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Abstract

The cost of drug development continues to rise and may be prohibitive in cases of unmet clinical need, particularly for rare
diseases. Artificial intelligence-based methods are promising in their potential to discover new treatment options. The task of drug
repurposing hypothesis generation is well-posed as a link prediction problem in a knowledge graph (KG) of interacting of drugs,
proteins, genes and disease phenotypes. KGs derived from biomedical literature are semantically rich and up-to-date representations
of scientific knowledge. Inference methods on scientific KGs can be confounded by unspecified contexts and contradictions. Extracting
context enables incorporation of relevant pharmacokinetic and pharmacodynamic detail, such as tissue specificity of interactions.
Contradictions in biomedical KGs may arise when contexts are omitted or due to contradicting research claims. In this review, we
describe challenges to creating literature-scale representations of pharmacological knowledge and survey current approaches toward
incorporating context and resolving contradictions.
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Introduction
In 2016, it was estimated that developing new pharma-
ceuticals was an investment of approximately two billion
dollars and 10 years from bench to bedside [1]. Small
molecule design is slowing down due to increased the
Food and Drug Administration regulations, unexpected
toxicity in clinical trials and long cycle times [2, 3]. A
recent estimate is that 48% drugs fail in Phase II trials
due to poor efficacy [4]. With the traditional pipeline
slowing down, pharmaceutical development to address
unmet clinical need will benefit from screening drug
candidates at larger scale and with higher likelihood to
pass Phase II trials.

In the past couple of decades, many new data
modalities have emerged across the biomedical domain.
Genomic screens and genome-wide association studies
(GWAS) have given rise to nuanced understand of
disease etiology, especially for complex, highly prevalent
diseases. CRISPR screens have also added to our under-
standing of disease mechanism by enabling specific
perturbation of genetic function [5]. The NIH LINCS
Consortium has generated data sets measuring gene-
expression signature modulation in response to drugs
and drug-like perturbagens [6]. In the clinic, the rise of

electronic medical records has enabled new analyses of
patient response to drug treatment at hospital scales.
At home, wearables and other modalities are also new
avenues to monitor patients’ biometrics, which may be
used to improve personalized patient care.

Artificial intelligence holds great promise for driv-
ing innovation for drug development in such a data-
and compute-rich ecosystem. Deep learning methods
can take advantage of large, high-dimensional, hetero-
geneous data sets and have recently led to state-of-the-
art performance in several fields including computer
vision, speech recognition and natural language process-
ing (NLP). In pharmacology, deep neural networks have
been successfully applied in several contexts including
crowd-sourced challenges for predicting the activity of
small molecule compounds [7] and drug toxicity [8].
These methods can generalize well and are amenable to
tasks that can be formulated as machine learning prob-
lems with sufficient training data, which has led many
pharmaceutical companies to adopt these technologies.

One important area of research to address unmet clin-
ical need in a time of slowing drug development is drug
repurposing. The idea underlying repurposing is to find
new therapeutic opportunities for existing drugs, which
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would circumvent expensive drug development ab initio
while already demonstrating safety in a clinical setting
[9]. Drug repurposing takes advantage of the fact that
drugs have many targets [10, 11] and that many diseases
share common etiology or clinical presentation, whereby
a drug may target a common mechanism between differ-
ent diseases [12, 13]. In the case of rare diseases, wherein
the low prevalence of the disease or condition makes cost
of drug development prohibitive, drug repurposing may
be one of the few clinical options.

Many methods have been considered for computa-
tionally predicting drug repurposing opportunities. Pre-
viously, methods have used similarity of small molecules
to drugs with known indications or ligand docking-based
similarity to generate predictions [14, 15]. However, these
methods are limited in that they do not consider the
modules of interacting genes that contribute to complex
disease phenotypes [16]. Systems biology approaches to
drug discovery and repurposing are thus critical by con-
sidering the network of interacting genes and proteins as
the drug ‘target’ rather than favoring the ‘one drug–one
target’ paradigm [17].

Biomedical knowledge relevant for up-to-date drug
repurposing is rapidly proliferating. Annually, nearly
one million new citations are indexed in MEDLINE [18].
Knowledge bases such as DrugBank [19], PharmGKB [20]
and OMIM [21] are maintained to represent the most per-
tinent information from a cross-section of literature at a
given time. However, these gold standard databases are
manually curated, and full manual curation, particularly
for extracting new types of information from literature,
is becoming infeasible.

There exists an opportunity to use NLP to extract
biomedical knowledge from scientific literature directly.
Automated methods are increasingly being used to
increase curator efficiency and to directly retrieve
important information [22]. One area of NLP relevant
to network medicine approaches to drug repurposing is
relation extraction—the automated mining of relation-
ships between pairs of entities such as genes, proteins,
drugs and diseases. Advancements in dependency
parsing [23], distant supervision and foundational mod-
els [24], coupled with community-driven open shared
tasks [25] have led to improved accuracy of relation
extraction models. These methods have been applied at
the scale of PubMed to generate global cross-sections of
interactions between pharmacological entities directly
from literature [26, 27]. Such global representations of
knowledge are amenable to network inference methods
to computationally predict repurposing hypotheses [28].

While developing systems for extracting and learning
from the massive volume of scientific knowledge for drug
repurposing is an exciting prospect, in this review, we will
present key challenges with which these systems must
reconcile to reach their full potential. These difficulties
result from the observation that, when overly simplified,
much of the knowledge extracted from literature appears
to be contradictory. Many instances of apparent contra-
dictions may be adjudicated by additional contextual

information, such as cell-type specificity in which inter-
actions are present. Other difficulties emerge from the
uncertainty and constantly evolving nature of science,
whereby many statements are in fact contradictory
when revisited in future studies using new experimental
modalities, for instance. This review describes existing
work in defining and reconciling (or not) issues of quality
control from the fine granularity of individual relation-
ships to large, aggregate knowledge representations. By
addressing these challenges, we present a path whereby
knowledge inference systems may realize their potential
in accelerating biomedical innovation in silico (Figure 1).

Background: promise and perils for
literature-derived knowledge
representations
By connecting the dots across biomedical literature, we
can automatically infer latent knowledge based on facts
that are already known. This idea, known as literature-
based discovery (LBD), was proposed by Don Swanson
in 1986 [28]. He studied how scientists could connect
two disparate-seeming areas of research by looking for
intermediate links connecting the two. In the context
of drug repurposing, the two areas of being connected
are the drug proposed for repurposing and the disease
being treated. Examples of intermediate links implicating
a repurposing opportunity include a biological pathway
common to drug targets and disease etiology, drug side
effects relevant for the target disease or chemical simi-
larity to another drug indicated for the disease.

Multiple approaches have been implemented to for-
malize the notion of LBD [29]. In its original concep-
tion, Swanson described the ‘ABC model’ for connecting
a source research area, A, to a target area, C, via an
intermediate area, B, that has overlap with both A and
C. In closed LBD, A and C are specified and the task
is to explain what connection, B, might relate the con-
cepts. In open LBD, only A is specified and the task is to
find a related area C mediated through another concept
B. Proposals for finding these connections have found
related articles by term co-occurrence or citations, thus
connecting concepts at the paper level. Later, distribu-
tional methods have been applied for finding related con-
cepts. In this framework, numerical representations of
concepts are learned based on distributional semantics.
These methods may reveal interrelationships between
concepts in a data-driven manner based on how seman-
tics are learned in scientific discourse.

Finally, network-based approaches have been applied
wherein representations of current knowledge are explic-
itly represented as a network of connected information.
These methods represent a cross-section of knowledge
aggregated across literature and benefit from being
interpretable representations of interacting entities
that are able to encode semantic relationships. These
networks are well-suited for applications in systems
medicine like drug repurposing and have potential for
elucidating mechanisms of action.
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Figure 1. A LBD pipeline for drug repurposing with knowledge inference. Challenges present in scientific text, knowledge extraction and knowledge
representation include: NLP quality, incorporation of key contextual information and representation and adjudication of contradictory information.

The most commonly used network model for knowl-
edge is the knowledge graph (KG). KGs are flexible
frameworks for storing information about relationships
between entities. A KG is a network consisting of a
set of entities, E and relations, R. Each KG instance, K
consists of triples (h, r, t) ∈ K whereby h, t ∈ E and r ∈ R.
Triples in KGs represent collections of relationships,
such as (The Mall of America, is_located_in, Minnesota),
which may be compiled from structured databases or
extracted from text using NLP methods. These graphs
are well-suited for representing unstructured data
or data that would otherwise be cumbersome in a
relational database, and graph databases have enabled
quick querying and storage for massive KGs. For drug
repurposing, KGs can describe interactions between
drugs, genes, protein, pathways, diseases, anatomy and
other biological entities. Systemic phenomena such
as feedback loops or conditional relationships can be
modeled over these semantics-rich networks.

KGs have been constructed from literature using rule-
based, machine learning and distributional semantics-
based methods. SemRep [30] is a rule-based system
underlying the SemMedDB KG [27]. GNBR [26] is a KG
of interacting drugs, proteins, genes and diseases that
was constructed using an unsupervised approach [31]
clustering together sentences with common dependency
parse structures to extract more nuanced semantics.
Constructed KGs can be combined with embeddings
derived from language models to improve the inferred
dependencies between related concepts and is at the
current frontier of research [32].

The ability to extract, represent and manage large
databases of knowledge and apply inference methods to
derive new insights has been a boon to the field of knowl-
edge engineering [33]. A class of methods known as KG
embedding methods leverages learned, numerical repre-
sentations of entities and relations in a KG to infer new
links that may be implicated in the graph. These infer-
ence methods have been applied to applications across
domains including KG completion, question answering
and logical prediction generation [34, 35]. These methods

can be readily applied to drug repurposing by framing the
task as link prediction between drugs and diseases.

Since its inception, LBD has been applied to drug repur-
posing in several contexts. In recent applications it has
been applied to identify general [36] or cancer-specific
[37] therapeutics for repurposing based on common or
proximal gene/protein targets under the ABC framework.
Using a KG completion framework, LBD has been applied
to NLP-extracted KGs to identify repurposing opportuni-
ties for prostate cancer drugs based on gene-mediated
motifs in the network [38]. For rare diseases [39] and
COVID-19 treatments [40], knowledge embedding meth-
ods have been applied to generate hypotheses agnostic of
proposed mechanism schemas.

Evaluating knowledge inference methods is challeng-
ing for hypothesis generation tasks, and many inference
methods are developed in with controlled settings in
mind. Commonly employed KGs for benchmarking
knowledge inference methods can be described as
generic or domain-independent KGs. Here, the KG
represents a collection of linked data about entities,
for example a representation of a set of facts, that may
span across domains or constitute ‘general knowledge’.
YAGO [41], Wikidata [42] and Cyc [43] are examples of
such KGs useful for benchmarking and common-sense
reasoning. For knowledge engineering methodologies
to be clinically useful—as in the case of translating
a drug repurposing hypothesis—they must be able to
reason with the complexities associated with a concrete
domain-like systems pharmacology knowledge from
biomedical literature [44, 45].

One often-overlooked facet of domain-specific KG
inference applications is the data over which the method
is applied. In these settings, questions of KG quality,
utility and credibility must be carefully considered
for having translational impact [46]. When evaluating
usefulness, the level of granularity of information
must be considered, and simple, featureless, qualitative
relationships between entities may be insufficient for
many biological tasks. In this domain, there is clear utility
to integrating diverse data sources, modeling uncertainty,
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Figure 2. An example of two extracted sentence-level predications suggesting contradictory information about a PPI.

remediating contradictory-seeming facts and explicitly
encoding entity- and predicate-level features such as
tissue specificity or temporal information [47]. Previous
work in knowledge inference has demonstrated that
careful attention must be paid to the combination of
the embedding model employed, the training approach
and the loss function [48]. In the case of scientific
KGs, adding explicit representations of uncertainty
or feature information such as context qualifiers on
interactions may be pertinent yet is a largely open area of
research.

The presence of contradictory information poses a
particularly large challenge for scientific KGs. The phe-
nomenon that two predications—binary relationships of
the form (entity X, relation r, entity Y)—will make incom-
patible propositions is common when combining mul-
tiple sources of knowledge. These contradictions have
been shown to be highly prevalent in mechanistic genetic
and protein–protein interaction (PPI) networks whereby
two entities may be joined by both ‘upregulates’ and
‘downregulates’ events simultaneously, which seem to
be semantically but not necessarily biologically inconsis-
tent [49] (Figure 2).

Contradictions apparent in literature-derived KGs may
stem from several causes. Rosemblat et al. [50] estimated
the rate of apparent contradictions after filtering can-
didate pairs from SemMedDB [27], a PubMed-scale KG,
at 2.6%. This study demonstrates that in most cases,
statements that appear contradictory need to be quali-
fied by information such as population group being stud-
ied, species or dosage group. In some cases, the results
indicate true scientific contradictions, where the authors
are intentionally presenting a finding contradictory with
existing knowledge. This work underscores the preva-
lence and variability of contradictions in KGs.

The prevailing Open World Assumption for biologi-
cal knowledge bases—that these KGs are incomplete
and non-observed facts are not necessarily false—
complicates the traditional KG inference framework
applied to benchmark data sets [51]. Accumulation
of biological knowledge is an ongoing enterprise, and
scientific knowledge bases are imperfect and incom-
plete. The academic publishing ecosystem presents an
additional challenge due to positive outcome bias in
scientific literature, whereby fewer negative results are
reported over time due to the difficulty of publishing
negative results in high-impact journals [52]. Currently,
the degree to which the sparsity and quality of KGs
affects the performance of modern machine learning on
downstream biomedical tasks is not well characterized.

While developing knowledge inference methods for
LBD is a promising area of research, reasoning over com-
plex systems such as literature-derived KGs requires a
more fine-grained approach for representing knowledge.
Existing paradigms commonly operate on graphs rep-
resenting simple entities and relations at a high level
of abstraction, failing to reconcile contradictions rep-
resented via negation events or incorporate nuanced
features of biological entities important for applications
[35]. In this review, we describe challenges to literature-
derived knowledge representations and present ongoing
work pertaining to extracting contradictory predications,
modeling important contextual information and resolv-
ing inconsistencies.

Contradictions arising at the textual level
Fundamentally, contradictions are a linguistic phe-
nomenon. In the strictest logical definition, two sen-
tences are contradictory if it is impossible for them
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to both be true simultaneously. For many linguistic
applications, a looser definition is used, which states that
two sentences are contradictory if they are extremely
unlikely to be true simultaneously [53].

The semantics underlying why two statements are
contradictory can be subtle and highly variable. De Marn-
effe et al. [53] define a typology enumerating common
types of contradictions, which they divide into two cate-
gories based on the difficulty by which the contradiction
might be detected by automated methods. In the simpler
category are antonymy, negation and numeric inconsis-
tencies such as date or quantity mismatch. By using lex-
icons of antonyms and negation triggers and text mining
quantitative textual data, these types of contradictions
can be detected in a straightforward manner [54, 55].

De Marneffe et al. go on to describe four types of
challenging contradictions: factive and modal, struc-
tural, lexical and world knowledge-based. Factive and
modal contradictions include those in which the author
is expressing emotion or doubt with regards to the
central clause that appears to contradict the central
clause of another sentence being compared. Structural
contradictions are those that contradict by how the verbs
are being used structurally in the sentence. For example,
if sentences A and B are equivalent except for swapping
the two subjects of a binary non-commutative verb such
as upregulates, a contradiction may emerge. Lexical
contradictions may arise from idiomatic uses of words
or changes in semantics that result in the context of
phrases, which may be difficult for automated methods
to capture. Finally, contradictions may arise based on
contextual assumptions or world knowledge that is
known to be true but may not be detectable based on
syntactic and structural evidence alone.

This typology is indicative of the challenge of detect-
ing contradictions in text. Even in the ‘simple’ case of
detecting negation events and antonymy, NLP systems
are error prone. For instance, Wu et al. [56] describe
challenges for negation detection, which many consider
to be a solved problem. They note that negation detection
methods are developed with specific domains in mind,
which are used to train algorithms. The authors demon-
strate the challenge these methods have with generaliz-
ing to domains with different syntactic or semantic con-
ventions. When proceeding with contradiction detection
applications that rely on the results of NLP methods such
as negation detection, it is important to keep in mind that
errors in text mining might affect the ability to detect
true contradictions downstream.

In biomedical text mining, seemingly contradictory
statements may take any of the forms previously
described. One chief application of literature-based
text mining is deriving relations between pairs of
biological entities from scientific literature. Relevant
to pharmacological settings are relationships between
combinations of genes, proteins, disease, drugs and
tissues. Collections of relationships may be contradictory
because different authors came to different conclusions

about the relationship’s veracity. Depending on the
author’s stance regarding the extracted relationship and
contextual information about, for example, experimental
protocols, any of the previously mentioned types of
contradictions may arise. Further, inconclusive clinical
evidence about the efficacy of a drug for a treatment
based on a collection of clinical trials or case reports, for
instance, may lead to authors contradicting one another
in a factive or modal sense. Some language might even
necessitate an understanding of the standards of drug
regulation to infer the author’s stance on a treatment’s
efficacy-world knowledge that is not immediately
accessible via text alone.

Biological text, particularly concerning molecular biol-
ogy, presents additional challenges to the contradiction
detection task. Text mining systems for entity normal-
ization may simplify biological entities in a way that may
make claims about fundamentally different biological
entities seem comparable. Accurate biological represen-
tations must take into consideration if the gene or a gene
product (RNA or protein) are being described in text, or
what sort of state the protein is in, for instance if it is in a
modified state or bound to a ligand. Poor normalization
may result in many false positive contradiction pairs.

A second challenge is co-reference resolution, the
problem of whether two spans of text are referring to
the same entity especially across sentences. When a
complex pathway is described in text, such co-references
must be resolved several times over potentially multiple
sections. Failure to resolve co-references within or across
sections of text may lead to missed opportunities to
detect contradictory events. The degree to which the
molecular biology domain presents additional challenges
for contradiction detection is a largely unexplored area
of research.

Despite its challenges, automatically detecting
sentence-level entailments and contradictions is essen-
tial to understanding natural language and has become
a well-established task in natural language inference.
In these contexts, contradictions are evaluated based on
local inference and due to linguistic variation rather than
relying on outside knowledge to infer if two statements
are contradictory or entailing [57]. Large improvements
in this space have been made thanks to the recent
availability of large corpora for this task [58, 59]. Such
corpora have spanned a variety of domains and are thus
well suited for domain-specific detection of entailments
and contradictions [60]. Concurrently, advances in
machine learning including attention-based LSTMs [61]
and Transformer [62] models have enabled state-of-the-
art performance on these tasks. Taken together, our
ability to automatically detect contradictory events at
the scale of all scientific literature is a fruitful area of
research.

We have described how unpacking the nature of
linguistic contradictions reveals a complex landscape.
Quality concerns for contradiction detection may
result from errors in NLP pipelines or issues from
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overgeneralizing across domains. These nuances are
present in biomedical text in conjunction with additional
challenges such as difficulty in normalizing biological
entities and co-reference resolution across long spans of
molecular biology text. Despite these challenges, much
progress has been made in the field of natural language
inference due to the creation of large, standardized data
sets for training and evaluation. Deep learning methods
also present great promise for learning to recognize
subtle linguistic patterns with large amounts of training
data and have already been applied successfully on
these large benchmark corpora. Progress on automated
contradiction detection will be made by developing more
domain-specific corpora, training models for classifying
different types of contradictions, continuing to improve
performance on subtasks including negation detection
and co-reference resolution.

True contradictions are highly prevalent
in science
As a natural consequence of the progression of science,
research on drug targets, disease etiology, or pharmaco-
dynamic or pharmacokinetic mechanism may be con-
tradictory. Scientific publications can be distilled into a
claim pertaining to a research question that is supported
or refuted by empirical study [63]. Subsequent studies
may follow-up by refuting claims with their own studies
or reach different conclusions pertaining to the same
research question, and these disagreements are common
in clinical literature. In one study, researchers observed
that of 49 highly cited clinical studies, seven were later
contradicted and another seven were followed by studies
that reported weaker effects than the initial study [64].
The connection of vitamin E and coronary disease is one
famous example of contradictory clinical evidence [65,
66]. These studies have important, persistent effects on
our perception of current knowledge, and contradictory
or refuted results may continue to be cited for years
after their original publication [67]. The situation is exac-
erbated in cases when scientific preprints without the
gold standard of peer review are used to guide clini-
cal decision-making, as was demonstrated during the
COVID-19 pandemic [68].

Biological literature is also rife with contradic-
tory claims. Research has demonstrated a ‘Proteus
phenomenon’ in meta-analyses of molecular genetics
and clinical trials research whereby an initial study
demonstrates a strong effect connecting, for instance,
a genetic variant and a disease and subsequent analyses
published in lower-impact journals demonstrate weaker
or even opposite associations [69]. These contradictions
are indicative of the evolving nature of data collection
and analysis that are natural byproducts of the scientific
method and potentially of meta-scientific publication
biases, whereby blockbuster results are more likely to be
published and disseminated.

One area of molecular biology in which contradictory
evidence is well defined is with respect to protein–protein
and gene–gene interactions. A contradiction may occur
whereby in the same system one paper reports an upreg-
ulation event between gene A and gene B but another
paper reports a downregulation event. To create a high-
confidence set of contradicting events, Kim et al. created a
data set known as BioContrasts consisting of contrastive
information in text abstracts, specifically searching for
the contrastive negation pattern of ‘X but not Y’ as in
the case of a binding event [70]. Another related work
looked at mentions of negated PPIs through negation
flags along a PPI dependency path [71]. This corpus could
be used to seed a collection of pairs of contradictory
statements about PPIs. These methods and corpora aim
at capturing events whereby different articles capture
true inconsistencies across our current knowledge of
molecular biology.

Finally, contradictions in molecular biology and
genomics may arise by differences in epistemic cultures
and research methods employed. For instance, as much
of genomics research has evolved from hypothesis driven
to hypothesis discovering, large-scale computational
methods may naturally give rise to contradictions with
other computational predictions or previously reported
empirical studies [72].

To detect true contradictions in literature, previous
work has been done on the task of first extracting core
research claims from literature. Typically, the research
claim is defined as the summary of the main points pre-
sented in a research argument, which can either intro-
duce new knowledge to readers or update their knowl-
edge on a topic. One recent approach for this task used
transfer learning of an LSTM model trained to iden-
tify from which section of a structured PubMed–RCT
abstract a sentence was categorized. This trained model
was applied to the task of identifying the core research
claim in an unstructured abstract using an annotated
data set. The authors demonstrated the utility of the
transfer learning strategy and achieved an F1-score of
0.78 for the task [73].

Limited work has been conducted on exploring
contradictions of research claims in literature. Reliable
corpora are necessary for training and evaluating models
developed for this task. Two corpora developed for
this purpose are AutConCorpus and ManConCorpus
[74]. AutConCorpus was automatically generated from
SemMedDB-a literature-derived collection of binary
predications [27]—by querying predications in which the
described pair of entities is connected by incompatible
or entailing predicates, for instance in the case of
incompatible predications: ‘A produces B’ and ‘A does

not augment B’ [75]. ManConCorpus is a manually
generated corpus of claims based on systematic reviews
about topics related to cardiovascular disease wherein
forest plots might be indicative of contradictory results.
Annotators were asked to label research claims of papers
as agreeing with or disagreeing with PICO questions
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related to the systematic review, such as ‘In patients
undergoing coronary artery bypass, does Aspirin usage,
compared to no aspirin, cause bleeding?’ [76]. In this way,
pairs of contradicting or entailing pairs can be derived
depending on the yes or no stance of each to the PICO
question [77].

These corpora have been applied in the task of contra-
dictory claim detection. In these studies, features were
extracted to attempt to automatically identify the stance
the claim (hypothesis) is taking with respect to the PICO
question (premise). One work employed extraction of
uni- and bi-grams occurring at a sufficient frequency,
presence of negation terms, presence of terms indicating
directionality (e.g. ‘blood pressure increased after treat-
ment X’), and sentiment detection from respective lexi-
cons, achieving micro-averaged F1 scores of 0.83 and 0.78
with an SVM classifier on ManConCorpus and AutCon-
Corpus, respectively [74]. Later work builds upon these
features by using relation extraction to distill relevant
clauses from the sentence [78] and extracting features
related to negation, antonym detection and textual align-
ment, achieving improved F1 scores on the ManConCor-
pus of 0.94 for the entailing research pairs and 0.87 for
contradictory pairs.

Contradictions in research are a natural byproduct of
the scientific enterprise. Clinical literature is rife with
contradictory information over time as medical prac-
tice evolves and study design changes or improves in
different settings. Contradictory information is present
in molecular biological literature as our knowledge of
interacting systems increases and the data modalities
and analytical techniques available to experimental biol-
ogists grow. When a research paper is distilled to its cen-
tral claim(s) about which it supports or refutes, the task
of automatically detecting true contradictions can be
formalized. NLP methods for extracting research claims
from literature are only starting to emerge. Addition-
ally, creating larger corpora of contradictory claims will
be imperative to train domain-specific deep learning
models for contradictory claims detection in biomedi-
cal literature. The field of automated detection of true
scientific contradictions has much room for continued
exploration with great potential for clarifying our current
understanding of scientific knowledge at large scales.

Adjudicating apparent contradictions
with context
Many instances of seemingly contradictory statements
may be adjudicated by additional context, making
the task of contradiction detection more challenging.
For drug repurposing, much of this context, such as
anatomical location(s) of drug action, is critical. Previous
work on contradiction detection has demonstrated how
background knowledge about meronyms, synonyms and
other semantic functions may shed light on false positive
instances of detected contradictions [79]. Other work
has made the distinction of contradictions grounded

Figure 3. Incorporating contextual information such as tissue specificity
of PPIs may help adjudicate apparent contradictions in KGs.

in common associated contexts, such as anatomical
location or species, versus those where statements have
differing contexts, which the researchers refer to as
contrasts [80]. In this work, the authors also note that
of the contradictory events they find, these pairs suffer
from underspecified contextual information, whereby
more accurate context association would resolve many
instances as false positives. Differences in experimental
methodology including the use of computational pre-
dictions versus experimental observations and the use
of varying model organisms or cell lines are important
contextual information for qualifying claims extracted
from literature [72]. In clinical settings, quantitative
context may be pertinent to extract, such as the drug
dosage administered in a particular regimen.

Explicitly incorporating context will provide massive
benefit for a variety of semantic technology applications.
Knowledge representations over which inference meth-
ods are applied for drug repurposing often operate on
limited abstractions and often omit important informa-
tion such as tissue specificity of interactions within the
KG [39, 81] (Figure 3). For state-of-the-art proximity and
machine learning-based methods, increased specificity
of tissue and disease annotations would help prioritize
more biologically feasible and pharmacologically princi-
pled targets, especially in urgent global health crises such
as the COVID-19 pandemic [82].

Incorporating information at a finer granularity may
also prove useful for KG embedding methods—the core
class of methods for KG inference. One challenge is the
problem of generating negative samples when learning
embeddings, and current methods typically rely on a
closed world assumption whereby triples not in the net-
work are assumed to be false. Predominant sampling
strategies for generating negatives include random sam-
pling of nodes in the network and corrupting existing
knowledge in the network, which may lead to false neg-
atives [83]. If contextual information is incorporated,
biological KG embedding methods may rely on biological
knowledge to sample true negatives, for examples PPIs
known to not occur in specific cell types. Incorporating
domain knowledge into the negative sampling strategy
will lessen the reliance on the closed-world assumption.
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Scientific literature is highly structured and knowl-
edge extraction systems that fail to consider meta-
discourse may miss key context. Liakata et al. [84]
described 11 conceptualization zones within a paper that
specify the objective of the text: Hypothesis, Motivation,
Goal, Object, Background, Method, Experiment, Model,
Observation, Result and Conclusion. Several of these
types of statements will be present in information-
dense abstracts, which is the only available text for
many papers given journal paywalls and copyright
considerations. However, many pertinent mechanistic
details may only be present in full text.

When structured information is lost, KGs may include
false-positive scientific relations that correspond to a
research hypothesis that was not confirmed by its study
or discourse about the plausibility of a contradictory
result that is speculative in nature. Further, the fact that
multiple papers mention a common relation will not
necessarily indicate greater evidence of its veracity. This
is the case when multiple authors describe an existing
fact on which subsequent work is predicated in the back-
ground sections of text.

Other pertinent meta-knowledge to extract includes
the confidence level with which authors are claiming
results. Work has been done on detecting the certainty
and novelty of a claimed result using syntactic features
[73, 85–87], but there is still a large opportunity to
improve these methods and leverage their predictions
in large-scale knowledge representations for LBD.

Outside knowledge may be another important source
of context. For instance, in the translational drug repur-
posing pipeline from large-scale drug screens to in vivo
experiments to clinical trials, the objective of experi-
ments changes from optimizing for sensitivity to opti-
mizing for precision. A contradiction between a finding
from a drug screen and a clinical study would thus
benefit from an outside understanding of the regulatory
landscape and the nature of the scientific translational
pipeline. Methods for adjudicating contradictions in this
setting should know to prioritize clinical findings that
meet rigorous safety standards and demonstrate efficacy
in humans.

Researchers have recognized the need for more con-
text awareness in knowledge representations and have
taken multiple approaches to address this challenge. One
approach entailed extracting knowledge from biomedical
literature with a specific narrow scope in mind such as
tolerogenic cell therapy [88]. In this work relations were
extracted between cell types and cytokines; thus, the
entities themselves incorporate key contextual informa-
tion for the queried cellular system. Another approach
involved returning to primary literature and associating
contextual information with extracted relations ad hoc.
Semantic and syntactic features were extracted about
annotated contextual mentions such as species or cell
line and about the sentences from which KG predica-
tions were extracted. These derived features were used

in a supervised framework of associating predications to
relevant contextual mentions in the same paper [89].

Finally, network topology and other structured infor-
mation may be used for inferring important contex-
tual information. In the work of Zitnik and Leskovec
[90], multicellular function is learned from a hierarchi-
cal representation of tissue networks based on a tissue
ontology, which can even be used to generalize cellu-
lar function prediction to uncharacterized tissues. Other
approaches may benefit from integration of multiple
data sources like GIANT [91] and STITCH [92], which are
networks that represent predicted and experimentally
derived tissue-specific interactions. Integrating hetero-
geneous data sources would augment and increase the
utility of existing general-purpose biomedical knowledge
representations.

Detecting contradictory claims from scientific liter-
ature is complicated by the importance of contextual
information that may adjudicate otherwise seemingly
contradictory claims. Differences in experimental set-
tings may explain how two statements may appear
to contradict but are in fact simultaneously possible.
By limiting the scope of knowledge to be extracted,
representing context information as entities in the graph
or analyzing latent features in the network topology,
one can learn or represent important contexts. Ad hoc
methods for extracting contextual information and
incorporating it at inference time are promising but
are still early in development. Applying Transformer-
based NLP models and harmonizing KGs with external
context-representative databases will be another fruitful
direction of work for explicitly representing context.
Together, these methods will help resolve instances
of false-positive contradictory claims in biomedical
literature.

Reconciling the problem of contradiction
in KGs
The issue of KG quality is well characterized in the
field of semantic technology. Zaveri et al. [93] gave a
thorough overview of quality assessment for linked data,
particularly when harmonizing across multiple data sets.
The authors provided a breadth of metrics commonly
used to assess the quality of a KG including dimensions
such as accuracy, timeliness, completeness, relevancy,
consistency, availability and verifiability [94]. Most rele-
vant to this review is the notion of consistency, which
has been defined as the absence of logical contradic-
tions in the data [95]. When considering how apparently
contradictory statements might be adjudicated in a KG,
other characteristics such as relevancy, trustworthiness,
understandability and timeliness may be more prescient
than consistency at face-value. Färber et al. demonstrated
a variety of heuristics to evaluate these quality checks for
large domain-independent KGs used for benchmarking
knowledge inference methods [96]. The authors showed
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Figure 4. Quantitative representations of the confidence of knowledge, as in the case of contradictory GWAS gene–disease associations, can be used in
frameworks for reasoning under uncertainty including soft logic and Bayesian methods.

that these KGs have widely varying degrees of consis-
tency, completeness and accuracy-important factors that
may qualify downstream knowledge inference results
and are often downplayed.

KGs derived using NLP are known to be particularly
susceptible to challenges of data quality as previously
described in this review. For example, SemMedDB [27]
has been shown to have a non-insignificant number of
contradicting predications. When searching for a predi-
cation and its contradiction, such as (X, causes, Y) and
(X, NOT_causes, Y), SemMedDB was observed to con-
tain nearly 500 000 such inconsistencies [97]. Empirical
results have shown that the performance of downstream
knowledge inference methods may degrade with increas-
ing sparsity and noise as in the case of NLP-extracted KGs
[98].

To combat issues of KG quality and inconsisten-
cies, one might consider KG refinement preprocessing
approaches or alternative modeling decisions. The task
of identity link invalidation, finding invalid instances
of predications of the form (X, is_same_as, Y), is a
related problem involving detection of logical incon-
sistencies in a KG [99]. Researchers have applied tech-
niques from logic theory and numerical approximations
using learned embedding representations for this task
[100–102]. Methods for detecting logical inconsistencies
in a KG would serve as useful preprocessing tools to
detecting both errors caused by NLP relation extraction
and naturally occurring inconsistencies from science,
which may be adjudicated by incorporating contextual
information.

Quantitative attributes of knowledge will help deal
with uncertainty and inconsistencies in literature-
derived KGs. Preprocessing approaches such as KG
refinement or otherwise modeling uncertainty of pred-
ications in literature-derived KGs would allow users
to explicitly represent a notion of confidence of the
veracity of a predication. This is particularly useful
in a naturally uncertain domain such as biomedical
research and would make knowledge representations
amenable to a variety of methods developed for dealing
with uncertainty (Figure 4).

Fuzzy, probabilistic and plausible logic methods may
be applied to infer new information with an associated
confidence conditional on the accuracy of input facts

used to drive inference [103–105]. The notion of mod-
eling uncertainty has been discussed in the domain of
data fusion whereby associating confidence scores with
ground truths in a silver standard database would penal-
ize methods less for generating predictions that may be
inconsistent with more uncertain ground truths [106].
Bayesian approaches have also been considered for mod-
eling biological processes like constructing transcription
factor networks [107] and for network link prediction
and by considering path information in probabilistic net-
works [108, 109]. Hybrid approaches are also possible
combining the strength of graphical models with user-
input semantic objectives and completely data-driven
embedding methods for link prediction under uncer-
tainty [110]. Representing uncertainty would prove useful
in representing, acting upon and evaluating biomedical
KGs.

Finally, more expressive knowledge representations
may capture nuance that would help adjudicate appar-
ent inconsistencies. Frameworks such as Minsky’s
frames [111], attributed KGs [112] or new standards such
as the Biological Expression Language [113] are flexible
enough to incorporate more granular information. By
explicitly attributing predications with context, prove-
nance or other relevant information, general-purpose
KGs may be more principled and thus useful for specific
applications. These attributes may be used to induce
simple knowledge subgraphs (for example specific to
a certain collection of cell types) or act as constraints
depending on the task, domain area or disease system.

Many quality control metrics have been proposed
and studied for large KGs including completeness,
consistency and relevancy. Data quality issues are often
overlooked but have implications not only for noisier
KGs including those derived using NLP methods but also
commonly used domain-independent KGs employed for
benchmarking tasks. Methods for detecting inconsis-
tencies and ascertaining uncertainty as pre-processing
steps are promising for improving inference quality and
qualifying downstream knowledge inference results and
comprise a largely unexplored area of research in the
context of KGs. More general and expressive KG represen-
tations also enable quantitative or contextual informa-
tion to be incorporated, which may improve KG relevancy,
consistency and trustworthiness. Such extensions to
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simple KGs have been seldom considered and represent
a fruitful area of research for next-generation knowledge
engineering applications.

Conclusions
Therapeutic breakthroughs with repurposed drugs pred-
icated on LBD is an exciting prospect that is beginning
to come to fruition. Literature-derived knowledge repre-
sentations hold great promise for increasing the scope
of scientific knowledge over which we make inference,
and this resource offers great potential for discovery
in urgent clinical applications such as predicting repur-
posing opportunities for rare disease treatment. In this
review, we have presented a collection of challenges con-
cerning quality assurance that such knowledge repre-
sentations will have to overcome for the next generation
of knowledge inference methods. Particularly, we frame
the presence of contradictions and inconsistencies as
a central challenge. Apparent contradictions may arise
from a great diversity of sources including NLP errors,
scientific controversy or oversimplifications of pairs of
claims that may not in fact be contradictory when adju-
dicated by context. We have demonstrated recent work
characterizing and tackling some of these challenges and
have alluded to open areas of research in applying and
improving biomedical literature-derived KGs. This review
sheds light on opportunities for having large impacts
in this exciting, rapidly evolving and highly interdisci-
plinary field.

Key Points

• Knowledge graphs (KGs) from biomedical literature text
represent rich semantics between drugs, genes, pro-
teins, pathways and diseases extracted from up-to-date
biomedical knowledge.

• Drug repurposing hypothesis generation in silico is well
posed as link prediction in these graphs, but these bio-
logical KGs are inherently noisy and sparse.

• Scientific KGs are prone to inconsistencies because of
errors in NLP, unresolved contexts and the contradictory
and evolving nature of science.

• Associating key biological context with relationships will
increase the utility of existing KGs for pharmacological
innovation.
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