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Abstract: In this article, a multisensor joint localization system is proposed based on modified
cubature Kalman filtering, which aims to improve the accuracy of state estimation under a moderate
computational burden in the presence of high process noise. Specifically, first, the covariance of
process noise is matched based on adaptive filtering. The inertial measurement unit (IMU), odometer
(ODM), and ultra-wideband (UWB) information acquired by the associated sensors is then employed
to augment the system state and are fused to lower the influence of process noise. In the presented
localization setting, all sensors (IMU/ODM/UWB) are set to work in parallel under the federated
Kalman filter (FKF) framework, which can correct the cumulative error of the internal sensor and
and can improve the computational efficiency. Two sets of numerical simulations were performed
to show that the proposed method can obtain accurate state estimation with a slightly increased
computational burden.

Keywords: joint localization; multisensor; CKF; FKF; information fusion

1. Introduction

With social and economic development, the demand for precise positioning has been
increasing with the use of smart products. The global positioning system (GPS), as the most
widely used method at present, is favored by its mature technology, high accuracy, and
strong robustness [1], and it has been extensively employed in fields such as navigation
and intelligent driving. However, it fails to provide effective positioning in most indoor
scenarios, such as home services, factory logistics, cave exploration, and indoor counter-
terrorism activities. In this context, it is of urgent importance to develop high-accuracy
indoor positioning technology.

As an alternative to GPS, remote sensors have been widely used for indoor position-
ing, and they have been robustly supported by the fast development of computational
devices and networks in recent years. There are a variety of remote sensor-based indoor
positioning technologies, including WiFi [2,3], ZIGBEE [4], infrared [5,6], VICON [7], and
Ultra-Wideband (UWB) [8–10]. Specifically, WiFi positioning is simple to deploy and has a
low cost, but it is criticized due to its susceptibility to interference and cannot achieve high-
precision positioning. In contrast, ZIGBEE has the advantages of low energy consumption,
accompanied by the disadvantages of insufficient positioning accuracy. With the capacity
to provide high-accuracy positioning information, infrared positioning generally fails to
position hidden targets due to its reliability. In comparison, the VICON technology is
featured by its high positioning accuracy and anti-interference performance, and it can be
considered as a perfect indoor positioning solution except for its high cost and complicity.
In this context, the UWB positioning seems to outweigh all the other counterparts due to its
low cost, small size, high positioning accuracy, and strong resistance to multipath effects, all
of which contribute to its wide application in multi-agent systems. Nevertheless, external
sensors generally fail to provide accurate attitude information that is as equally important
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as position information in the multi-robot cooperative system, where attitude control is
required. In this context, internal sensors, such as the inertial navigation system [11], are
used to provide the attitude information of the robots in the system. Specifically, due
to its mature technology and high reliability, the inertial navigation system is capable of
measuring robot attitude without relying on external information. Therefore, it is not sub-
jected to any external interference during navigating. However, this system is vulnerable
to error accumulation over time, and it is not able to self-calibrate the accumulative error.
As a countermeasure, internal and external sensors are integrated for the estimation of the
robot’s attitude and position [12–14]. In these systems, the accurate attitude and position in-
formation are usually obtained by the sensors mounted inside the object (internal sensors),
and external sensors in the environment are used to further calibrate this information.

Information fusion between sensors becomes an inevitable issue that has to be con-
sidered in the multisensor system. There are mainly two methods for information fusion
at present, and their algorithms are, respectively, based on graph optimization [15] and
filtering [16,17]. Specifically, the graph optimization-based information fusion has high
accuracy, but its highly complicated calculation hinders its application in the environments
with high real-time requirements. In comparison, Federated Kalman Filter (FKF)-based
information fusion has been widely employed in multisensor positioning systems due to its
flexible structure, strong robustness, good performance of accuracy, and easy engineering
implementation [18,19].

Great progress has been recently made in the field of multisensor joint positioning.
For instance, Li et al. [20] combined the location information provided by UWB and the
direction location information provided by inertial measurement unit(IMU) to position
coal mine robots (CMR) underground, and discussed an optimal deployment plan for
UWB base stations. The final positioning accuracy was close to the most advanced lidar.
Giarre et al. [21] used UWB to correct the dead reckoning results of pedestrians. Based
on this joint positioning method, the positioning accuracy of pedestrians in the real en-
vironment was improved. Hu et al. [22] successfully reduced the computational load of
the joint positioning system by decoupling the attitude and position information in their
study using three systems (i.e., GPS, IMU, and Celestial Navigation System (CNS)) to
navigate the spacecraft. Han et al. [23] managed to decrease the number of UWB nodes
from three to one by calibrating and compensating GPS signals using the UWB positioning
as well as fusing the information of GPS and UWB positioning using an improved particle
filter based on the ant colony optimization algorithm. Using IMU sensors to supplement
UWB information, Li et al. [24] successfully improved the ability of the UWB positioning
system to deal with process noise by employing state enhancement, which was achieved
by measuring Gaussian noise in the system speed with an accelerometer. He et al. [25]
minimized the impact of drift errors by fusing the data acquired by UWB and IMU sensors
in the federated Kalman filtering (FKF) framework.

Although the above-mentioned studies have made their breakthroughs, they have
inherent limitations. For instance, the algorithm proposed by He et al. [25] can effectively
suppress the cumulative error of the IMU data, and it has a high positioning accuracy.
However, it is vulnerable to filtering divergence in the case of high process noise, which
will thereby deteriorate the tracking performance. In contrast, the algorithm proposed by
Li et al. [24] can effectively deal with the process noise of the system and thus has high
tracking performance. However, the position information is independently provided by
the external sensor, and the algorithm is based on the extended Kalman filtering (EKF) that
has large linearization errors. Therefore, its positioning accuracy needs to be improved.

As a follow-up study of our previous work [25], we find that the proposed algorithm
fails to effectively suppress the process noise. Accordingly, relevant research has been done
in this article to pursue robust tracking, high accuracy, and high real-time performance
during positioning, from the following four perspectives:

• Adaptive filtering is introduced to improve the ability of the algorithm proposed by
He et al. [25] to deal with process noise.
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• The expansion method proposed in Li et al. [24] is employed to expand the model,
improve the tracking performance of the algorithm, and further enhance the capability
of the algorithm in dealing with process noise.

• Given the increased dimension of the system caused by the expansion method, the
state space decomposition method proposed in [22] is used to decompose the system
state and thus reduce the side effects of the expansion method as much as possible.

After these improvements, a highly robust and accurate state estimation algorithm
is obtained, though it slightly increases the computational burden. This is the main
contribution of this work.

The overall structure of the algorithm is shown in Figure 1.
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Figure 1. The overall structure of the algorithm.

The rest of this article is organized as follows. In Section 2, both the dynamic and
measurement models of the system are established, accompanied by an analysis of the poor
filtering effect of the process noise of the previously proposed algorithm [25]. Section 3 in-
troduces the adaptive Kalman filtering (AKF) and improves the algorithm proposed in [25]
based on this filtering method, with detailed steps illustrating the algorithm improvement.
In Section 4, the state vector enhancement method proposed in [24] is introduced, and
the enhanced state vector is described based on this method. Moreover, the state vector
is decomposed based on the method of Hu et al. [22] to maintain the dimension of the
system matrix, and thus avoid excessive computational load increase, while improving
the ability of the system to deal with process noise. In Section 5, the proposed algorithm is
verified by numerical simulation of the motion system. Eventually, conclusions are reached
in Section 6.

2. System Establishment and Problem Description
2.1. System Model

The nonlinear discrete-time system considered in this article is

Xk+1 = A(Xk) + ωk (1)

Xk = [x y v θ ϕ]T (2)

where x and y are the coordinates of the moving object, v is the speed of the moving object,
θ is the yaw angle of the moving object, ϕ is the change in yaw angle over time, ωk is the
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process noise of the system, and A(.) is a nonlinear time update. As a Constant Turn Rate
and Velocity (CTRV) model, the motion model studied in this article can be expressed by
the following formula:

A(Xk) = A(


x
y
v
θ
ϕ

) =


x
y
v
θ
ϕ

+


v
ϕ (sin(θ + ϕT)− sin(θ)

v
ϕ (−cos(θ + ϕT) + cos(θ)

0
ϕT
0

 (3)

where T is the sampling time. The measurement model of the system is as follows:

ZUWB
k+1 = HUWBXk+1 + υuwb

k+1 =

[
1 0 0 0 0
0 1 0 0 0

]
Xk+1 + υuwb

k+1 (4)

ZIMU
k+1 = HIMUXk+1 + υimu

k+1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

Xk+1 + υimu
k+1 (5)

where ZIMU and ZUWB are the measurement vectors of IMU and UWB systems, respec-
tively; HIMU and HUWB are their state transition matrices, respectively; and νimu and
νuwb are independent measurement noises with Gaussian distributions, respectively. The
covariances of measurement noise and process noise are

E
[
wkwT

k
]
= Qk

E
[
υimu

k υimu
k

T
]
= Rimu

k

E
[
υuwb

k υuwb
k

T
]
= Ruwb

k

(6)

where Qk is the covariances of process noise, and Rimu
k and Ruwb

k are the covaricance of
measurement noise by IMU and UWB sensors, respectively.

2.2. Analysis of the Process Noise

In order to transplant the algorithm to the physical platform, we conducted several
numerical simulation experiments using different parameters to collect data for the pre-
viously proposed Singular Value Decomposition–Federated Derived cubature Kalman
Filter (SVD-FDCKF) algorithm [25]. Filtering divergence occurs in the simulation when the
process noise is large. Moreover, existing filtering algorithms generally fail as the process
noise exceeds certain values. Some hypotheses are put forward based on this phenomenon.

First, the covariance of the process noise (Q) scales with the magnitude of the process
noise, and it is difficult to determine the specific value of Q in practical applications.
Therefore, the ratio of Q to the covariance of measurement noise (R) may be too small
in some cases if the value of Q cannot be adjusted adaptively with the magnitude of the
process noise. Accordingly, in the filtering result, there might be large process noise in the
moving process, thereby leading to filtering divergence.

Second, the system may not be in a uniform motion anymore due to the influence of
the process noise on the system speed. The measured covariance in the iterative process
might be within a reasonable range when the process noise in the experimental environ-
ment is small, because the measured residual error is small. In this case, the filtering
algorithm can effectively suppress the noise. However, when the process noise in the
experimental environment is set to large, the measured residual error increases, so the
measured covariance grows with iteration, rendering the filter inclined to assign higher
weights to the state estimation. In this way, the state estimation based on the CTRV model



Sensors 2021, 21, 4823 5 of 22

is no longer accurate, because the system is no longer moving at a constant speed due to
the impact of noise. Therefore, filtering divergence becomes inevitable.

Given the above-mentioned issues, it is necessary to improve the existing filtering
algorithms and thus enhance the tracking performance.

2.3. Problem Formulation

Fortunately, there have been related studies on these two issues [24,26,27]. Sage and
Husa [26] proposed adaptive filtering based on the Kalman filtering in their research
on the indeterminable covariance of noise. They succeeded to effectively suppress the
filter divergence caused by the inaccurate noise variance. When it comes to practical
application, Kownacki et al. [27] used adaptive filtering to filter the data acquired by the
infrared rangefinder, which was impacted by unknown external disturbance; thus, it is
difficult to determine R. In this way, they managed to improve the accuracy of ranging
and positioning. Similar methods can also be used to suppress the imbalance between Q
and R due to the large process noise, increasing the precision of the filter, thereby avoiding
filtering divergence caused by excessive process noise.

In order to improve the tracking performance of the filtering algorithm for highly
dynamic moving objects, Li et al. [28] used the state vector enhancement method to change
the CTRV model to the CTRA model. They regarded the process noise of the speed in the
state vector as the acceleration and used the accelerometer of the IMU to measure and filter
it. Experimental results demonstrate that the improved algorithm can effectively suppress
process noise and thus present a better performance in tracking mobile robots.

However, the measurement value of the position information in the method of Li et al. [24]
is completely obtained by the UWB sensor, which can only provide decimeter-level posi-
tioning accuracy. Therefore, the state vector enhancement method will also have a certain
negative impact on the stability and computational burden of the system due to the in-
creased dimension of the state vector, although this method presents outstanding tracking
performances.

To conclude, certain scientific issues need to be addressed: First, the tracking perfor-
mance of the algorithm should be improved by suppressing the filtering divergence caused
by process noise. Second, the dimension of the state vector should be maintained while the
above improvement is achieved.

The specific solution can be divided into the following steps:

• Our previous work [25] should be improved based on the idea of adaptive filtering, so
that the ratio of Q and R can still be coordinated in a high process noise environment
to avoid filtering divergence.

• The model should be expanded to enhance the traceability of the system by using the
state vector enhancement method [24].

• The enhanced state vector should be decomposed according to the measurement
vector of each sensor [28] to reduce the dimension of the system and thus improve the
measurement accuracy of the system.

3. Adaptive SVD-DCKF Filtering
3.1. Preliminary Work

As shown in Section 2.1, the system features a nonlinear system state equation and a
linear measurement equation. In this case, a redundant calculation occurs, and accuracy
will be lowered due to linearization errors, if the unscented Kalman filter (UKF) and
cubature Kalman filter (CKF) and other nonlinear Kalman filtering algorithms are used for
filtering. As inspired by the DUKF algorithm in the literature [29], we propose the Derived
Cubature Kalman Filter (DCKF), which reduces the computational burden of the system
and eliminates some unnecessary linearization errors.

Moreover, inspired by the random stability analysis in the literature [30], we further
develop the SVD-DCKF algorithm [25] based on the DCKF algorithm. This SVD-DCKF
algorithm can replace the traditional Cholesky decomposition with the SVD decomposition



Sensors 2021, 21, 4823 6 of 22

during the decomposition of the estimated covariance of the system (P). In this way, the
constraining conditions are expanded from positive definite variance to positive semi-
definite, so that the algorithm no longer needs the positive definite auxiliary matrix (δP)
and thus eliminates the minor errors caused by the auxiliary matrix. The specific steps of
the SVD-DCKF algorithm have been described in detail in the literature [25] and thus are
not repeated here.

In addition, in order to suppress the cumulative error of the IMU, we adopted the
UWB to continuously calibrate the IMU under the FKF framework . As the result, the
effectiveness of this method [25] is demonstrated through numerical simulations.

However, the SVD-DCKF algorithm is found to have a deteriorating and even diver-
gent filtering performance under certain conditions with different process and measure-
ment noises. Accordingly, this study aims to improve the SVD-DCKF algorithm based on
the adaptive filtering method.

3.2. Adaptive Filtering

The Q and R have direct impacts on the performance of Kalman filtering algorithms [27].
According to the calculation equation of the Kalman gain (K), K is proportional to Q and
inversely proportional to R. Therefore, when Q is relatively large, the process noise has
great interference with respect to the state prediction, and accordingly, K is relatively large,
which will increase the weight of the measurement equation in the filter and thus modify
the state estimation with more measurement values. In this context, an undersized Q might
be responsible for the filtering divergence that occurs in the application of the algorithm
proposed in [25] in a high process noise environment. However, an excessively large Q
can reduce the filtering accuracy [26]. Moreover, it is generally very difficult to accurately
simulate the system noise to determine the optimal and accurate value of Q in practical
applications. Consequently, it is challenging to achieve the best performance of the filter
in engineering by setting Q directly at the initial moment according to the prior value.
Therefore, adaptive filtering technology is often used to adaptively modify Q.

Considering the system shown in Section 2.1, the residual error (ek) should be first
calculated during the application of the adaptive filtering:

ek = Xk − Xk|k−1 (7)

where Xk is the state estimation of the system at time k, while Xk|k−1 is a one-step prediction
of the system state at time k based on the system state at time k− 1.

The correction matrix of the process noise covariance at time k (Q∗k ) should then be
calculated based on the residual error of the system:

Q∗k = ekeT
k + Pk|k−1 − Pk −Qk−1 (8)

where Pk|k−1 is a one-step prediction of the system error variance at time k based on the
system error variance at time k− 1, while Qk−1 is the process noise covariance estimation
at time k− 1.

Subsequently, a low-pass filter should be used to modify the matrix Q∗k and the noise
covariance Qk−1 at the previous moment, yielding the process noise covariance estimate at
time k (Qk):

Qk = Qk−1 +
(Q∗k −Qk−1)

M
(9)

where M is the window width, and its value can be obtained by the following formula:
M = 1, d ≥ 1
M = k, d ≤ 0

M = kd, 0 < d < 1
(10)
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where d can be obtained by the residual value formula:

d = eT
k E[ekeT

k ]ek (11)

When d > 1, the statistical characteristics of the process noise are not clear, the system
cannot get the correct state prediction, and the minimum value should be adopted. When
d < 0, the statistical characteristics of the process noise are clear, so the prediction of the
system’s state equation is relatively accurate, and the maximum value should be adopted.
When 0 < d < 1, the middle value should be adopted according to the ratio to ensure that
Q is in the right state.

3.3. The SVD-ADCKF Algorithm Based on Adaptive Filtering

The SVD-DCKF algorithm proposed in [25] is improved based on the adaptive filtering
method described in the previous section. It is able to adaptively adjust Q under different
process noise environments, and this improved algorithm is termed the Singular Value
Decomposition-Adaptive Derive Cubature Kalman Filtering (SVD-ADCKF). The specific
steps of the algorithm are shown in Algorithm 1. It can be seen from Algorithm 1 that the
proposed algorithm is basically similar to the original CKF, but a time update step for the
process noise covariance is added, which allows it to adaptively approach the true value as
the number of iterations increases.

Algorithm 1: The specific steps of SVD-ADCKF.

Input: Xk, Pk, Qk
Output: Xk+1, Pk+1, Qk+1
Nonlinear time update
1. Initialize state estimation Xk and covariance estimation Pk;
2. Perform SVD decomposition on Pk to obtain Sk;

3. Calculate the cubature point X j
k according to the equation:

{
X j

k = Xk + Sk Ij
√

n , j = 1, . . . , n
X j

k = Xk − Sk Ij
√

n , j = n + 1, . . . , 2n
;

4. Calculate the one-step prediction of each cubature point (X j
k+1|k) based on the state equation and

the process noise covariance (Qk);
5. Combine each cubature point to obtain the linear approximation time update Xk+1|k:

Xk+1|k = ∑2n
j=1 ωjX

j
k+1|k

quad where n is system order; ωj is the weight of each cubature point;
6. Calculate the time update of the linearly approximated error covariance Pk+1|k:

Pk+1|k = ∑2n
j=1 ωj(Xk+1|k − Xk+1|k)(Xk+1|k − Xk+1|k)

T ;
Linear measurement update
7. Obtain the linear prediction value of the measurement (Zk+1|k) based on the time update of

the measurement equation to the linear approximation;
8. Calculate Kalman gain K based on the formula: K = Pk+1|k HT(HPk+1|k HT + Rk)

−1;
9. Update the system state based on the Kalman gain: Xk+1 = Xk+1|k + K(Zk+1 − Zk+1|k);
10. Update the system error covariance based on the Kalman gain: Pk+1 = Pk+1|k − KHPk+1|k;
Process noise covariance update
11. Calculate the residual error: ek+1 = Xk+1 − Xk+1|k;
12. Calculate the correction matrix: Q∗k+1 = ek+1eT

k+1 + Pk+1|k − Pk+1 −Qk;
13. Calculate the window width M based on Formulas (10) and (11);

14. Correct the process noise covariance: Qk+1 = Qk +
(Q∗k+1−Qk)

M ;
15. Output Xk+1, Pk+1, Qk+1 as the initial value for the next moment, and repeat Steps 1–14.
End.
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4. Improvement in the Tracking Performance
4.1. System Model after the State Vector Enhancement

In the work of Li et al. [24], the noise of the speed of the system is regarded as
the acceleration of the system, and the acceleration in the X-axis and Y-axis directions is
introduced into the state vector of the system through state vector enhancement and then
measured by the IMU sensor. Subsequently, they filtered the augmented system state based
on the estimation of the system state and the measured value of the sensor, the results of
which demonstrate the improved tracking performance.

The system state vector defined by Equation (2) can be correspondingly rewritten as

Xk = [ x y v a θ ϕ ]T (12)

where a is the acceleration of the system.
Meanwhile, the time update equation of the nonlinear discrete system shown in

Equation (3) can be defined as

A(Xk) = A





x
y
v
a
θ
ϕ



 =



x
y
v
a
θ
ϕ

+



∆x
∆y
aT
0

ϕT
0

 (13)

where T is the sampling time, while ∆x and ∆y are the displacements in the x and y
directions, respectively, which can be expressed as

∆x =
(v + aT) sin(θ + ϕT)− v sin(θ)

ϕ
+

a
ϕ2 [cos(θ + ϕT)− cos(θ)] (14)

∆y =
(v + aT) cos(θ + ϕT)− v cos(θ)

ϕ
+

a
ϕ2 [sin(θ + ϕT)− sin(θ)] (15)

The measurement model used in the new sixth-order CTRA system is defined as

ZUWB
k+1 = HUWBXk+1 + υuwb

k+1 =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

Xk+1 + υuwb
k+1 (16)

ZIMU
k+1 = HIMUXk+1 + υimu

k+1 =


0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

Xk+1 + υimu
k+1 (17)

Moreover, an odometer(ODM) is introduced as an auxiliary internal sensor in the
revised system, and its measurement model can be expressed as

ZODM
k+1 = HODMXk+1 + υodm

k+1 =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
Xk+1 + υodm

k+1 (18)

4.2. Accuracy of the Augmented System Model

A relatively large cumulative error is inevitable in the augmented system model as the
dead reckoning of the IMU sensor is based on the quadratic integration of the data recorded
by the accelerometer. As a countermeasure, the IMU sensor in the modified system is
now used to only measure the velocity, acceleration, yaw angle, and yaw angle movement
change of the mobile robot, while the position information of the system is provided by the
odometer that directly calculates dead reckoning based on the number of turns of the wheel.
In this context, the acceleration, yaw angle, and yaw angle movement change of the system
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are directly measured by the accelerometer, magnetometer, and gyroscope, respectively,
which reduced the cumulative error. The accelerometer in the IMU measures the specific
force other than the gravity received by the object, calculates it as acceleration, and finally
outputs the acceleration. There are still certain cumulative errors in one integral calculation
of the system velocity by the accelerometer and one integral calculation of the position
information by the odometer. However, these cumulative errors are relatively smaller
than that of the system introduced in Section 2.1, which requires quadratic integration.
Moreover, the position and velocity information of the system that is provided by the
external UWB sensor is used to calibrate the cumulative error of the internal sensor.

4.3. Simplification of the State Vector

Although the state vector enhancement method, when used, can effectively improve
the tracking performance of the system and suppress the process noise, the dimension
of the state vector will increase accordingly. In this context, the increased dimension of
the state vector is accompanied by the increased computational burden of UKF and CKF
algorithms, although the computational accuracy and stability are rarely influenced [28,31].
In this study, the state vector disassembly method [22] and the state vector enhancement
method [24] are integrated to minimize the side effects caused by the state vector enhance-
ment method.

In some integrated IMU/CNS systems, the CNS can output accurate attitude infor-
mation and relatively accurate position information, but it cannot perform high-precision
calculations of velocity information [22]. As a result, the errors in the system’s error covari-
ance matrix corresponding to the estimated velocity error continually grows. Therefore, it
can be inferred that there is an extremely weak correlation among attitude, velocity, and
position error information in the local state estimation output by the subsystems of the
integrated IMU/CNS system [22]. Given this, Hu et al. [22] disassemble the state vector
into three sub-vectors in the integrated IMU/GPS/CNS navigation system and thereby
successfully reduce the order of the state vector, contributing to a lowered computational
burden of the sub-filter.

Moreover, we find that there is only a one-way strong correlation between position
information, velocity information, and attitude information in the CTRA system. More
specifically, the accurate estimation of position information depends on the velocity infor-
mation and attitude information, whereas the accurate estimation of velocity information
and attitude information rarely depends on the position information. Accordingly, this
study simplifies the state vector of the IMU sub-filter based on the fact that the IMU sensor
only provides the velocity information and attitude information in this research, and the
simplified sub-vector is as follows:

X IMU
k = [ v a θ φ ]T (19)

The new time update equation and the nonlinear time update function are defined
as follows:

X IMU
k = AIMU(X IMU

k ) + wIMU
k (20)

AIMU(X IMU
k ) = A




v
a
θ
φ


 =


v
a
θ
φ

+


aT
0

φT
0

 (21)

It can be seen that the state vector of the simplified IMU sub-filter is a fourth-order
system, and the measurement model for the new fourth-order system is
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ZIMU
k+1 = HIMUX IMU

k+1 + υimu
k+1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Xk+1 + υimu
k+1 (22)

After simplification, the state vectors of the internal sensors of the new system are
composed of the sixth-order ODM sensor and the fourth-order IMU sensor. In comparison,
the state vectors of internal sensors in the original system before the enhancement are
composed of the fifth-order ODM sensor and the fifth-order IMU sensor, whereas those in
the CTRA system after the enhancement are composed of the sixth-order ODM sensor and
the sixth-order IMU sensor. The computational complexity of these three systems will be
analyzed in the next subsection.

4.4. Computational Complexity Analysis

Efforts were made in this study to analyze the computational complexity of the filtering
operation on the internal sensors based on the “Singular Value Decomposition-Derived
Cubature Kalman filter” (SVD-DCKF) algorithm [25]. We refer to each multiplication or
addition operation as a flop, and the total number of flops represents the computational
complexity of the algorithm (Table 1).

Table 1. Computational complexity analysis of three systems.

Step
Original

System (5+5)
Augmented
System (6+6)

Simplified
Augment

System (6+4)

Calculation
of cubature points

450 flops
460 flops
200 flops

792 flops
844 flops
552 flops

508 flops
538 flops
300 flops

Time update 50 flops 72 flops 52 flops
Prediction

of covariance update
260 flops 372 flops 270 flops

Measurement forecast 90 flops 132 flops 94 flops
Calculation

of Kalman gain
1504 flops 2596 flops 1684 flops

Status update 30 flops 36 flops 30 flops
Covariance update 950 flops 1656 flops 1068 flops

Total 3994 flops 7052 flops 4544 flops

As shown in Table 2, the augmented system requires 3054 more flops (43.42%) than
the original system in each iteration, while the simplified augmented system requires just
550 more flops (12.11%) than the original system. Therefore, it can be concluded that the
simplified augmentation system successfully reduced the computational burden of the
original augmentation system while maintaining a strong tracking performance.

4.5. Fusion and Reorganization of Sub-States

Disregarding their ability to provide accurate position, velocity, and attitude infor-
mation, internal sensors cannot calibrate the cumulative errors that occur during the
calculation. In contrast, external sensors usually have low accuracy, but they are not sub-
jected to cumulative errors. Therefore, the fusion based on the FKF framework can make
the external sensor calibrate the internal sensor and improve the positioning accuracy.

As shown in Figure 2, three sub-state vectors and their covariance matrices can be
obtained after three different sensors are filtered by the sub-filter. Specifically, three sub-
state vectors are expressed as
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XUWB
k = [ xuwb yuwb vuwb auwb θuwb φuwb ]T

X IMU
k = [ vimu aimu θimu φimu ]T

XODM
k = [ xodm yodm vodm aodm θodm φodm ]T

(23)

Table 2. Parameters of simulation.

Item Parameters

Initial state

X coordinate: 4 (cm)
Y coordinate: 4 (cm)

Velocity: 5 (cm/s)
Accelerate: 0 (cm/s2)

Yaw angle: π/3 (◦)
Yaw angle changement: π/90 (◦)

Simulation time 150 (/s)
Sampling time T = 1

Initial covariance P1 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0.5 0 0 0
0 0 0 0.1 0 0
0 0 0 0 0.15 0
0 0 0 0 0 0.001



Initial estimate X1 =


4
4
5
0

π/3
π/90

 +


N(0, 1)
N(0, 1)

N(0, 0.5)
N(0, 0.1)

N(0, 0.15)
N(0, 0.001)



The driving matrix of process noise Gk =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 T 0 0 0
0 0 0 0 0 0
0 0 0 0 πT/3 0
0 0 0 0 0 π/3



Distribution of process noise wk wk =


0
0

N(0, 0.5)
0

N(0, 0.1)
N(0, 0.01)


Initial covariance of process noise Q1 6-order diagonal identity matrix

Measurement noise of UWB N(0, 16)
White noise of gyro N(0, 0.05)

Constant drift of gyro 0.1◦ /h
White noise of accelerometer N(0, 0.001)

Constant bias of accelerometer 10−3g
White noise of magnetometer N(0, 0.1)

White noise of odometer N(0, 0.1)

As has been described in Section 3.1, the UWB sensor only measures position informa-
tion and velocity information, the ODM sensor only observes position information, and
the IMU sensor only records accelerate information for the information fusion. Therefore,
redundant information in the sub-vectors can be eliminated, and the three sub-state vectors
can be rewritten as

XUWB
k|k = [ xuwb yuwb vuwb ]T

X IMU
k|k = [vimu]

XODM
k|k = [ xodm yodm ]T

(24)
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Federated Kalman Filter

Figure 2. The overall structure of the system.

The covariance matrices of UWB and ODM sensors are both of the sixth-order, while
that of the IMU sensor is of the fourth-order. Therefore, the covariance matrix of each
sub-vector should also be simplified according to the simplified sub-state vectors. The
simplified covariance matrices are as follows:

PUWB
k|k =

 PUWB
k,11 PUWB

k,12 PUWB
k,13

PUWB
k,21 PUWB

k,22 PUWB
k,23

PUWB
k,33 PUWB

k,33 PUWB
k,33

 (25)

PIMU
k|k = [PIMU

k,33 ] (26)

PODM
k|k =

[
PODM

k,11 PODM
k,12

PODM
k,21 PODM

k,22

]
(27)

where PUWB
k , PIMU

k , and PODM
k are the covariance matrices of the corresponding sub-state

vectors, while PUWB
k|k , PIMU

k|k , and PODM
k|k are the covariance matrices of the simplified sub-

state vectors by eliminating redundant information. These covariance matrices are then
fused based on the FKF framework:

PPosition
k = (

[
PUWB

k,11 PUWB
k,12

PUWB
k,21 PUWB

k,22

]−1

+ PODM−1
k|k )−1 (28)

PVelocity
k = (PUWB−1

k,33 + PIMU−1
k|k )−1 (29)

where PPosition
k is the covariance of the position information after fusion at time k, while

PVelocity
k is the covariance of the velocity information after fusion at time k. Subsequently, the

sub-state vectors of the fused position information and velocity information are calculated
based on the fused covariance:

XPosition
k = PPosition

k (

[
PUWB

k,11 PUWB
k,12

PUWB
k,21 PUWB

k,22

]−1[ XUWB
k|k,11

XUWB
k|k,21

]
+ PODM−1

k|k XODM
k|k ) (30)

XVelocity
k = Pvelocity

k (PIMU−1
k|k X IMU

k|k + PUWB−1
k,33 XUWB

k,31 ) (31)

where XPosition
k and XVelocity

k are the sub-state vectors of the fused position information
and velocity information, respectively. At this time, we can obtain the sub-state vector of
attitude by combining the remaining information in the sub-state vector of the IMU sensor,
which is expressed as
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XAttitute
k = [ XVelocity

k aimu θimu φimu ]T (32)

Finally, as shown in Figure 2, sub-vectors of the position information and the attitude
information are recombined to form a new state vector:

Xk =

[
XPosition

k
XAttitute

k

]
(33)

Similarly, by extracting the covariance components corresponding to each state com-
ponent and recombining, the new covariance can be defined as

Pk =


PPosition

k
PVelocity

k
Pimu

k,22
Pimu

k,33
Pimu

k,44

 (34)

External sensors have been demonstrated to be effective in calibrating the cumulative
error of the inertial navigation system based on the FKF framework [25]. Similarly, the
odometer should be theoretically able to be calibrated using the same method. Moreover,
the data calibrated in this study are obtained by only one integral operation, so their accu-
racy should be theoretically higher than those of the position information in He et al. [25]
(which are obtained by quadratic integral operations). Therefore, it is reasonable to be-
lieve that the IMU/UWB/ODM co-location system should have better accuracy than the
IMU/UWB system, and relevant numerical simulation will be detailed in Section 5.

Eventually, the proposed algorithm in this study, namely, the Modified Federated
Cubature Kalman Filter (MFCKF), is capable of accurately estimating the attitude informa-
tion of the system after decomposition and state reorganization. Moreover, it has a high
real-time tracking performance. The specific steps of the proposed algorithm are detailed
in Algorithm 2.

Algorithm 2: Specific steps of the MFCKF.

Input: Xk, Pk, Qk
Output: Xk + 1, Pk + 1, Qk+1
1. Decompose Xk and Pk and obtain sub-states (i.e., Ximu

k , Xuwb
k , and Xodm

k )
and their covariance (i.e., Pimu

k , Puwb
k , and Podm

k );
2. Filter the sub-filters based on the sub-states and sub-covariances as well as the measured values and

obtain the sub-states and sub-covariances at time k + 1 (Ximu
k+1, Xodm

k+1 , Xuwb
k+1 and Pimu

k+1, Podm
k+1 , Puwb

k+1 , Qk+1)
(based on the filter shown in Algorithm 1 );

3. Eliminate redundant information and get sub-states for fusion (i.e., Ximu
k+1, Xuwb

k+1 , and Xodm
k+1)

and their variances (i.e., Pimu
k+1, Puwb

k+1 , and Podm
k+1 );

4. Fuse the sub-states and covariance based on the FKF framework and thus obtain XVelocity
k+1 and XPosition

k+1

as well as their covariance PVelocity
k+1 and PPosition

k+1 ;

5. Recombine Ximu
k+1, XVelocity

k+1 and XPosition
k+1 to obtain the final status update Xk+1;

6. Recombine Pimu
k+1, PVelocity

k+1 and PPosition
k+1 to obtain the final status update Pk+1;

7. Output Xk+1, Pk+1, Qk+1 as the initial value for the next moment, and repeat Steps 1–6.
End.

5. Simulation

Simulations were performed on an x86 PC using MATLAB 2019a with Intel Core i5
7500 CPU and 16 GB memory to fully evaluate the performance of the proposed algorithm.
The simulation program used was MATLAB 2019a.
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Two sets of simulations were conducted. The first set mainly aims to test the relative
performance of the improved SVD-ADCKF algorithm to the SVD-DCKF algorithm. Both
of these are based on the FKF framework to fuse multisensor information, thereby they are
called SVD-FDCKF and SVD-FADCKF in the results of simulations. Specifically, this set of
simulations evaluates the performances of these two algorithms in different process noise
environments to verify the adaptive function of the improved algorithm, with the main
focus on the accuracy of the state estimation, the Standard Deviation, the error covariance,
and the convergence algebra of the algorithm. The second set of simulations introduces
the MFCKF algorithm proposed in Section 4 and aims to verify the capacity of the state
enhancement method in more efficiently suppressing the process noise. In this set of
simulations, the calculation time was also added based on the first set of simulations to
qualitatively analyze whether the algorithm after state decomposition will bring a great
additional calculation burden.

The models for numerical simulations are described in Sections 2.2 and 4.1. Uncor-
related Gaussian white noise is added as the process noise of the system, and the noise
of the position information conforms to a normal distribution. Specific parameters of
simulations as shown in Table 2. The estimation covariance will iteratively converge in the
filter, therefore the iterative initial value of the estimation covariance is a non-optimal value
given based on experience. To initialize 1500 Monte Carlo simulations, the iterative initial
value of the state vector in each simulation is equal to the true initial state plus a random
component extracted from a Gaussian distribution with zero mean and variance equal to
the initial covariance of the filter. In order to make it easier to transplant the algorithm to a
physical platform for testing in the future, the measurement noise of the simulation is close
to the parameters of the physical components that are expected to be used (see Figure 3;
the actual parameters of simulations are subject to Table 2). In this context, the results of
the numerical simulations can be as close as possible to the actual situation. (For technical
reasons, the experiment is still at the simulation phase currently.)

Figure 4 shows the simulation paths of different algorithms. More detailed analyses
are presented in Sections 5.1 and 5.2.

Figure 3. The sensors and the mobile robot involved in this article: (a) The Ultra-Wide Band (UWB)
sensors (YCHIOT, Wenzhou, Zhejiang, China), which are commercial products provided by the
company of YCHIOT, with the module of Mini3s; (b) the spatial motion sensor chip MPU9150 as the
IMU sensor (Digi-Key Electronics, Thief River Falls, Minnesota, United States); (c) the odometer84
constructed by the DC gear motors MG513 with an encoder (Fenghua Transmission, Kunshan,
Jiangsu, China); and (d) the wheeled mobile robot platform (Ruiqu Technology, Foshan, Guangdong,
China) that realizes the precise localization by carrying the above sensors.
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Figure 4. Simulation paths of different algorithms.

5.1. Simulation on the SVD-FADCKF

The purpose of this set of simulations is to verify the performance improvement
of the SVD-ADCKF algorithm compared to the original algorithm (SVD-DCKF). Based
on the algorithm proposed in Section 3, filtering is implemented in the IMU and UWB
systems, respectively, and fusion is achieved under the FKF framework (SVD-FADCKF
and SVD-FDCKF). Meanwhile, the estimation error of the state vector is recorded and
evaluated (Figures 5 and 6).

As shown in Figure 5, the improved algorithm with the introduced adaptive factor
(SVD-ADCKF) has an obviously lower average positioning error than the original algorithm
(SVD-DCKF). Table 3 shows that the average positioning error of SVD-ADCKF is ~7.89%
lower than that of SVD-DCKF.

Table 3. Average positioning errors in 1500 Monte Carlo experiments.

Item SVD-FDCKF SVD-FADCK

Average positioning error (cm) 1.2937 1.1915

As shown in Figures 5 and 6, the two algorithms have similar positioning errors in
most cases, but SVD-ADCKF performs better when the error fluctuates greatly. This may
be attributed to the adaptive adjustment of the process noise covariance by SVD-ADCKF
when the time update of the system is inaccurate. In this way, the weight of observations
in the state estimation is increased, thereby reducing the overall error.
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Figure 5. Positioning errors of the two algorithms.
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5.2. Simulation on the MFCKF

This set of simulations mainly aims to verify the performance improvement of the
MFCKF algorithm relative to the original algorithm (SVD-FDCKF) and the adaptive
algorithm (SVD-FADCKF). The main experimental environment is the same as that in
Section 5.1, while the difference is the addition of the algorithm proposed in Section 4 as
the experimental object, which can record and evaluate the estimation error and standard
deviation of the state vector. The simulation results are shown in Figures 7–9.

As is shown in Figure 7, the MFCKF not only has better performance than the original
algorithm, but also has a lower positioning error than the adaptive algorithm proposed
in Section 3 (SVD-FADCKF). As can be seen in Table 4, the average positioning error of
the improved algorithm after state enhancement is about 32.76% lower than that of the
original algorithm (SVD-FDCKF).

Table 4. Average positioning errors in 1500 Monte Carlo experiments.

Item SVD-FDCKF SVD-FADCK MFCKF

Average positioning error (cm) 1.2937 1.1915 0.8698

As shown in Figures 7 and 8, the error curve becomes smoother after the enhancement
of the state vector and the addition of the new state information. Therefore, it can be
inferred that the state enhancement method can improve the algorithm in terms of tracking
the state of moving bodies. However, it is also noticed that the improved algorithm
deteriorates in terms of initial overshoot and dynamic response performance, which may
be caused by the increase in the order of the state vector. More efforts are needed to further
address this issue.
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Figure 7. Positioning errors of the three algorithms.
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Figure 8. X-axis and Y-axis errors of the three algorithms in selected simulations.

Figure 9 shows the positioning standard deviation of each iteration in the 1500 Monte
Carlo experiments. It is clear from the figure that the standard deviation of MFCKF is
better than the other two algorithms.

Figure 10 shows the average estimation error covariance of each iteration in the
1500 Monte Carlo experiments. It can be seen that the proposed algorithm (MFCKF) has
better performance during most of the simulation. However, identical to the state vector,
the improved algorithm deteriorates in terms of initial overshoot and dynamic response
performance, which may be caused by the increase in the order of the state vector. More
efforts are needed to further address this issue.
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Figure 9. Average standard deviation of positioning error in 1500 Monte Carlo experiments (3
algorithms).
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Figure 10. Average estimated error covariance in 1500 Monte Carlo experiments (3 algorithms).

Figure 11 shows the process of covariance converges in iteration. This is a randomly
selected set from the 1500 Monte Carlo experiments. We can get a conclusion similar to
Figure 10, the proposed algorithm has better performance in estimation error covariance
after convergence but poor initial overshoot and dynamic response performance.

In addition, in the 1500 times Monte Carlo experiments, an average of 101.95 s per
150 s, the positioning error is contained in the error covariance curve, accounting for 67.97%
of the total simulation time.
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Figure 11. Estimated error covariance in in a selected simulation (3 algorithms).
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Figure 12 shows that the calculation time of the proposed algorithm (SVD-MFDCKF)
is slightly higher than that of the control group (SVD-FDCKF), which is ~11% (Table 5).
This is basically consistent with the theoretical calculation complexity analysis shown in
Table 2 (~12.11%). Nonetheless, the increased computational burden is considered to be
worthwhile, considering the improvement in positioning accuracy 32.76%.
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Figure 12. Comparison of simulation time of two algorithms.

Table 5. Average simulation time of two algorithms.

Item SVD-FDCKF MFDCK

Average calculation time (s) 0.0445 0.0398

6. Conclusions

This study designed a set of solutions to solve the filtering divergence problem in
applying the algorithm proposed by He et al. [25] in the high process noise environment.
First of all, adaptive filtering was introduced to timely adjust the process noise covariance,
which can help set Q optimally and thus increase the filtering accuracy, suppressing the
filtering divergence. Subsequently, the state vector enhancement method is employed to en-
hance the system state vector and thus increase the traceability of the algorithm. Moreover,
the state vector decomposition method is combined with the state vector enhancement
method to simplify the enhanced state vector, thereby relieving the extra computational
burden caused by the state enhancement method. The simplified system is demonstrated
to have hardly increased computational burden according to comprehensive computational
complexity analysis. Moreover, the overall positioning accuracy of the algorithm is im-
proved. To verify the effectiveness of the algorithm, two sets of numerical simulations are
carried out, which prove that the MFCKF proposed in this article has a significant improve-
ment in positioning accuracy 32.76% compared to the original algorithm (SVD-FDCKF),
although a small additional computational burden (11%) is introduced. Moreover, it can
effectively perform accurate system state estimation in an environment with high process
noise. Therefore, the algorithm proposed in this article achieves the expected goal.

Our future research will focus on the following two aspects:
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• Transplanting the algorithm to a physical platform to verify the filtering performance
of the proposed algorithm under actual conditions.

• Investigating the dynamic response performance of the proposed algorithm to further
improve its performance in the highly dynamic environment.
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