranked in descending according to Shapley
additive explanations (SHAP values), where the top feature represents the most informative feature.
Each dot in the plot represents the value for an individual patient. The color represents the scale of
the feature’s value, ranging from high (red) to low (blue), for the observation.

According to the SHAP analysis, the top six features were used to retrain the model for
predicting the progression of early-stage CKD within 5 years, as shown in Figure 5a,b. In
addition, the top 10 features were used to retrain the model for predicting the progression
of advanced-stage CKD within 1 year, as shown in Figure 5c,d. The AUROC values for the
RF classifier with SMOTE were 0.96 for early-stage CKD and 0.97 for advanced-stage CKD.
These results indicated that the RF classifier was the best model for predicting the risk of
progression among patients with CKD, especially for predicting progression within 1 year
in patients with advanced-stage CKD.
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Figure 5. Plots showing the under the receiver operatic characteristic curve (AUROC) of five models,
including six features from (a) original and (b) synthetic minority over-sampling technique (SMOTE)
data for predicting end-stage renal disease progression within 5 years in patients with early-stage
chronic kidney disease. Plots showing the AUROC of five models, including 10 features from
(c) original and (d) SMOTE data for predicting end-stage renal disease progression within 1 year
in patients with advanced-stage chronic kidney disease. GNB, Gaussian naïve Bayes; LR, linear
regression; RF, random forest; SVM, support vector machine; XGBoost, extreme gradient boosting.

4. Discussion

In the present study, we evaluated several models for the ability to predict the pro-
gression of Stages 2–5 pre-dialysis CKD to ESRD. Based on our results, the SMOTE method
can significantly improve the abilities of five models to predict CKD progression. The RF
classifier showed the highest AUROC of 0.99 for predicting progression from advanced-
stage CKD to ESRD within 1 year while achieving a sensitivity of 0.96, a specificity of 0.91,
an accuracy of 0.93 and a precision of 0.90, as shown. Similarly, the XGBoost classifier
showed an AUROC of 0.99, a sensitivity of 0.96, a specificity of 0.94, an accuracy of 0.95 and
a precision of 0.93 for predicting the progression of advanced-stage CKD to ESRD within
1 year. Compared with the other classifiers, both the RF and XGBoost classifiers are more
suitable for the early prediction of progression in patients with advanced-stage CKD.

In patients with early-stage CKD, the performance of the RF classifier was better
than the performance of the XGBoost classifier, including better sensitivity, specificity,
accuracy, precision and F1 scores. The AUROC values for the RF classifiers were 0.97 and
0.98 for predicting progression to ESRD within 3 and 5 years, respectively. Therefore, the
RF classifier demonstrated the best performance for predicting progression in patients
with both early- and advanced-stage pre-dialysis CKD. In a different study, Ravindra
et al. reported an accuracy of 0.94 achieved by an SVM neural network for distinguishing



Diagnostics 2022, 12, 2454 10 of 13

between CKD and non-CKD [20]. In addition to classifier selection, feature selection is
important for the performance of ML algorithms. Dulhare and Ayesha [21] indicated
that the selection of suitable features or predictors is crucial for training ML classifiers.
Their results showed that the GNB classifier had optimal performance when operated by a
one-rule attribute selector.

In our study, we ranked the features associated with early- and advanced-stage CKD
according to the SHAP value. The primary impact of urine creatinine can be observed
for both early- and advanced-stage CKD. The results indicated that low urine creatinine
levels are associated with a low risk of progression to ESRD, whereas eGFR and systolic
blood pressure are risk factors for progression that can be observed during early-stage
CKD. These results demonstrated that a low eGFR level is associated with a high risk
of ESRD. High systolic blood pressure is an important risk factor that can be identified
in early-stage CKD. Seyedzadeh et al. reported that ESRD was concurrent with several
clinical symptoms, among which hypertension (52.3%) was the most commonly identified
symptom in 128 patients [22]. In our study, a high prevalence of hypertension (79.5%) was
observed among Stage 5 CKD patients. However, a negative association was identified
between systolic blood pressure and ESRD in advanced-stage CKD based on the SHAP
value. A high impact of serum creatinine was also identified for advanced-stage CKD.
Therefore, in addition to serum creatinine, urine creatinine, eGFR and blood pressure
are all highly associated with ESRD and each factor has different impacts at different
CKD stages. Urine creatinine appears as a parameter of special relevance to predict the
evolution of kidney damage. Nonetheless, it should be considered that the parameter
may be altered due to urine dilution in different time of sample collection. Our study
suggests that multiple parameters are needed simultaneously while using the prediction
model. The calculation of eGFR has been offered as a practical and easy approach for
converting serum creatinine values, as reviewed by Mula-Abed [23]. Further study of
the relationship between eGFR and creatine will improve the qualitative estimation of
the interaction between eGFR and creatinine and their impacts on ESRD in CKD patients.
Additionally, our results showed that high serum phosphate is a common complication
in patients with ESRD. Seyedzadeh et al. reported a large impact for serum phosphate in
approximately 50% of patients with ESRD, associated with renal osteodystrophy [22]. Our
study found increased serum phosphate levels in patients with Stages 3B to 5 CKD, which
is consistent with the previous study.

Anemia or low serum albumin are also common complications of CKD. Our findings
indicated that low hematocrit and albumin levels are associated with an increased risk
of ESRD among patients with advanced-stage CKD. Anemia is strongly associated with
poor kidney function in CKD patients [24]. A previous study reported prevalence rates of
anemia among patients with CKD of 42%, 33%, 48%, 71% and 82% for Stages 1, 2, 3, 4 and
5, respectively, in Saudi Arabia [25]. Decreased serum albumin levels were also associated
with a decline in eGFR and may be related to proteinuria or underlying inflammation [26].
The criteria for hyperuricemia include an increased uric acid level, which was also observed
to increase from Stages 3B to 5 in the current study. These results implied that high uric
acid levels in patients with advanced-stage CKD might be associated with impending renal
failure. Past work indicated a ‘J-shaped’ association between uric acid levels and mortality
in hemodialysis patients [27]. Thus, maintaining uric acid levels in patients with advanced-
stage CKD within normal levels should be a clinical goal and uric acid levels should be
monitored. Oda and Kawai reported that LDL-C levels were significantly higher in Stages
2 and 3 CKD than in Stage 1 CKD in a study including 3897 patients [28]. In our study,
the LDL-C levels in patients with Stages 3B and 4 CKD were higher than those in patients
with early-stage CKD, which is consistent with the findings of the previous study and
provides additional information for more advanced CKD stages. Due to collinearity and
the reduced impacts of hypertension and diabetes in our models, these two comorbidities
were excluded from our models. HbA1c levels are a well-known indicator of diabetes
control and showed a positive impact on the progression of advanced-stage CKD. Based on



Diagnostics 2022, 12, 2454 11 of 13

our results, the impacts of risk factors differ across different stages of CKD. Thus, specific
management strategies are necessary for different stages, making the early diagnosis of
CKD particularly important.

To assess the optimal predictive model for the progression of pre-dialysis CKD to
ESRD, the top six features (eGFR, blood pressure, UPCR, serum creatinine, urine creatinine
and LDL-C) identified for early-stage CKD and the top 10 features (serum creatinine, uric
acid, urine creatinine, calcium, LDL-C, hemoglobin, HbA1c, cholesterol, phosphorus and
triglyceride) identified for advanced-stage CKD were used to retrain all five models. The
RF classifier demonstrated the optimal risk prediction performance for the progression
of pre-dialysis CKD to ESRD. The AUROC values for the RF classifier with SMOTE were
0.96 for the progression of early-stage CKD within 5 years and 0.97 for the progression
of advanced-stage CKD within 1 year. A slight difference (0.98 to 0.96) was observed
for the RF classifier when using only six features compared with using all features for
the prediction of early-stage CKD progression. Similarly, the AUROC of the RF classifier
using only the top 10 features showed a slight decline (0.99 to 0.97) compared with the RF
classifier using all features when predicting advanced-stage CKD progression. The results
indicated that the RF classifier could be used with specific features to predict ESRD risk
in patients with pre-dialysis CKD. This approach can help clinicians understand the risk
factors associated with ESRD and the progression of patients with CKD at different stages.

An effective predictive model can help medical teams quickly and easily identify
the key factors contributing to the deterioration of renal function, track the rate of renal
function decline and modify the care goals on a rolling basis. In addition, predicting the
time of progressing to ESRD can early remind care providers, patients and relatives with
facing to the dangers and complications of ESRD. Certain strategies, such as stricter diet
control, treatment of electrolyte imbalances and acidemia, improvement of anemia and
uremia, or early decision on dialysis mode can be intervened in time to reduce the impact
on the body and on life.

Our approach provides a reference to clinical strategy. Nonetheless, there are several
limitations to this study. First, this cohort consisted of a relatively small sample, so the
model performance may have been affected by the training data. Second, the laboratory
data was limited by geography and subject demographics, limiting the generalizability of
these findings to the wider population. Third, the individual laboratory records may have
changed over time. Because our models were based on baseline data, our study cannot
present the trajectory of disease progression. A longitudinal model is likely to better reflect
associations between risk factors and disease progression and should be evaluated in future
studies

5. Conclusions

The present study demonstrated a reliable ML method for predicting the risk of
progression to eventual ESRD among patients with Stages 2–5 CKD. The RF classifier
with SMOTE showed the best performance for the early diagnosis of CKD prognosis. In
addition, the high performance of ML classifiers was achieved when limiting the analysis
to predominant features. This approach reveals that the RF classifier is suitable for risk
assessments among patients with pre-dialysis CKD and the results could be potentially
advantageous for patient screening initiatives.
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