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Abstract: Microlasers hold great promise for the development of photonics and optoelectronics. At
present, tunable microcavity lasers, especially regarding in situ dynamic tuning, are still the focus
of research. In this study, we combined a 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) piezoelectric
crystal with a Poly [9,9-dioctylfluorenyl-2,7-diyl] (PFO) microring cavity to realize a high-quality,
electrically tunable, whispering-gallery-mode (WGM) laser. The dependence of the laser properties on
the diameter of the microrings, including the laser spectrum and quality (Q) value, was investigated.
It was found that with an increase in microring diameter, the laser emission redshifted, and the Q
value increased. In addition, the device effectively achieved a blueshift under an applied electric field,
and the wavelength tuning range was 0.71 nm. This work provides a method for in situ dynamic
spectral modulation of microcavity lasers, and is expected to provide inspiration for the application
of integrated photonics technology.

Keywords: microring cavity; PFO; PMN-PT piezoelectric crystal; WGM; electrically tunable laser

1. Introduction

In recent years, microcavity-based lasers have shown great potential in applications
such as optical integration [1,2], on-chip optical communication [3,4], and ultrasensitive
sensing [5–7]. Among all configurations, whispering-gallery-mode (WGM) microcavities
have been intensively investigated due to their excellent optical properties. Continu-
ous total internal reflection of light on smooth surfaces of WGM microcavities, such as
microspheres [8,9], microdisks [10,11], microrings [12,13], microbottles [14,15], microbub-
bles [16,17], and microfibers [18], leads to repeated self-enhancement of light. Accordingly,
WGM lasers always possess a high quality (Q) factor, small mode volume, and low thresh-
old. At present, various shapes of WGM microcavities have been successfully prepared by
electron beam lithography [19], chemical synthesis [20], electrostatic spinning [21], inkjet
printing [22], and other methods. Among them, the inkjet printing method can produce a
high-quality WGM microcavity structure quickly and with low cost and high precision.

Wavelength-tunable microlasers, as indispensable components in various photonic
devices, have attracted great interest. The wavelength variability of microcavity lasers
provides the possibility of integrating photonic devices with more functions and is a key re-
quirement for the generation of more compact devices. In previous studies, researchers have
achieved wide-range laser wavelength tuning in discrete microcavities by controlling the
size of the microcavities [23,24] and the synthesis of gain materials [25,26]. Heterocoupled
microresonators composed of distinct cavities are a novel approach for generating tunable
multicolor single-mode lasers [27–29]. Sun’s group [30,31] reported a series of mechanical
bending tuning of WGM lasers integrated on flexible substrates. Zhao’s group [32,33] con-
structed broadband tunable microlasers based on the controlled ICT process for a specific
gain material. In other work, researchers have also altered the ambient temperature [29]
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and medium [34] to affect the laser emission. In addition, some researchers have shown
that electronically tunable distributed feedback (DFB) lasers can be achieved through elec-
troactive dielectric elastomer actuators [35] and III–V InGaAsP tuning layers [36]. To date,
there have been a few studies on WGM electrical tuning; microstructural fibers based on
dual-frequency liquid crystal (DFLCs) [37] and metal-dielectric core–shell hybrid microcav-
ities with thermo-optical effects [38] provide WGM tuning schemes for wavelength shifting
by applied electric fields.

Here, we propose an electrotunable microlaser to tune the emission wavelength
in situ through piezoelectric effect-induced strain. Microring resonators were prepared
by the inkjet printing method, which has a low cost and is of high quality and can be
prepared in batches. Wavelength tuning was achieved by fabricating microring resonators
on 0.7Pb(Mg1/3Nb2/3)O3 -0.3PbTiO3 (PMN-PT) piezoelectric single crystals with ultrahigh
piezoelectric strain constants, d31 up to ~−3000 pm/V, which provide strain. Compared
to using static strain, the unique feature of using piezoelectric strain is that piezoelectric
strain can provide continuous dynamic modulation under an external electric field. This
approach is suitable for a variety of gain materials and microcavities. In addition, this
modulation is extremely sensitive due to the rapid response of PMN-PT piezoelectric
crystals to electric fields.

2. Fabrication and Measurement

The fabrication of a microring laser is illustrated in Figure 1a. The device was fabricated
by the inkjet printing method, and the specific process is shown in Figure 1a. A 30 nm gold
electrode was deposited on the upper and bottom surfaces of the PMN-PT piezoelectric
single crystal by magnetron sputtering (CK-450, Baijujie Scientific Instrument Co., Ltd.,
Shenyang, China) before the microcavity was prepared, and the electrode was annealed
at 400 ◦C for 110 min to make it adhere firmly to the substrate. Then, PDMS was rotated
on the substrate at 3000 rpm to provide a hydrophobic environment for the subsequent
preparation of microcavities. Poly[9,9-dioctylfluorenyl-2,7-diyl] (PFO) was completely
dis-solved in xylene solution at a concentration of 18 mg/mL as the printing ink. A
high-precision printer (Microfab JETLAB 4, Microfab Technologies Inc., Shanghai, China)
equipped with a 60 µm diameter piezo-driven inkjet nozzle squirted droplets onto the
PDMS film to form the microstructure. By setting appropriate operating parameters in
Jetlab program, the nozzle was controlled to realize various printing tasks. This method can
realize batch preparation of microcavities, and a microscopic (OLS4100, Olympus, Tokyo,
Japan) image of the printed microring array is shown in Figure 1b. The jetted PFO solution
droplets partially dis-solved the PDMS film and formed a higher ring-shaped structure at
the boundary of the droplets on the substrate due to the coffee-ring effect [39,40], as shown
in the image in Figure 1c, which was obtained by Atomic Force Microscopy (AFM, Bruker
MultiMode 8, Billerica, MA, USA). The microring structure is very smooth, contributing
to low loss and a high Q factor. Moreover, its diameter could be adjusted by changing
the volume of the xylene droplet, as controlled by a piezoelectric-driven inkjet nozzle. In
addition, by changing the printing parameters to control the droplet volume, microrings of
different sizes can be obtained.

In the experiment, a microphotoluminescence system, as shown in Figure 1d, was
employed to obtain the spectral signals, and a pulsed laser (343 nm wavelength, pulse
duration of 10 ns, and repetition rate of 80 Hz) was used as the excitation source for
pumping the microring resonator at room temperature. Figure 1e shows a schematic
diagram of feedback light propagation in a microring cavity under pumping conditions.
The total internal reflection of light occurring in the inner wall of the microring was
confined in the microcavity, and the WGM mode was formed after several self-interference
intensifications. The gain material used in the experiment was the blue polymer PFO,
and its absorption and fluorescence spectra are shown in Figure 1f. PFO is a polyfluorene
material with a number average molecular weight (Mn) of 6.9 × 104 and polydispersity
(PDI) of 1.33 [41]. It is worth noting that PFO has different morphologies, such as an
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amorphous phase with an average torsional angle (ϕ) of main chain 135◦, and a so-called
β- phase with a relatively flat main chain structure of 160◦. The planar configuration results
in extended mean conjugation length and more effective electronic delocalization [42]. PFO
dis-solved in xylene will produce β-PFO; it has been proven that the PL quantum yield
of β-PFO film is significantly higher than that of the amorphous PFO film [41]. The three
vibronic bands at 442, 467, and 497 nm in the spontaneous emission spectrum of β-PFO
correspond to 0–0, 0–1, and 0–2 transitions, respectively (Figure 2f), which is ascribed to
the efficient energy transition from the amorphous section to the β-phase region in the
PFO [41]. Relatively low-power-driven PFO microring lasing was realized based on the
apparent 0–1 band stimulated transition.
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Figure 1. Fabrication and measurement of the PFO microring laser. (a) Schematic illustration of the
fabrication progress of the microring resonator. (b) Microscope image showing the printed microring
array. The scale bar is 100 µm. (c) AFM image of the microring structure. The scale bar is 10 µm.
(d) Experimental setup for excitation and signal collection of microring resonators. (e) Schematic
diagram of feedback light propagation in a microring cavity. (f) The normalized absorption (black
line) and emission (red line) spectra of PFO.
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versus pump fluence for microrings with diameters of 53, 67, and 85 μm, respectively. Left inset: 
microscope image of the microrings. The scale bar is 20 μm. Right inset: simulated electric field 
intensity distribution of the microring resonators. 

3. Results and Discussions 
3.1. Emission Spectra 

The lasing operation of individual microring lasers of various sizes is demonstrated 
by the spectral analysis shown in Figure 2. Figure 2a–c show the power-dependent lasing 
spectra of an individual microring pumped at 343 nm, with diameters of 53, 67, and 85 
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laser locally excites the microrings in air, and only a weak spontaneous emission is ob-
served at a reduced pump power density. When the pump intensity increases to the stim-
ulated emission threshold, the enhanced whispering-gallery modes in the microring wall 
are favorable for light feedback, and the spontaneous emission is transformed into a nar-
row linewidth laser emission with a strong peak value. Comparing the laser spectra of 
microcavities of different sizes, a redshift is found with increasing size. According to the 
resonance conditions of the WGM cavity [43]: 
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Figure 2. Laser characteristics of the PFO microring lasers. (a–c) The normalized photoluminescence
spectra of microrings at different pump fluences, and the diameters are 53, 67, and 85 µm, respectively.
(d–f) Gaussian fitting of the lasing oscillation mode. (g–i) Plots of the PL peak intensities versus pump
fluence for microrings with diameters of 53, 67, and 85 µm, respectively. Left inset: microscope image
of the microrings. The scale bar is 20 µm. Right inset: simulated electric field intensity distribution of
the microring resonators.

3. Results and Discussions
3.1. Emission Spectra

The lasing operation of individual microring lasers of various sizes is demonstrated
by the spectral analysis shown in Figure 2. Figure 2a–c show the power-dependent lasing
spectra of an individual microring pumped at 343 nm, with diameters of 53, 67, and
85 µm, respectively. The corresponding microscopic image and size of the microring
are shown in the first illustration in the upper left corner of Figure 2g–i. The focused
pulsed laser locally excites the microrings in air, and only a weak spontaneous emission
is observed at a reduced pump power density. When the pump intensity increases to the
stimulated emission threshold, the enhanced whispering-gallery modes in the microring
wall are favorable for light feedback, and the spontaneous emission is transformed into a
narrow linewidth laser emission with a strong peak value. Comparing the laser spectra of
microcavities of different sizes, a redshift is found with increasing size. According to the
resonance conditions of the WGM cavity [43]:

mλ = Lne f f (1)

where m is the angular mode number, λ is the wavelength of the light in vacuum, ne f f is
the effective refractive index, and L is the circumference of the microcavity. Clearly, with
increasing microcavity size, the wavelength also increases, which fits well with the redshift
phenomenon in the experiment.
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In addition to the strong amplification of the modal peaks, another essential point is
that multiple sharp laser peaks with regular intervals are observed as the pump fluence is
increased further. The free spectral range (FSR) is usually defined as the distance between
two adjacent angular mode wavelengths, which is a typical size-dependent feature of
WGM microcavity resonators. The theoretical calculation of the FSR can be calculated as
follows [43]:

FSR =
λ2

πDneff
(2)

where λ is the peak wavelength, ne f f is the effective refractive index, and D is the diameter
of the PFO microring obtained under the microscope. From Equation (2), the diameter of
the microring cavity is inversely proportional to the FSR. As seen from the PL spectrum in
Figure 2, the laser modes become dense as the diameter of the microring increases, which
confirms this theory.

The formula for calculating the quality factor is Q = λ/δλ, where δλ is the linewidth.
Figure 2d–f is the Gaussian function fitting corresponding to the laser peaks marked by the
red arrows in Figure 2a–c, respectively, and the δλ of the laser peaks is obtained. The Q
values of the microring lasers with diameters of 53, 67, and 85 µm are calculated to be 3280,
3530, and 4620, respectively. The relation Q = 2πnL/λ(1 − R) [44] actively demonstrates
that the Q value increases with increasing microcavity size, which is due to the increase in
cavity length and microcavity-air interface reflectance.

Figure 2g–i plots the PL intensity as a function of pump fluence, corresponding to the
three sizes of microrings in Figure 2a–c on the left, respectively. It can be seen from the
figure that the lasing peak emission intensity increases dramatically with the excitation
power, and the change is nonlinear. For the 53 µm, 67 µm, and 85 µm microrings, the data
line turning point indicates the laser thresholds, which are 16.8 µJ/cm2, 19.0 µJ/cm2, and
13.3 µJ/cm2, respectively. The clear threshold behaviour confirms the laser action of the
microring lasers. COMSOL software was employed to simulate the WGM mode in the
PFO microring resonant cavity, and the simulation parameters, including the geometric
radius and effective refractive index, were obtained from the experiment. The electric field
intensity distribution in the cross section of the WGM laser is shown in the second picture
in the upper left corner of Figure 2g–i. Due to the refractive index difference between the
polymer microcavity and the ambient medium, the light is captured in the inner wall of the
smooth microcavity by multiple total internal reflection. When the optical path is an integer
multiple of wavelength, a stable standing wave is formed in the microcavity. Therefore, a
strong local field of laser mode can be observed in the microcavity [41].

3.2. Wavelength Tuning

By applying an in situ electric field to the PMN-PT piezoelectric single crystal sub-
strate, tuning of the emission wavelength of the microring laser was realized. Prior to the
wavelength tuning test, the PMN-PT substrate was polarized at a direct current (DC) field
of 0.5 kV/mm. The electric field applied in subsequent electrical tuning should be lower
than the intensity of the polarization electric field to obtain a stable electrostrictive effect
of PMN-PT piezoelectric substrate. After polarization treatment, the PMN-PT substrate
was subjected to an electric field in the same direction as the poling electric field so that
the substrate produced a regular strain. When the external electric field was applied to
the [110]-oriented PMN-PT substrate along the [110] direction (the z-axis in Figure 3a), the
transverse strain can be obtained from the piezoelectric equation [45]:

S1 = sE
11T1 + d31E3 (3)

where sE
11 is the elastic compliance coefficient and d31 is the piezoelectric strain constant.

Therefore, a positive electric field applied to the z-axis direction will induce the shrinkage
of the x-axis length direction. The device deformation process is shown in Figure 3a. When
the applied electric field is in the same direction as the polarization field, the crystal shrinks
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in the xy-plane. Therefore, the size of the microring cavity is reduced. Compared with
other electrostrictive materials, the d31 parameter (d31 up to ~3000 pm/V) determines
the larger transverse deformation of the [110]-oriented PMN-PT crystal under the same
electric field. In Reference [43], a large negative linear transverse strain of 0.15% is observed
under an electric field of 0.5 kV/mm (normalized strain reaches 3000 pm/V) with minimal
hysteresis [45]. Due to the loss caused by the PDMS layer and laser material, the strain
transmitted to the microcavity is reduced. However, even small deformations can still
significantly affect the behavior of light. Next, an external electric field was applied to the
PMN-PT single crystal substrate between the upper and bottom Au electrodes and the laser
spectra were simultaneously recorded in situ, as shown in Figure 3b. Figure 3c,d present the
normalized laser spectra of PFO microrings, and the insets are the microscope images of the
test microrings, with diameters of 58 and 70 µm, respectively. In Figure 3c, the microring
laser was excited at a lower pump energy of 24 µJ/cm2 and only one mode was observed,
and the other microring laser was pumped at 35 µJ/cm2. A clear, blue-shifted laser peak
can be observed when the electric field varies from 0 to 0.48 kV/mm. Under the action
of the electric field, the diameter of the microrings decreases due to the electrostriction
of the piezoelectric substrate in the xy-plane, resulting in a blue-shift of the laser peak.
Under the electric field of 0.48 kV/mm, the maximum blueshift of the first microring
laser reaches 0.73 nm, which is in consistency with the second microring laser (0.71 nm).
Although the tuning range of this in situ tunable microring laser is limited compared
to some tunable WGM lasers with special gain materials [26,32,33,37] and mechanically
tuned WGM lasers in three-dimensional space [30,31], it is ten times that of other WGM
lasers tuned in two-dimensional space [29,34,37]. Wavelength tuning at different electric
field amplitudes is clearly shown in Figure 4. The red dots correspond to the wavelength
shift distance measured for a series of increasing actuation voltages, while the black dots
correspond to the return curve. The peak position is almost restored to the initial position
after removing the electric field. Under the control of the electric field, the continuous
modulation of the laser wavelength is effectively realized.
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Figure 3. Wavelength tuning of the microring laser. (a) Schematic diagram of laser device deformation.
(b) In situ measurement of laser spectra under an electric field. (c) Laser spectra of 58 µm diameter
microring under different electric fields. Inset: Microscope image of the microring. The scale bar is
20 µm. (d) Laser spectra of 70 µm diameter microring under different electric fields. Inset: microscope
image of the microring. The scale bar is 20 µm.
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